View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan dengan Geographically Weighted Negative Binomial Regression (Studi kasus: Banyaknya Penderita Kusta di Jawa Barat)

      Thumbnail
      View/Open
      Cover (2.620Mb)
      Fullteks (3.236Mb)
      Lampiran (4.849Mb)
      Date
      2021
      Author
      Khotimah, Khusnul
      Sulvianti, Itasia Dina
      Silvianti, Pika
      Metadata
      Show full item record
      Abstract
      Banyaknya penderita kusta merupakan contoh kejadian cacah. Analisis yang dapat digunakan untuk memodelkan data cacah adalah regresi Poisson. Penelitian ini bertujuan untuk menentukan peubah-peubah yang berpengaruh terhadap banyaknya penderita kusta di Jawa Barat tahun 2019. Data yang digunakan merupakan data banyaknya penderita kusta tahun 2019 di tiap kabupaten/kota di Jawa Barat. Data pada penelitian ini memiliki kondisi overdispersi dan heterogenitas spasial antar kabupaten/kota. Overdispersi perlu diatasi dengan pemodelan regresi binomial negatif. Sedangkan heterogenitas spasial diatasi dengan menambahkan pembobot adaptive bisquare kernel pada regresi binomial negatif. Penelitian ini menghasilkan sepuluh kelompok kabupaten/kota di Jawa Barat berdasarkan peubah-peubah yang berpengaruh signifikan terhadap banyaknya penderita kusta melalui model Geographically Weighted Negative Binomial Regression (GWNBR) dengan pembobot adaptive bisquare kernel. Secara umum peubah persentase rumah tangga ber-Perilaku Hidup Bersih dan Sehat (ber-PHBS) berpengaruh signifikan di seluruh kabupaten/kota di Jawa Barat. Khusus untuk Kabupaten Bogor, Kota Depok, Kota Bogor, dan Kabupaten Pangandaran peubah persentase penduduk miskin tidak berpengaruh signifikan terhadap banyaknya penderita kusta.
       
      The number of leper in West Java is an example of the count data case. The analyzes commonly used in count data is Poisson regression. This research will determine the variables that influence the number of leper in West Java. The data used is the number of leper in West Java in 2019. This data has an overdispersion condition and spatial heterogenity. To handle overdispersion, the negative binomial regression model can be employed. While spatial heterogenity is overcome by adding adaptive bisquare kernel weight. This research resulted Geographically Weighted Negative Binomial Regression (GWNBR) with a weighting adaptive bisquare kernel classifies regency/city in West Java into ten groups based on the variables that sigfinicantly influence the number of leper. In general, the variable in the percentage of households with Clean and Healthy Behavior (PHBS) has a significant effect in all regency/city in West Java. Especially for Bogor Regency, Depok City, Bogor City, and Pangandaran Regency, the variable of the percentage of people poverty does not have a significant effect on the number leper.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107338
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository