

PALM OIL EMPTY FRUIT BUNCHES EFFECTS AS OIL ADSORBENT ON UPFLOW ANAEROBIC SLUDGE BLANKET UNIT PERFORMANCES

ALIYAH BAIDA WIWIYANTI

**DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING
FACULTY OF AGRICULTURAL ENGINEERING & TECHNOLOGY
IPB UNIVERSITY
BOGOR
2024**

©Hak cipta milik IPB University

IPB University

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
 - a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
 - b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

DECLARATION OF THE THESIS' INFORMATION SOURCES AND COPYRIGHTS TRANSFER

I hereby declare that the undergraduate student thesis entitled "Palm Oil Empty Fruit Bunches Effects as Oil Adsorbent on Upflow Anaerobic Sludge Blanket Unit Performances" is my own work under the guidance of my supervisors and has not been published or submitted to any university in any form. Source of information derived or quoted from unpublished or published document by any other authors have been mentioned in the text and has also been included in the bibliography at the end of this thesis.

Hereby, I assign the copyright of this undergraduate thesis to the IPB University.

Bogor, August 2024
Aliyah Baida Wiwiyanti
F4501231015

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

©Hak cipta milik IPB University

IPB University

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
 - a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
 - b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

ALIYAH BAIDA WIWIYANTI. Palm Oil Empty Fruit Bunches Effects as Oil Adsorbent on Upflow Anaerobic Sludge Blanket Unit Performances. Supervised by ALLEN KURNIAWAN, CHUSNUL ARIEF, and MARK LARRACAS SIBAG.

Indonesia, as the world's leading palm oil producer, faces significant environmental challenges due to the large amounts of waste generated during the extraction process, particularly Empty Fruit Bunches (EFB) and Palm Oil Mill Effluent (POME). The research explores the use of EFB as an oil adsorbent within a modified Upflow Anaerobic Sludge Blanket (UASB) unit to enhance the treatment of POME. The study's objective was to evaluate the effectiveness of various EFB treatments in adsorbing oil from POME and to assess the overall performance of a modified UASB system. The methodology involved batch adsorption experiments to determine the best EFB variant, followed by the integration of this variant into the modified UASB unit for POME treatment. The results demonstrated that 0.8M citric acid (CA)-treated EFB had the highest oil adsorption efficiency, removing 96% of the oil. The modified UASB unit effectively treated POME, raising pH levels to neutral, reducing Total Suspended Solids by 95%, soluble Chemical Oxygen Demand by 92%, and Oil and Grease by 95%. The study concludes that the combined Monod and Flory-Huggins models provide a better understanding of the modified UASB unit's performance, although further refinement is needed for more accurate predictions. The research offers a new approach to improving POME treatment and advancing sustainable waste management practices in the palm oil industry.

Keywords: Adsorption, Empty Fruit Bunches, Palm Oil Mill Effluent, Upflow Anaerobic Sludge Blanket

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

ABSTRAK

ALIYAH BAIDA WIWIYANTI. Palm Oil Empty Fruit Bunches Effects as Oil Adsorbent on Upflow Anaerobic Sludge Blanket Unit Performances. Dibimbing oleh ALLEN KURNIAWAN, CHUSNUL ARIEF, dan MARK LARRACAS SIBAG.

Indonesia sebagai produsen minyak sawit terkemuka di dunia, menghadapi tantangan lingkungan yang signifikan karena banyaknya limbah yang dihasilkan selama proses ekstraksi, khususnya Tandan Kosong Kelapa Sawit (TKKS) dan Limbah Cair Kelapa Sawit (LCKS). Penelitian ini mengeksplorasi penggunaan TKKS sebagai penyerap minyak dalam unit *Upflow Anaerobic Sludge Blanket* (UASB) yang dimodifikasi untuk meningkatkan pengolahan LCKS. Tujuan penelitian ini adalah untuk mengevaluasi efektivitas berbagai pengolahan TKKS dalam menyerap minyak dari LCKS dan untuk menilai kinerja keseluruhan sistem UASB yang dimodifikasi. Metodologi yang digunakan melibatkan eksperimen adsorpsi untuk menentukan varian TKKS terbaik, diikuti dengan integrasi varian ini ke dalam unit UASB untuk pengolahan LCKS. Hasil penelitian menunjukkan bahwa TKKS yang diolah dengan asam sitrat 0.8M memiliki efisiensi adsorpsi minyak tertinggi sebesar 96%. Unit UASB yang dimodifikasi secara efektif mengolah LCKS, meningkatkan kadar pH menjadi netral, mengurangi *Total Suspended Solids* hingga 95%, *soluble Chemical Oxygen Demand* hingga 92%, serta Minyak dan Lemak hingga 95%. Studi ini menyimpulkan bahwa gabungan model Monod dan Flory-Huggins memberikan pemahaman yang lebih baik tentang kinerja unit UASB, meskipun penyempurnaan lebih lanjut diperlukan untuk prediksi yang lebih akurat. Penelitian ini menawarkan pendekatan baru untuk meningkatkan pengolahan LCKS dan memajukan praktik pengelolaan limbah berkelanjutan dalam industri minyak sawit.

Kata kunci: Adsorben, Limbah Cair Kelapa Sawit, Tandan Kosong Kelapa Sawit, *Upflow Anaerobic Sludge Blanket*

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

- a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- b. Pengutipan tidak mengulang kepentingan yang wajar IPB University.

