View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritme Random Forest pada Citra Sentinel-1A untuk Identifikasi Lahan Bawang Putih di Sembalun

      Thumbnail
      View/Open
      Cover (1.260Mb)
      Full text (10.58Mb)
      Lampiran (2.234Mb)
      Date
      2021
      Author
      Coeur d'Alene, Ahmad Al-Banjaran
      Sitanggang, Imas Sukaesih
      Metadata
      Show full item record
      Abstract
      Bawang putih (Allium sativum L.) merupakan tanaman hortikultura yang memiliki banyak manfaat dalam kehidupan manusia baik dalam bidang medis maupun non medis. Daerah Sembalun merupakan dataran tinggi (>700 meter dpl) yang memiliki luas lahan mencapai 4000 hektar sehingga cocok untuk pengembangan komoditas bawang putih. Penelitian ini bertujuan untuk menerapkan algoritme ensemble learning yang dapat meningkatkan akurasi dalam pemetaan lahan bawang putih menggunakan citra Sentinel 1-A. Data yang digunakan pada penelitian ini adalah Citra Sentinel-1A daerah Sembalun periode Juni dan November 2019. Pengklasifikasian citra Sentinel-1A menggunakan algoritme ensemble learning yaitu Random Forest. Penelitian ini menerapkan model dengan tiga skenario dengan akurasi terbaik sebesar 78,45% dan rata-rata akurasi pada semua skenario sebesar 76,55%. Rata-rata akurasi pada algoritme pembelajaran ensemble mendapatkan nilai yang lebih tinggi 0,1% dibandingkan penerapan algoritme decision tree C5.0 pada penelitian sebelumnya.
       
      Garlic (Allium sativum L.) is a horticultural plant that has many benefits in human life, both in the medical and non-medical fields. The Sembalun area is a highland (>700 meters above sea level) which has a land area of 4000 hectares so it is suitable for the development of garlic commodities. This study aims to apply an ensemble learning algorithm that can improve accuracy in mapping garlic fields using Sentinel 1-A imagery. The data used in this study is the Sentinel-1A image of the Sembalun area for the period June and November 2019. The classification of the Sentinel-1A image uses an ensemble learning algorithm, namely Random Forest. This study applies a model with three scenarios with the best accuracy of 78.45% and an average accuracy of 76.55% in all scenarios. The average accuracy of the ensemble learning algorithm is 0.1% higher than the application of the C5.0 decision tree algorithm in the previous study.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/107236
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository