View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritme Maximum Likelihood dan k-Nearest Neighbour untuk Identifikasi Lahan Bawang Putih Menggunakan Citra Sentinel-1A

      Thumbnail
      View/Open
      Cover (557.1Kb)
      Fulltext (1.745Mb)
      Lampiran (339.8Kb)
      Date
      2021
      Author
      Rahmani, Intan Aida
      Agmalaro, Muhammad Asyhar
      Sitanggang, Imas Sukaesih
      Metadata
      Show full item record
      Abstract
      Komoditas bawang putih (Allium sativum) di Indonesia dikenal memiliki banyak khasiat. Seiring dengan pertumbuhan penduduk, konsumsi bawang putih juga semakin meningkat. Namun, ketersediaannya belum mencukupi seluruh permintaan yang ada. Kementerian Pertanian merencanakan swasembada bawang putih pada 2030 di salah satu sentra penanaman bawang putih Kecamatan Sembalun, Lombok Timur untuk memenuhi permintaan dengan meningkatkan lahan perkebunan. Sehingga penelitian lanjutan untuk identifikasi lahan bawang putih menjadi penting. Penelitian ini bertujuan untuk menerapkan algoritme yang dapat mengindentifikasi lahan bawang putih menggunakan citra Sentinel-1A di Kecamatan Sembalun, Lombok Timur. Model klasifikasi dibuat menggunakan algoritme k-Nearest Neighbour (kNN) dan Maximum Likelihood Classification (MLC). Model klasifikasi memiliki akurasi terbaik yaitu 78,81% pada algoritme kNN dengan koefisien kappa 0,58 dan 76,31% pada algoritme MLC dengan koefisien kappa 0,53. Berdasarkan hasil tersebut, penelitian ini menyimpulkan bahwa mode klasifikasi tersebut dapat mengidentifikasi lahan bawang putih.
       
      The commodity of garlic (Allium sativum) in Indonesia is known to have many health benefits. Along with population growth, the consumption of garlic is increasing. However, its availability is not sufficient for all existing demands. In 2030, The Ministry of Agriculture plans to achieve garlic self-sufficiency in one of the centre garlic field in Sembalun District, East Lombok by enlarging the area. Therefore, further research to identify garlic field is important. This study aims to apply classification algorithms that can identify garlic fields using Sentinel-1A imageries in Sembalun District, East Lombok. The classification model is created using the k-Nearest Neighbour (kNN) algorithm and Maximum Likelihood Classification (MLC). The classification models have the best accuracy 78,81% for the kNN algorithm with a kappa coefficient of 0,58 and 76,31% for the MLC algorithm with a kappa coefficient of 0,53. Based on these results, this study concludes that the classification model is able to identify garlic fields.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107241
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository