

DROUGHT CHARACTERISTICS IN SUMATRA BASED ON HISTORICAL AND FUTURE PROJECTION

RAHMAT HIDAYAT

APPLIED CLIMATOLOGY STUDY PROGRAM
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
IPB UNIVERSITY
BOGOR
2025

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

STATEMENT REGARDING THESIS, SOURCES OF INFORMATION, AND COPYRIGHT TRANSFER

I hereby declare that the thesis entitled "*Drought Characteristics In Sumatra Based on Historial and Future Projection*" is my original work under the guidance of my academic supervisors and has not been submitted in any form to any other higher education institution. All sources of information derived or quoted from published or unpublished works of other authors have been properly cited within the text and listed in the References section at the end of this thesis. I hereby transfer the copyright of this thesis to IPB University.

Bogor, August 2025

Rahmat Hidayat
G2501231015

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak mengikuti kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

RINGKASAN

RAHMAT HIDAYAT. Karakteristik Kekeringan di Sumatra Berdasarkan Data Historis dan Proyeksi Masa Depan. Dibimbing oleh MUH. TAUFIK dan APIP.

Kekeringan merupakan tantangan serius bagi Sumatera, terutama dalam konteks perubahan iklim dan diperkuat oleh fenomena iklim skala besar seperti *El Niño-Southern Oscillation* (ENSO) dan *Indian Ocean Dipole* (IOD). Studi ini menginvestigasi karakteristik kekeringan menggunakan data curah hujan bulanan ERA5 (1981–2023) dan proyeksi CMIP6 yang dikoreksi bias (2015–2096). Analisis ini menerapkan *Standardized Precipitation Index* (SPI) pada skala 3, 6, dan 12 bulan, masing-masing mewakili kekeringan meteorologi, pertanian, dan hidrologi. Koreksi bias dilakukan menggunakan *quantile delta mapping* pada data historis dan masa depan, disertai dengan evaluasi tren curah hujan.

Hasil menunjukkan bahwa kekeringan di Sumatera berbeda, dengan daerah selatan dan dataran rendah, mengalami kekeringan meteorologi lebih sering dan berkepanjangan yang berlangsung hingga lima bulan. Sinyal ENSO dan IOD memberikan pengaruh yang lebih kuat di belahan bumi selatan dan daerah dataran rendah. Ketika *El Niño* bertepatan dengan IOD positif, telekoneksi ini menunda onset monsoon, memperparah kondisi kekeringan dengan durasi hingga delapan bulan, serta mempercepat terjadinya propagasi kekeringan pertanian dan hidrologi. Tidak semua kekeringan meterologi membentuk kekeringan pertanian dan hidrologi. Kekeringan meteorologi harus berlangsung selama 3-4 bulan yang harus terpenuhi terlebih dahulu sebelum menyebar menjadi kekeringan pertanian dan hidrologi, dengan onset yang lebih cepat di bagian selatan dan dataran rendah Sumatra.

Proyeksi masa depan di bawah SSP5-8,5 menunjukkan peningkatan signifikan dalam risiko kekeringan, dengan daerah yang terkena dampak kekeringan meteorologi berkembang sekitar 40% (dari 45% menjadi 85%) dan frekuensi kekeringan meningkat hingga 90%, terutama di bagian selatan Sumatra. Selain itu, tren curah hujan menunjukkan pergeseran ke arah kondisi yang lebih kering, terutama selama musim kemarau (JJA dan SON). Mengingat kondisi kering yang berubah, telekoneksi iklim dapat semakin mengintensifkan risiko kekeringan dan meningkatkan kerentanan kebakaran di wilayah lahan gambut di dataran rendah yang kaya gambut. Studi ini menggarisbawahi kebutuhan mendesak akan strategi adaptasi khusus wilayah yang memperhitungkan kontras topografi, perbedaan hemisfer, dan pengaruh telekoneksi untuk mengurangi dampak kekeringan dan mengurangi bahaya kebakaran.

Kata kunci: CMIP6, propagasi kekeringan, ENSO, IOD, Sumatra, topografi

SUMMARY

RAHMAT HIDAYAT. Drought Characteristics In Sumatra Based On Historical and Future Projection. Supervised by MUH. TAUFIK and APIP.

Drought represents a serious challenge for Sumatra, particularly in the context of climate change and further amplified by large-scale climate phenomena such as the *El Niño–Southern Oscillation* (ENSO) and the *Indian Ocean Dipole* (IOD). This study investigates drought characteristics using monthly ERA5 rainfall data (1981–2023) and bias-corrected CMIP6 projections (2015–2096). The analysis applies the *Standardized Precipitation Index* (SPI) at 3-, 6-, and 12-month scales, representing meteorological, agricultural, and hydrological droughts, respectively. Bias correction was performed using the Quantile Delta Mapping method on both historical and future datasets, accompanied by rainfall trend evaluation.

The results reveal that droughts in Sumatra are spatially heterogeneous, with southern and lowland regions experiencing more frequent and prolonged meteorological droughts lasting up to five months. ENSO and IOD exhibits stronger influence in the southern hemisphere and lowland areas. When El Niño coincides with a positive IOD, this teleconnection delays monsoon onset, intensifies drought conditions for up to eight months, and accelerates the propagation of agricultural and hydrological droughts. However, not all meteorological droughts develop into agricultural or hydrological droughts; a persistence of 3–4 months is generally required before propagation occurs, with faster onset observed in southern and lowland regions.

Future projections under the SSP5-8.5 scenario indicate a substantial increase in drought risk, with meteorological drought-affected areas expanding by about 40% (from 45% to 85%) and drought frequency increasing by up to 90%, particularly in southern Sumatra. In addition, rainfall trends show a shift toward drier conditions, especially during the dry season (JJA and SON). Under these conditions, intensified climate teleconnections are likely to further exacerbate drought risks and increase fire susceptibility in peat-rich lowlands. This study underscores the urgent need for region-specific adaptation strategies that account for topographic contrasts, hemispheric differences, and climate teleconnection influences to mitigate drought impacts and reduce fire hazards.

Keywords: CMIP6, drought propagation, ENSO, IOD, Sumatra, topography

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak mengikuti kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

© Copyright belongs to IPB University, 2025
All rights reserved.

No part of this thesis may be quoted or reproduced without proper acknowledgment of the source. Quotations are permitted solely for purposes of education, research, academic writing, report preparation, criticism, or review, provided that such use does not harm the interests of IPB University.

It is prohibited to publish or reproduce, in whole or in part, this work in any form without prior permission from IPB University.

IPB University

@Hak cipta milik IPB University

IPB University
— Bogor, Indonesia —

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
 - a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
 - b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

DROUGHT CHARACTERISTICS IN SUMATRA BASED ON HISTORICAL AND FUTURE PROJECTION

RAHMAT HIDAYAT

Thesis
as one of the requirements to obtain the degree of
Magister of Science
in
Applied Climatology Study Program

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

**APPLIED CLIMATOLOGY STUDY PROGRAM
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
IPB UNIVERSITY
BOGOR
2025**

@Hak cipta milik IPB University

External Examiner of the Supervisory Commission on the Thesis Exam

Full name and title : Dr. I Putu Santikayasa, S.Si, M.Sc

IPB University

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak merugikan kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

Thesis Title : Drought Characteristics In Sumatra Based on Historical and Future Projection
Name : Rahmat Hidayat
Student ID (NIM) : G2501231015

Approved by

Advisor 1:

Prof. Dr. Muh. Taufik, S.Si, M.Si

Advisor 2:

Dr. Apip, M.Eng

Acknowledge by

Head of Study Program:

Dr. I Putu Santikayasa, S.Si, M.Sc
NIP 197902242005011002

Dean of the Faculty of Mathematics and Natural Sciences:

Dr. Berry Juliandi, S.Si, M.Si
NIP 197807232007011001

Date of Thesis Examination: 21th August 2025

Date of Graduation:

All praise and gratitude be to Allah, for His blessings and guidance that enabled me to complete this thesis entitled "*Drought Characteristics In Sumatra Based on Historical and Future Projection*" as one of the requirements to obtain a Master's degree in Applied Climatology at IPB University.

This thesis would not have been possible without the support and guidance of many individuals. I would like to express my sincere appreciation to Prof. Dr. Muh. Taufik and Dr. Apip, my academic supervisors, for their invaluable guidance, constructive feedback, and continuous encouragement throughout the research and writing process.

I am also grateful to the lecturers and staff of the Applied Climatology Study Program, Faculty of Mathematics and Natural Sciences, IPB University, for the knowledge and support they have provided throughout my studies.

I would like to extend my appreciation to the National Research and Innovation Agency (BRIN) for the opportunity to serve as a research assistant, which provided me with valuable experience and insights that contributed to the development of this thesis. I am also thankful to my fellow researchers and friends for their collaboration, discussions, and support.

