View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Principal Component Analysis (PCA) dan Tasseled Cap Transformation (TCT) Foto Drone Multispektral untuk Identifikasi Tanaman Padi Sawah

      Thumbnail
      View/Open
      Cover (1.030Mb)
      Fullteks (3.351Mb)
      Date
      2021-02-02
      Author
      Sinaga, Florisca Golda
      Ardiansyah, Muhammad
      Iman, La Ode Syamsul
      Metadata
      Show full item record
      Abstract
      Pemantauan lahan sawah dengan menggunakan drone menawarkan solusi baru, efisien, dan hemat biaya dalam identifikasi atau pengumpulan informasi kondisi tanaman padi di lahan sawah. Penelitian bertujuan mengidentifikasi kanal kehijauan, kecerahan, dan kekuningan dari foto drone multispektral dengan transformasi PCA dan TCT serta mengetahui perbedaan hasil kedua transformasi. Penelitian dilaksanakan pada petak sawah 7A dan 1B milik Balai Benih Padi dan Palawija (BBPP) Cianjur. Transformasi PCA pada foto drone multispektral dari padi sawah menghasilkan 3 komponen utama yaitu PCA 3 dari petak 1B dan 7A merepresentasikan kanal kehijauan, PCA 4 dari petak 1B dan PCA 2 dari petak 7A menggambarkan kanal kecerahan, dan PCA 2 dari petak 1B dan PCA 1 dari petak 7A merepresentasikan kanal kekuningan. Transfromasi TCT dinilai lebih baik dalam merepresentasikan kanal kehijauan, kecerahan, dan kekuningan serta lebih mampu dalam menjelaskan perbedaan-perbedaan yang nampak pada citra.
       
      Monitoring paddy fields using drones offers a new, efficient and cost effective solution in identifying or collecting information on the condition of rice plants in paddy fields. The research aims to identify greenness, brightness, and yellowness channels from multispectral drone images with PCA and TCT transformations and to determine the differences in the results of the two transformations. The research was carried out on rice fields 7A and 1B belonging to the Cianjur Rice and Vegetable Seed Center (BBPP). The PCA transformation on the multispectral drone of paddy fields produced 3 main components, namely PCA 3 of plots 1B and 7A representing greenish channels, PCA 4 of plots 1B and PCA 2 of plots 7A representing brightness channels, and PCA 2 of plots 1B and PCA 1 of plot 7A representing yellowish channels. The TCT transfromation is considered better in representing the channels of greenness, brightness, and yellowness and able to explain the differences that appear in the images.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/105612
      Collections
      • UT - Soil Science and Land Resources [2825]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository