

EVALUASI PENGENDALIAN KUALITAS PADA STATION PANELLING DENGAN METODE SIX SIGMA DI PT XYZ

MOH. LUQMAN HAKIM

MANAJEMEN INDUSTRI SEKOLAH VOKASI INSTITUT PERTANIAN BOGOR **BOGOR** 2024

PERNYATAAN MENGENAI LAPORAN AKHIR DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

- 1. Dengan ini saya menyatakan bahwa laporan akhir dengan judul "Evaluasi Pengendalian Kualitas pada Station Panelling dengan Metode Six Sigma di PT XYZ" adalah karya saya dengan arahan dari dosen pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun.
- 2. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir laporan akhir ini.
- 3. Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, Juli 2024

Moh. Luqman Hakim J0311201005

IPB University

ABSTRAK

MOH. LUQMAN HAKIM. Evaluasi Pengendalian Kualitas pada Station Panelling dengan Metode *Six Sigma* di PT XYZ. Dibimbing oleh DONI YUSRI.

PT XYZ merupakan perusahaan karoseri yang bergerak pada pembuatan bus. Pembuatan kerangka bus merupakan kegiatan produksi utama pada PT XYZ yang mempengaruhi bentuk, desain, dan kekuatan struktur rangka. Proses pembuatan kerangka pada Departemen Body Rangka memiliki permasalahan mengenai jumlah dan jenis *defect* yang tinggi dari hasil proses *assembly*. Tujuan penelitian ini yaitu untuk mengevaluasi permasalahan serta memberikan solusi dengan menggunakan metode *Six Sigma* dan *Failure Mode and Effects Analysis* (FMEA). *Six Sigma* menjadi salah satu metode yang mampu meningkatkan kualitas pada suatu produk dengan pendekatan DMAIC yaitu *Define, Measure, Analyze, Improvement*, dan *Control*. Berdasarkan hasil evaluasi didapatkan hasil rata-rata DPMO sebesar 1.648,27 dengan tingkat sigma 4,4. Usulan perbaikan dalam evaluasi permasalahan menggunakan metode 5W+1H yang diharapkan dapat menurunkan nilai jumlah *defect* pada permasalahan di Departemen Body Rangka yaitu dengan pembuatan *Digital Control System* (DCS), membuat *check sheet*, dan pelatihan kerja karyawan.

Kata kunci: Six Sigma, FMEA, kualitas

ABSTRACT

MOH. LUQMAN HAKIM. Evaluation of Quality Control at the Panelling Station with the Six Sigma Method at PT XYZ. Supervised by DONI YUSRI.

PT XYZ is a car body company engaged in manufacturing buses. Bus frame manufacturing is the main production activity at PT XYZ that affects the shape, design, and strength of the frame structure. The process of making frames in the Frame Body Department has problems regarding the high number and type of defects from the results of the assembly process. The purpose of this research is to evaluate the problem and provide solutions using Six Sigma and Failure Mode and Effects Analysis (FMEA) methods. Six Sigma is one of the methods that can improve the quality of a product with the DMAIC approach, namely Define, Measure, Analyze, Improvement, and Control. Based on the evaluation results, the average DPMO result is 1,648.27 with a sigma level of 4.4. Proposed improvements in evaluating problems using the 5W + 1H method are expected to reduce the value of the number of defects in problems in the Frame Body Department, namely by making a Digital Control System (DCS), making check sheets, and employee training.

Keywords: Six Sigma, FMEA, quality

© Hak Cipta milik IPB, tahun 2024 Hak Cipta dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik, atau tinjauan suatu masalah, dan pengutipan tersebut tidak merugikan kepentingan IPB.

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apa pun tanpa izin IPB.

EVALUASI PENGENDALIAN KUALITAS PADA STATION PANELLING DENGAN METODE SIX SIGMA DI PT XYZ

MOH. LUQMAN HAKIM

Laporan Proyek Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana Terapan pada Program Studi Manajemen Industri

MANAJEMEN INDUSTRI SEKOLAH VOKASI INSTITUT PERTANIAN BOGOR BOGOR 2024

: Evaluasi Pengendalian Kualitas pada Station Panelling Judul Proyek Akhir

dengan Metode Six Sigma di PT XYZ.

: Moh. Luqman Hakim Nama

: J0311201005 NIM

Disetujui oleh

Pembimbing:

Dr. rer. nat. Doni Yusri, S.P., M.M. NPI 2021103197703041001

Diketahui oleh

Ketua Program Studi: Annisa Kartinawati, S.T.P, M.T. NPI 201811198312152006

Dekan Sekolah Vokasi: Dr. Ir. Aceng Hidayat M.T. NIP 196607171992031003

Tanggal Ujian: 28 Mei 2024

Tanggal Lulus:

PRAKATA

Puji syukur penulis panjatkan kepada Allah Subhanahu Wa Ta'ala atas segala nikmat dan rahmat-Nya sehingga proyek akhir dengan judul "Evaluasi Pengendalian Kualitas pada Station Panelling dengan Metode Six Sigma di PT XYZ" telah diselesaikan. Laporan proyek akhir ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Terapan pada Program Studi Manajemen Industri, Sekolah Vokasi, Institut Pertanian Bogor. Penulis mengucapkan terima kasih kepada pihak yang telah mendukung proses penyusunan proyek akhir ini hingga selesai, diantaranya:

- 1. Dr. rer. nat. Doni Yusri, S.P., M.M. selaku dosen pembimbing yang telah memberikan bimbingan dan arahan kepada penulis dalam penyusunan proyek
- 2. Annisa Kartinawati, S.T.P., M.T. selaku Ketua Program Studi Manajemen Industri dan seluruh tim dosen Manajemen Industri.
- 3. Suhendi Irawan, S.Tr.Log, M.Sc. selaku dosen moderator dan dosen penguji yang telah memberikan saran dan perbaikan untuk penyempurnaan laporan proyek akhir ini.
- 4. Manajemen PT XYZ sebagai perusahaan tempat magang industri dan lokasi penelitian.
- 5. Bapak Oki Surya Putra selaku pembimbing lapang yang telah membantu pada penyusunan proyek akhir.
- 6. Seluruh jajaran Divisi Quality Control dan seluruh pekerja bagian produksi PT XYZ.
- 7. Orang tua penulis, Bapak Awang Munawar dan Ibu Masrukhah, serta keluarga yang turut mendoakan dan memberikan dukungan baik secara materi maupun non-materi.
- 8. Teman-teman Manajemen Industri angkatan 57 yang telah memberikan dukungan dalam penyelesaian proyek akhir.
- 9. Seluruh pihak yang tidak dapat disebutkan satu persatu yang telah mendukung dalam penyelesaian laporan proyek akhir ini.

Penulis menyadari masih terdapat kekurangan pada penyusunan laporan proyek akhir ini, sehingga kritik dan saran sangat diharapkan penulis untuk perbaikan dan penyempurnaan pada waktu yang akan datang. Semoga proyek akhir ini dapat bermanfaat bagi semua pihak.

Bogor, Juli 2024

Moh. Luqman Hakim (J0311201005)

DAFTAR ISI

DA	viii	
DA	AFTAR GAMBAR	viii
DA	AFTAR LAMPIRAN	ix
I	LANDASAN TEORI 1.1 Konsep <i>Plan</i> , <i>Do</i> , <i>Study</i> , dan <i>Action</i> (PDSA) 1.2 Kualitas 1.3 Konsep <i>Six Sigma</i> 1.4 Six Sigma Tools 1.5 Failure Mode and Effect Analysis (FMEA)	1 1 2 2 4 6
II	IKHTISAR MASALAH2.1 Permasalahan Penting dan Mendesak2.2 Akar Masalah Penting dan Mendesak	9 9 13
III	RENCANA SOLUSI 3.1 Rencana Solusi	15 15
IV	 TAHAP IMPLEMENTASI SOLUSI 4.1 Kegiatan Implementasi Proyek 4.2 Jadwal Implementasi Proyek 4.3 Estimasi Anggaran Implementasi Proyek 	18 18 51 52
V	SIMPULAN DAN SARAN 5.1 Simpulan 5.2 Saran	53 53 53
DA	54	
LA	55	

DAFTAR TABEL

1	Tingkat kualitas sigma	6
1 2 3 4 4 5	Persentase <i>defect</i> rangka	10
3	Jenis <i>defect</i> rangka	11
24	Persentase <i>defect</i> pengeplatan	11
\$ 5	Jenis <i>defect</i> pengeplatan	12
₹6	Jenis dan jumlah <i>defect</i> rangka	20
7	Jenis dan jumlah <i>defect</i> pengeplatan	21
8	Tabel pareto <i>defect</i> rangka	22
29	Tabel pareto <i>defect</i> pengeplatan	24
10	Perhitungan nilai RPN defect trap tangga	32
31	Perhitungan nilai RPN defect lantai gelombang	33
12	Nilai Risk Priority Number (RPN)	34
13	Tabel peta kendali P <i>defect</i> rangka	35
14	Peta kendali p <i>defect</i> pengeplatan	37
15	Nilai tingkat sigma dan DPMO	39
16	Perbaikan dengan 5W+1H	44
17	Jadwal implementasi proyek	51
18	Estimasi anggaran implementasi proyek	52
	DAFTAR GAMBAR	
1	Diagram alir pembuatan bus	9
2	Diagram jumlah <i>defect</i> rangka dan pengeplatan	13
3	Why-why analysis rumusan masalah	14
4	Diagram alir kerangka penelitian	15
5	Diagram alir pembuatan rangka bus	18
6	Diagram pareto <i>defect</i> rangka	23
7	Diagram pareto <i>defect</i> pengeplatan	26
8	Diagram sebab akibat cacat <i>trap</i> tangga	28
9	Diagram sebab akibat cacat lantai gelombang	30
10	Grafik kendali <i>defect</i> rangka	35
11	Uji distribusi normal cacat rangka	36
12	Analisa kapabilitas proses cacat rangka	36
13	Grafik kendali <i>defect</i> pengeplatan	37
14	Uji distribusi normal cacat pengeplatan	38
15	Analisa kapabilitas proses cacat pengeplatan	38
16	5 Whys penyebab masalah	41
17	Tampilan utama DCS	46
18	Tampilan job request	46
19	Tampilam menu on progress	47
20	Tampilan menu <i>history</i>	47
21	Check Sheet setting mesin	48
72	SOP penggunaan Digital Control System (DCS)	49
73	Prosedur nenggunaan mesin las MIG	50

DAFTAR LAMPIRAN

1	Work Center Station Rangka dan Station Panelling	57
2	Jumlah <i>defect</i> rangka	58
3	Jumlah <i>defect</i> pengeplatan	59
4	Perhitungan peta kendali proporsi	61
5	Diagram alir penggunaan Digital Control System (DCS)	62
6	Kuesioner FMEA	63
7	Jumlah dan jenis <i>defect</i> setiap unit	64