Above all, I express my deepest gratitude to my beloved parents, Rahma and Darwin, for their endless love, prayers, and sacrifices. I am also thankful to my two brothers, Ramadhan and Alpi, whose support and encouragement have always strengthened me throughout this journey.

Finally, my heartfelt thanks go to Zaita, my dearest companion, for her unwavering love, patience, and encouragement that have been a constant source of strength throughout the completion of this thesis.

I hope this thesis contributes meaningfully to the understanding of drought characteristics in Sumatra and provides a foundation for future research and climate-related policy development. I am fully aware that this work is not without limitations and I sincerely welcome any constructive feedback for its improvement.

Bogor, August 2025

Rahmat Hidayat

TABLE OF CONTENTS

LIST OF TABLES	x
LIST OF FIGURES	x
I INTRODUCTION	1
1.1 Objective	1
II LITERATURE REVIEW	3
2.1 Drought definition	3
2.2 Sumatra, challenges, and future direction	3
III MATERIALS AND METHODS	5
3.1 Datasets	5
3.2 Data Analysis	6
IV RESULTS AND DISCUSSIONS	10
4.1 Drought characteristics of ERA5	10
4.2 Drought propagation	11
4.3 Influence of ENSO and IOD	12
4.4 CMIP6 Model Evaluation	14
4.5 Shifting in hydroclimatic patterns and drought	16
4.6 Changes on drought characteristics	18
4.7 Northern vs Southern	20
4.8 Lowland vs Highland	22
4.9 Limitation	23
4.10 Implication of the research	24
V CONCLUSION AND RECOMMENDATIONS	25
5.1 Conclusion	25
5.2 Recommendations	25
REFERENCES	26
BIOGRAPHY	34

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

b. Pengutipan tidak mengikuti kepentingan yang wajar IPB University.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

LIST OF TABLES		
1	Table 1. List of CMIP6 Models (variant label <i>r1i1p1f1</i>)	6
2	Table 2. Correlations between seasonal mean rainfall across different geographical hemisphere and topography regions for El Niño index (ONI) and IOD index (DMI) during the period 1981–2023 of ERA5 rainfall data.	13
LIST OF FIGURES		
5	Figure 1. Study area across Sumatra Island with the inset map highlighting the distribution of peatlands, predominantly located in the eastern lowlands, particularly in Riau, Jambi, and South Sumatra (SS). The island is longitudinally bisected by the Barisan Mountains (avg. 2,000 m elevation).	5
7	Figure 2 Run theory	7
10	Figure 3. Meteorological drought characteristics across Sumatra using SPI3-scale; A. Onset; B. Duration; C. Total Frequency; D-E. Linear relationship where prolonged duration and intensive rainfall deficit caused a higher drought severity from 1981-2023.	10
11	Figure 4. Linear relationship between meteorological drought duration (MD) versus (A) agricultural drought duration (AD); (B) hydrological drought (HD); and (C) average time lag of drought propagation.	11
14	Figure 5. Drought development from meteorological drought (MD) to agriculture (AD) and hydrological drought (HD) under El Niño w/o positive IOD. (A-B) Drought propagation (MD-AD-HD) during weak-moderate; and (C-D) very strong phases.	14
15	Figure 6. (A) Taylor diagrams of monthly rainfall from CMIP6 models (RAW, QM, QDM) compared to ERA5; (B) PBIAS across average Sumatra and topography (highland and lowland) regions during 1974–2014.	15
17	Figure 7. CMIP6 mean-model ensemble of rainfall trends across Sumatra for the period 1974–2096 under different SSP scenarios: (a) monthly, (b) annual, and (c) seasonal data.	17
18	Figure 8. CMIP6 mean-model ensemble average rainfall changes for the near future (NF), and long future (LF) under different SSP scenarios: (a) monthly, (b) annual, and (c) seasonal data relative to the baseline period (1974–2014)	18
19	Figure 9. CMIP6 mean-model ensemble of change in drought metrics : (a) duration, (b) frequency, and (c) area under future SSP scenarios relative to baseline level (1981-2010).	19
22	Figure 10. Impact of El Niño and positive IOD teleconnections on meteorological drought in Sumatra. (a) Boxplots of drought duration; (b) percentage of area experiencing longer droughts compared to the 1981–2023 mean.	22
23	Figure 11. Average lag-time between meteorological (MD), agricultural (AD), and hydrological droughts (HD) in lowland and highland Sumatra, showing faster progression in lowlands during El Niño–pIOD events compared to slower, buffered transitions in highlands.	23