View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Kajian Perbandingan Metode Least Median of Squares dan Maximum Likelihood Type pada Regresi Kekar

      Thumbnail
      View/Open
      Cover (998.5Kb)
      Fullteks (1.395Mb)
      Lampiran (695.6Kb)
      Date
      2021
      Author
      Mutiarasari, Vina Fauzia
      Sadik, Kusman
      Suhaeni, Cici
      Metadata
      Show full item record
      Abstract
      Keberadaan pencilan dapat memengaruhi pendugaan parameter dalam analisis regresi yang menggunakan metode ordinary least squares (OLS). Metode regresi kekar dapat digunakan sebagai pendekatan alternatif dari OLS. Penelitian ini dilakukan untuk mengkaji perbandingan dari dua metode regresi kekar, yaitu least median of squares (LMS) dan maximum likelihood type (M) melalui data simulasi. Data simulasi diperoleh dengan membangkitkan bilangan acak berdasarkan model regresi linear berganda dua peubah penjelas. Kombinasi yang digunakan adalah jenis pencilan, proporsi pencilan, dan ukuran contoh. Berdasarkan nilai bias mutlak dan kuadrat tengah galat (KTG) diperoleh bahwa metode M lebih tepat diterapkan ketika data mengandung vertical outlier atau good leverage point, lalu diikuti oleh metode LMS. Sementara itu, metode LMS dapat menduga parameter regresi pada data yang mengandung bad leverage point. Analisis selanjutnya dilakukan pada data pertanian mengenai pengaruh pupuk organik dan konsumsi beras per kapita terhadap produksi padi sawah di 34 provinsi tahun 2017. Hasil yang diperoleh menunjukkan bahwa metode LMS menghasilkan nilai bias mutlak dan KTG terkecil.
       
      The presence of outliers can be affect to estimate the parameters of the linear regression using ordinary least squares (OLS). The robust regression methods can be used as an alternative to OLS. This study aims to compare the performance of two methods, namely least median of squares (LMS) and maximum likelihood type (M) using simulation study. The simulation data obtained by generating random number based on multiple linear regression with two explanatory variables. With combination of the sample size, outliers type, and the number of outliers. Based on the criteria: absoulut bias and mean square error (MSE), the M-estimator gave better result than the LMS-estimator when the data contains vertical outliers or good leverage point. Meanwhile, the LMS-estimator gave better result at data containing bad leverage points. The next step is analysed data application for agriculture on the affect of organic fertilizer and rice consumption per capita against the use of rice production in 34 provinces in 2017 using the best method based on data characteristic. The results from LMS-estimator produce the smallest absolut bias and MSE.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/105386
      Collections
      • UT - Statistics and Data Sciences [2260]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository