View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Regresi Spasial dengan Matriks Pembobot Spasial Optimum pada Data PDRB Pulau Sulawesi

      Thumbnail
      View/Open
      Cover (2.706Mb)
      Fulltext (8.677Mb)
      Lampiran (5.242Mb)
      Date
      2021
      Author
      Paramita, Nadya
      Masjkur, Mohammad
      Indahwati
      Metadata
      Show full item record
      Abstract
      Analisis regresi spasial dibagi menjadi dua model utama, yaitu spatial autoregressive model (SAR) dan spatial error model (SEM). Pengembangan dari model SAR adalah spatial Durbin model (SDM) yang menyertakan ketergantungan spasial pada peubah respon dan peubah penjelas ke dalam model. Penentuan matriks pembobot dalam regresi spasial sangat penting dalam menentukan hasil pendugaan. Penelitian ini menggunakan dua metode pembobotan yaitu k-nearest neighbour (k-NN) dan inverse distance weight (IDW). Tujuan dari penelitian ini adalah: (1) membandingkan kinerja dari empat model, yaitu model regresi linier berganda dengan metode kuadrat terkecil, SAR, SEM, dan SDM dengan pembobot spasial k-NN dan IDW pada pendugaan produk domestik regional bruto (PDRB), dan (2) mengidentifikasi faktor-faktor yang memengaruhi besarnya PDRB Pulau Sulawesi. Penelitian ini menggunakan data PDRB 81 kabupaten/kota di Pulau Sulawesi tahun 2018 dengan enam peubah penjelas. Hasil menunjukkan bahwa model SAR dengan pembobot 4-NN lebih baik daripada model lainnya karena memiliki nilai AIC dan BIC yang paling kecil. Adapun faktor-faktor yang memengaruhi besarnya PDRB kabupaten/kota di Pulau Sulawesi adalah indeks pembangunan manusia (IPM), jumlah penduduk, tingkat pengangguran terbuka, dan jumlah industri kecil/mikro dan menengah, serta lag spasial dari peubah respon.
       
      Spatial regression analysis divides into two main models, namely spatial autoregressive (SAR) and spatial error (SEM) models. The extension of the SAR model is a spatial Durbin model (SDM) which takes into account the spatial dependence of response and explanatory variables into the model. The determination of the spatial weight matrix is critical for the best estimation results. In this study using two distance-based spatial weight matrix, i.e., the k-nearest neighbour (k-NN) and inverse distance weight (IDW). The objectives of this study are: (1) to compare the performance of four models, i.e., the multiple linear regression model with ordinary least square method, SAR, SEM, and SDM models with k-NN and IDW on the estimation of gross regional domestic product (GRDP), and (2) to identify the important factors that influence the GRDP amount of Sulawesi Island. This study used the GRDP data of 81 districts/cities in Sulawesi Island in 2018 with six explanatory variables. The results showed that the 4-NN weighted SAR model is better than the other models because it has the smallest AIC and BIC values. The factors that influence the value of GRDP in Sulawesi Island are human development index (HDI), population size, unemployment rate, small/micro and medium industries, and the spatial lag of the response variable.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/105805
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository