

@Hak cipta milik IPB University

# OPTIMIZATION OF OIL PALM EMPTY FRUIT BUNCH FIBER COMPOSITION AS AN ADSORPTION UNIT IN PALM OIL MILL EFFLUENT TREATMENT

# FRANS EDVAN SETIAWAN



EPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING
FACULTY OF AGRICULTURAL ENGINEERING & TECHNOLOGY
IPB UNIVERSITY
BOGOR
2025



Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
b. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

# IPB University



# **DECLARATION OF THE UNDERGRADUATE THESIS** INFORMATION SOURCES AND COPYRIGHT TRANSFER

I hereby declare that the undergraduate student thesis titled "Optimization of Oil Palm Empty Fruit Bunch Fiber Composition as an Adsorption Unit in Palm Oil Mill Effluent Treatment" is my work under the guidance of my supervisors and has not been published or submitted to any university in any form. The source of information derived or quoted from unpublished or published documents by other authors has been mentioned in the text and included in the bibliography at the end of this thesis.

Hereby, I assign the copyright of this undergraduate thesis to the IPB University.

Bogor, February 2025

Frans Edvan Setiawan F4401211016



Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
b. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

# IPB University

Hak Cipta Dilindungi Undang-undang I. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber



## **ABSTRACT**

FRANS EDVAN SETIAWAN. Optimization of Oil Palm Empty Fruit Bunch Fiber Composition as an Adsorption Unit in Palm Oil Mill Effluent Treatment. Supervised by ALLEN KURNIAWAN and SITI NIKMATIN.

The large volume of waste generated by the palm oil industry in Indonesia, consisting of approximately 23% Oil Palm Empty Fruit Bunches (OPEFB) and 65% Palm Oil Mill Effluent (POME), presents a significant environmental challenge. Waste reduction was conducted by integrating a physical process (adsorption using OPEFB) with a biological process (modified AnRBC) for POME treatment. The composition of OPEFB (spikelet and stalk) in the adsorption unit and the HRT in the AnRBC unit were varied. The 75:25 (spikelet:stalk) composition achieved the highest O&G removal efficiency (50.44%), while 25:75 showed the highest SCOD removal (8.09%). Kinetic modeling indicated that the Pseudo-First-Order (PFO) model outperformed other models, supported by higher Pearson correlation. Validation using actual effluent data confirmed its suitability, with Spearman's Rho showing weak to strong correlations and ANOVA revealing no significant differences. The PFO model further demonstrated that the 75:25 composition had higher adsorption capacity (69.563 mg/g O&G; 223.335 mg/g SCOD), while the 25:75 composition had higher adsorption rates (0.219 1/d O&G; 0.008 1/d SCOD).

**Keywords:** oil and grease (O&G), pseudo-first-order, SCOD, spikelet, stalk

# **ABSTRACT**

FRANS EDVAN SETIAWAN. Optimization of Oil Palm Empty Fruit Bunch Fiber Composition as an Adsorption Unit in Palm Oil Mill Effluent Treatment. Dibimbing oleh ALLEN KURNIAWAN dan SITI NIKMATIN.

Tingginya volume limbah yang dihasilkan oleh industri kelapa sawit di Indonesia, yang terdiri atas sekitar 23% Tandan Kosong Kelapa Sawit (TKKS) dan 65% Limbah Cair Kelapa Sawit (LCKS), menjadi masalah bagi lingkungan. Upaya pengurangan limbah dilakukan dengan mengintegrasikan proses fisik (adsorpsi menggunakan TKKS) dan proses biologis (modifikasi AnRBC) untuk pengolahan LCKS. Penelitian ini memvariasikan komposisi TKKS (spikelet dan stalk) dalam unit adsorpsi serta HRT dalam unit AnRBC. Komposisi 75:25 (spikelet:stalk) menghasilkan efisiensi penurunan O&G tertinggi (50,44%), sementara komposisi 25:75 menunjukkan penurunan SCOD tertinggi (8,09%). Pemodelan kinetika menunjukkan bahwa model Pseudo-Orde-Pertama (PFO) memiliki kinerja terbaik dibandingkan model lainnya, ditunjukkan oleh nilai korelasi Pearson yang lebih tinggi. Validasi dengan data efluen juga menunjukkan kesesuaian, didukung nilai korelasi Spearman's Rho lemah-kuat dan ANOVA tanpa perbedaan signifikan. Model PFO juga menunjukkan bahwa komposisi 75:25 memiliki kapasitas adsorpsi lebih tinggi (69,563 mg/g O&G; 223,335 mg/g SCOD), sementara komposisi 25:75 memiliki laju adsorpsi lebih tinggi (0,219 1/hari O&G; 0,008 1/hari SCOD).

Kata kunci: minyak dan lemak, pseudo-orde-pertama, SCOD, spikelet, stalk



@Hak cipta milik IPB University

# © Copyrighted by IPB University, 2025 Copyright is protected by Law

It is prohibited to quote parts or all of this paper without acknowledging or citing the source. Citation is only for the purposes of education, research, writing scientific papers, compiling reports, writing criticism, or reviewing a problem, and the citation is not detrimental to IPB University interests.

It is prohibited to publish and reproduce parts or all of this paper without IPB University's permission.



# OPTIMIZATION OF OIL PALM EMPTY FRUIT BUNCH FIBER COMPOSITION AS AN ADSORPTION UNIT IN PALM OIL MILL EFFLUENT TREATMENT

# FRANS EDVAN SETIAWAN

Undergraduate thesis as one of the requirements to obtain a Bachelor's Degree in Civil and Environmental Engineering Department

EPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING
CULTY OF AGRICULTURAL ENGINEERING & TECHNOLOGY
IPB UNIVERSITY
BOGOR
2025



Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

Examiner on Undergraduate Thesis Exam: Dr. Ir. Yudi Chadirin, S.TP., M.Agr.



Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
b. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

# IPB University



Title

: Optimization of Oil Palm Empty Fruit Bunch Fiber Composition

as an Adsorption Unit in Palm Oil Mill Effluent Treatment

Name

: Frans Edvan Setiawan

Student ID

: F4401211016

Approved by

Supervisor:

Dr. Eng. Ir. Allen Kurniawan, S.T., M.T.

NIP. 19820729 201012 1 005

Co-supervisor:

Dr. Siti Nikmatin, S.Si., M.Si. NIP. 19750819 200012 2 001 Z Stairs

Known by

Head of Department:

Dr. Ir. Erizal, M.Agr. IPU. NIP. 19650106 199002 1 001



Exam Date: 01 July 2025

Graduate Date: 1 0 JUL 2025

Perpustakaan IPB Univers



@Hak cipta milik IPB University

## **PREFACE**

The author offers profound praise and gratitude to Almighty God for endless grace, blessings, and guidance, which have granted the author good health and the ability to complete this undergraduate thesis on schedule. Undergraduate thesis, entitled "Optimization of Oil Palm Empty Fruit Bunch Fiber Composition as an Adsorption Unit in Palm Oil Mill Effluent Treatment" has been prepared and submitted to fulfill the requirements for a bachelor's degree in the Department of Civil and Environmental Engineering at IPB University.

The author would like to thank everyone who has provided invaluable support, guidance, and encouragement while completing this undergraduate thesis. Special thanks are dedicated to:

- 1. The author's beloved parents and family for their unconditional love and unwavering support throughout my academic journey;
- 2. Dr. Eng. Ir. Allen Kurniawan, S.T., M.T. and Dr. Siti Nikmatin, S.Si, M.Si., my esteemed supervisors, for their invaluable guidance, patience, and expertise from the initial stages to the completion of this undergraduate thesis:
- 3. Arif Nuryadin as laboratory staff who greatly assisted in discussions and the execution of tests throughout the research process;
- 4. Muhammad Imany Romadhon and Alimah Hasyyati Sahda as the teammates for all the company, assistance, and advice;
- 5. Windyarti Mustika Cakraningtyas, Gian Azaria, Sylvia Wardani, Rahmah Dwi Cahyani, and Ranti Teguh Wicaksono, my fellow Allen-supervised peers, for their support, advice, and camaraderie throughout this journey;
- 6. The Ministry of Research, Technology, and Higher Education and the National Achievement Center of the Republic of Indonesia, which funded and supported this innovation and research;
- 7. Lastly, the author deeply appreciates your support, assistance, and encouragement to all friends and associates who couldnot be mentioned individually.

Hopefully, this scientific work will be helpful for those who need it and for the advancement of science.

Bogor, February 2025

Frans Edvan Setiawan



# **CONTENTS**

| LIS                         | LIST OF TABLES x                                                                           |          |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------|----------|--|--|--|--|
| LIST OF FIGURES             |                                                                                            |          |  |  |  |  |
| LIS                         | LIST OF APPENDIX x                                                                         |          |  |  |  |  |
| LIS                         | LIST OF NOTATIONS xi                                                                       |          |  |  |  |  |
| GL                          | GLOSSARY xii                                                                               |          |  |  |  |  |
|                             | INTRODUCTION                                                                               |          |  |  |  |  |
| INTRODUCTION 1.1 Background |                                                                                            |          |  |  |  |  |
|                             | 1.2 Problem Formulation                                                                    | 1        |  |  |  |  |
| University                  | 1.3 Main Objectives                                                                        | 4        |  |  |  |  |
| cit)                        | 1.4 Expected Benefits                                                                      | 4        |  |  |  |  |
|                             | 1.5 Scope of Research                                                                      | 4        |  |  |  |  |
| II                          | II METHODOLOGY                                                                             |          |  |  |  |  |
|                             | 2.1 Research Site and Timeline                                                             | 5        |  |  |  |  |
|                             | 2.2 Instruments and Materials                                                              | 5        |  |  |  |  |
|                             | 2.3 Research Operation Procedure                                                           | 6        |  |  |  |  |
|                             | <ul><li>2.3.1 POME Characteristic Test</li><li>2.3.2 Design Reactor</li></ul>              | 6<br>7   |  |  |  |  |
|                             | 2.3.3 Seeding and Acclimatization                                                          | 12       |  |  |  |  |
|                             | 2.3.4 Preparation and Characteristic Test of OPEFB                                         | 12       |  |  |  |  |
|                             | 2.3.5 Processing Unit Performance Analysis                                                 | 14       |  |  |  |  |
|                             | 2.3.6 Oil and Grease Adsorption Kinetic Modelling                                          | 16       |  |  |  |  |
|                             | 2.3.7 Statistical Test                                                                     | 18       |  |  |  |  |
|                             | 2.3.7.1. Analysis of Variance (ANOVA)                                                      | 18       |  |  |  |  |
|                             | 2.3.7.2. Pearson                                                                           | 20       |  |  |  |  |
|                             | 2.3.7.3. Spearman's Rho                                                                    | 21       |  |  |  |  |
|                             | 2.3.8 Operational Variable and Kinetic Parameters Scenarios in Adsorption Kinetic Modeling | 21       |  |  |  |  |
|                             | 2.3.9 Sensitivity Analysis                                                                 | 22       |  |  |  |  |
|                             | 2.3.10 Optimization of Operational Variables and Kinetic Parameters                        |          |  |  |  |  |
|                             | on Adsorption Unit Performance                                                             | 23       |  |  |  |  |
| III                         | RESULT AND DISCUSSION                                                                      | 24       |  |  |  |  |
|                             | 3.1 Characterization of POME                                                               | 24       |  |  |  |  |
|                             | 3.2 Characterization of OPEFB                                                              | 24       |  |  |  |  |
|                             | 3.2.1 Surface Morphology Characterization                                                  | 24       |  |  |  |  |
|                             | 3.2.2 Chemical Element Composition                                                         | 25       |  |  |  |  |
|                             | 3.2.3 Identification of Functional Groups                                                  | 26       |  |  |  |  |
|                             | 3.2.4 Surface Property Evaluation                                                          | 28       |  |  |  |  |
|                             | <ul><li>3.2.5 Surface Tension Analysis</li><li>3.3 Seeding and Acclimatization</li></ul>   | 29<br>30 |  |  |  |  |
|                             | 3.4 Performance Evaluation of The Integrated Reactor                                       | 31       |  |  |  |  |
| W                           | 3.5 Performance Evaluation of Adsorption Unit                                              | 36       |  |  |  |  |
|                             | 2. Land D. M. Brandon of 12000, pulson of miles                                            | 23       |  |  |  |  |



|                  | 3.5.1  | Effect of OPEFB Fiber Type Composition on Adsorption Unit     |    |
|------------------|--------|---------------------------------------------------------------|----|
|                  |        | Performance in SCOD                                           | 36 |
|                  | 3.5.2  | Effect of OPEFB Fiber Type Composition on Adsorption Unit     |    |
|                  |        | Performance in Oil and Grease                                 | 37 |
| 3.6              | Adsor  | otion Kinetics Modeling of The Adsorption Unit                | 37 |
| 3.7              | Effect | of Operational Variables and Kinetic Parameters on Adsorption |    |
| Unit Performance |        |                                                               | 41 |
|                  | 3.7.1  | Effect of OPEFB Mass on Adsorption Unit Performance           | 41 |
|                  | 3.7.2  | Effect of POME Volume on Adsorption Unit Performance          | 41 |
|                  | 3.7.3  | Effect of Time on Adsorption Unit Performance                 | 41 |
|                  | 3.7.4  | Effect of Fiber Composition on Adsorption Unit Performance    | 42 |
|                  | 3.7.5  | Effect of Equilibrium Adsorption Capacity on Adsorption Unit  |    |
|                  |        | Performance                                                   | 42 |
|                  | 3.7.6  | Effect of Adsorption Rate Constant on Adsorption Unit         |    |
|                  |        | Performance                                                   | 42 |
|                  | 3.7.7  | Sensitivity Analysis of Parameter on $C_t$ Estimation         | 43 |
|                  | 3.7.8  | Optimization of Operational Variables and Kinetic Parameters  |    |
|                  |        | on Adsorption Unit Performance                                | 44 |
| IV CON           | CLUSI  | ONS AND RECOMMENDATIONS                                       | 49 |
|                  | Conclu |                                                               | 49 |
|                  |        | nmendations                                                   | 49 |
| REFERENCESS 5    |        |                                                               | 50 |
| APPEN            | DIX    |                                                               | 58 |
| AUTOBIOGRAPHY    |        |                                                               | 83 |
| AUIUE            |        | <b>1</b> [] []                                                | 03 |



# LIST OF TABLES

| 2.1 | The standard for palm oil industry wastewater quality                        | 7  |
|-----|------------------------------------------------------------------------------|----|
| 2.2 | Component of adsorption OPEFB                                                | 9  |
| 2.3 | Component of AnRBC unit                                                      | 10 |
|     | Component of sedimentation unit                                              | 11 |
|     | Operational parameter for AnRBC                                              | 14 |
|     | Operational variations in the combination reactor                            | 16 |
|     | Interpretation classification of Pearson                                     | 21 |
|     | Interpretation classification of Spearman's Rho                              | 21 |
|     | POME characteristics value                                                   | 24 |
|     | EDX analysis results                                                         | 26 |
|     | Surface tension analysis results                                             | 29 |
|     | BOD and TN concentration of the integrated reactor                           | 35 |
| 200 | Statistical comparison of the three adsorption kinetic models                | 38 |
|     | Adsorption kinetic constant comparison of the three composition variations   | 39 |
|     | <u>.</u>                                                                     | 40 |
|     | Statistical comparison of the three composition variations                   |    |
| 3.8 | Combination variations using multi-objective simulation                      | 47 |
|     | LIST OF FIGURES                                                              |    |
|     |                                                                              |    |
| 2.1 | Design of configuration unit                                                 | 5  |
| 2.2 | Research procedure flow diagram                                              | 6  |
| 2.3 | Reactor working mechanism                                                    | 8  |
| 2.4 | Design of adsorption OPEFB (in mm)                                           | 8  |
| 2.5 | Design of AnRBC unit (in mm)                                                 | 10 |
| 2.6 | Design of sedimentation unit (in mm)                                         | 11 |
| 2.7 | Sample point on combination reactor                                          | 15 |
| 3.1 | SEM images of surface OPEFB (A) Spikelet (B) Stalk                           | 25 |
| 3.2 | FTIR spectra for OPEFB (A) Spikelet (B) Stalk                                | 27 |
| 3.3 | Contact angle (A) Water spikelet (B) Water stalk (C) POME spikelet (D)       |    |
|     | POME stalk                                                                   | 29 |
| 3.4 | Design of adsorption OPEFB                                                   | 30 |
| 3.5 | pH fluctuation of the integrated reactor                                     | 31 |
| 3.6 | TSS and MLSS fluctuation of the integrated reactor                           | 32 |
| 3.7 | SCOD fluctuation of the integrated reactor                                   | 33 |
| 3.8 | O&G fluctuation of the integrated reactor                                    | 34 |
| 3.9 | SCOD fluctuation of the adsorption unit                                      | 36 |
| 3.1 | 0 O&G fluctuation of the adsorption unit                                     | 37 |
|     | 1 Modelling (A) O&G adsorption (B) SCOD adsorption                           | 38 |
|     | 2 Validation model PFO (A) O&G adsorption (B) SCOD adsorption                | 40 |
| 3.1 | 3 Effect of (A) Mass (B) Volume (C) Time (D) Composition (E) $q_e$ (F) $k_1$ | 43 |
|     | 4 Significance of variable operational to $C_t$ estimation                   | 44 |
| 3.1 | 5 Optimization using OAT methods (A) Mass (B) Volume (C) Time (D) $q_e$      |    |
|     | (F) $k_1$ on effluent concentration                                          | 46 |
| 3.1 | 6 Optimization using multi-objective simulation                              | 48 |



# LIST OF APPENDIX

| Appendix 1 Laboratory test equipment and materials                       | 59 |
|--------------------------------------------------------------------------|----|
| Appendix 2 Seeding and acclimatization data                              | 61 |
| Appendix 3 pH concentration measurement data                             | 62 |
| Appendix 4 TSS and MLSS concentration measurement data                   | 63 |
| Appendix 5 SCOD concentration measurement data                           | 64 |
| Appendix 6 O&G concentration measurement data                            | 65 |
| Appendix 7 BOD concentration measurement data                            | 66 |
| Appendix 8 Total nitrogen concentration measurement data                 | 66 |
| Appendix 9 Comparison of actual and predicted $C_t$ values               | 67 |
| Appendix 10 Effect of OPEFB mass on effluent concentration               | 68 |
| Appendix 11 Effect of POME volume on effluent concentration              | 69 |
| Appendix 12 Effect of time on effluent concentration                     | 70 |
| Appendix 13 Effect of composition spikelet on effluent concentration     | 71 |
| Appendix 14 Effect of equilibrium adsorption capacity on effluent        |    |
| concentration                                                            | 72 |
| Appendix 15 Effect of adsorption rate constant on effluent concentration | 73 |
| Appendix 16 The MATLAB coding for the PFO Model                          | 74 |
| Appendix 17 The MATLAB coding for the PSO Model                          | 77 |
| Appendix 18 The MATLAB coding for the PTO Model                          | 80 |
|                                                                          |    |

# LIST OF NOTATIONS

| $C_0$ , $C_t$ , and $C_e$  | = The liquid-phase concentration of O&G at initial, at any time,                       |
|----------------------------|----------------------------------------------------------------------------------------|
| - 0, - 1,                  | and at equilibrium (mg/L)                                                              |
| V                          | = Volume of the POME (L)                                                               |
| m                          | = Mass of the OPEFB (g)                                                                |
| $q_{\rm e}$ and $q_{ m t}$ | = Adsorption capacity at equilibrium and any time (mg/g)                               |
| $S(\theta)$                | = Objective function, which quantifies the total error as the sum of squared residuals |
| $Y_{\rm i}$                | = Actual observed value at the <i>i</i> -th data point                                 |
| $f(X_i,\theta)$            | = Model-predicted value at input point $X_i$ with parameter vector                     |
|                            | heta                                                                                   |
| n                          | = The total number of observations                                                     |
| heta                       | = Parameter vector to be estimated                                                     |
| $x_i$ and $y_i$            | = Individual data points from two variables                                            |
| $\bar{x}, \bar{y}$         | = Mean of the observed values                                                          |
| $k_1$ , $k_2$ , and $k_3$  | = The PFO (1/d), PSO (g/mg.d), PTO rate constant $(g^2/mg^2.d)$                        |
| $p(\lambda)$               | = The parameter update vector for the next iteration                                   |
| $\overline{J}$             | = Jacobian matrix of the residual function                                             |
| λ                          | = Damping factor, adjusting the convergence rate                                       |
| D                          | = Diagonal matrix implementing regularization control                                  |
| f                          | = Residual factor                                                                      |
| r                          | = Pearson correlation                                                                  |

Perpustakaan IPB University

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber



## **GLOSSARY**

Seeding

The process to grow and breed microorganisms that would be used in treating waste.

**Acclimatization** 

A process that facilitates the adaptation of microorganisms to the waste being treated, enabling their survival and adjustment to new environmental conditions.

**B**iomass

The total mass of living and active microorganisms participating in anaerobic digestion plays a crucial role in the degradation of organic matter and biogas production.

Palm Oil Mill Effluent: (POME)

An organic wastewater generated from the processing of oil palm fruits is characterized by high concentrations of dissolved organic matter, oil and grease, and suspended solids.

Oil Palm Empty Fruit : Bunches (OPEFB)

A solid lignocellulosic biomass waste is generated after separating fruits from the bunch during palm oil processing.

Adsorption

**Biogas** 

A physicochemical process in which molecules of a substance (adsorbate) accumulate on the surface of a solid or liquid phase (adsorbent), without penetrating its internal structure.

Anaerobic Biological Contractor (AnRBC)

A biological wastewater treatment system that utilizes rotating discs covered with anaerobic biofilm to degrade organic matter without oxygen.

A gas produced through the anaerobic fermentation of organic matter by microorganisms, primarily composed of methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>), is utilized as a renewable energy source.

**H**ydraulic Retention Time (HRT)

The average time that a fluid remains in a reactor or treatment unit is a critical parameter to ensure effective degradation or purification of wastewater.

Pseudo-First-Order (PFO), Pseudo-Second-Order (PSO), Pseudo-Third-Order (PTO)

Adsorption kinetic models are used to describe the rate and mechanism of sorption. The PFO model assumes that the adsorption rate is proportional to the number of unoccupied active sites. PSO model represents a chemisorption process dominated by chemical interactions and PTO model is employed to capture more complex kinetic behaviors.

Analysis of Variance : (ANOVA)

The statistical test method used was suitable for comparing the means of three or more independent variable groups, allowing the determination of the effect of fiber type composition on O&G adsorption

efficiency.