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak mengikuti kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

© Copyrighted by IPB University, 2024
Copyright is protected by Law

It is prohibited to quote parts or all of this paper without acknowledging or citing the source. Citation is only for the purposes of education, research, writing scientific papers, compiling report, writing criticism, or reviewing a problem, and the citation is not detrimental to IPB University interests.

It is prohibited to publish and reproduce parts or all of this paper without IPB University's permission.

©Hak cipta milik IPB University

IPB University

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
 - a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
 - b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

PALM OIL EMPTY FRUIT BUNCHES EFFECTS AS OIL ADSORBENT ON UPFLOW ANAEROBIC SLUDGE BLANKET UNIT PERFORMANCES

ALIYAH BAIDA WIWIYANTI

A thesis

**Submitted in partial fulfillment of
the requirements to obtain Master's Degree in
Civil and Environmental Engineering Department**

**DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING
FACULTY OF AGRICULTURAL ENGINEERING & TECHNOLOGY
IPB UNIVERSITY
BOGOR
2024**

©Hak cipta milik IPB University

IPB University

Examiner on Thesis Exam:

Prof. Dr. Ir. Muhammad Romli, M.Sc., St. IPU

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

- a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

Title : Palm Oil Empty Fruit Bunches Effects as Oil Adsorbent on Upflow Anaerobic Sludge Blanket Unit Performances
Name : Aliyah Baida Wiwiyanti
Student ID : F4501231015

Approved by

Supervisor:

Dr. Eng. Ir. Allen Kurniawan, S.T., M.T.
NIP. 19820729 201012 1 005

Co-supervisor:

Dr. Ir. Chusnul Arif, S.TP., M.Si.
NIP. 19801206 200501 1 004

Mark Larracas Sibag, Ph.D.
(Batangas State University)
p.p. Dr. Eng. Ir. Allen Kurniawan, S.T., M.T.

Known by

Head of Study Program:

Dr. Satyanto Krido Saptomo, S.Tp., M.Si.
NIP. 19650106 199002 1 001

Dean of Agricultural Engineering and Technology:

Prof. Dr. Ir. Slamet Budijanto, M. Agr.
NIP. 19610502 198603 1 002

Exam Date : August 22th, 2024

Graduate Date : 30 AUG 2024

©Hak cipta milik IPB University

IPB University

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

The author expresses gratitude and praise to the Almighty Allah swt. for providing good health and blessings to properly complete the undergraduate thesis entitled “Palm Oil Empty Fruit Bunches Effects as Oil Adsorbent on Upflow Anaerobic Sludge Blanket Unit Performances” on time. The thesis was created and submitted to fulfill the requirement for a master’s degree in the Department of Civil and Environmental Engineering, IPB University.

The author would like to express gratitude to the supervisory team, namely Dr. Eng. Ir. Allen Kurniawan, S.T., M.T., Dr. Ir. Chusnul Arif, S.TP., M.Si., and Mark L. Sibag, Ph.D., for their valuable suggestions and guidance in completing this thesis. The author would also like to acknowledge the support and encouragement received from parents and family. Lastly, the author would like to express gratitude to all friends and associates who offered their help and support throughout the process.

The author has contrived the thesis as best as possible but is also aware of many opportunities for improvements in both content and grammar. Thus, any suggestions and constructive corrections are highly appreciated. The author wishes this thesis would help enrich readers’ knowledge in this interesting field of research.

Bogor, August 2024
Aliyah Baida Wiwyanti

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

n.

o.

p.

q.

r.

s.

t.

u.

v.

w.

x.

y.

z.

aa.

bb.

cc.

dd.

ee.

ff.

gg.

hh.

ii.

jj.

kk.

ll.

mm.

nn.

oo.

pp.

qq.

rr.

ss.

tt.

uu.

vv.

ww.

xx.

yy.

zz.

aa.

bb.

cc.

dd.

ee.

ff.

gg.

hh.

ii.

jj.

kk.

ll.

mm.

nn.

oo.

pp.

qq.

rr.

ss.

tt.

uu.

vv.

ww.

xx.

yy.

zz.

aa.

bb.

cc.

dd.

©Hak cipta milik IPB University

IPB University

Hak Cipta Dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
 - a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
 - b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

LIST OF TABLES	xii
LIST OF APPENDIX	xiii
LIST OF NOTATIONS	xiii
I INTRODUCTION	1
1.1 Background	1
1.2 Problems Formulation	2
1.3 Main Objectives of The Research	2
1.4 Significance of The Research	3
1.5 Scope of The Research	3
II METHODOLOGY	4
2.1 Research Site and Timeline	4
2.2 Research Operation Procedures	4
III RESULT AND DISCUSSION	23
3.1 POME Characteristic Analysis	23
3.2 Anaerobic Biomass Seeding and Acclimatization	23
3.3 Batch Adsorption Experiments	25
3.4 Surface Morphology Analysis of EFB	27
3.5 Performance Evaluation of the Modified UASB Unit	29
3.6 Monod Model Substrate Effluent Estimation	35
3.7 Adsorption Model Substrate Effluent Estimation	39
3.7 Influence of Operational Parameter, Biokinetic, and Adsorption Coefficient to Effluent Estimation	46
IV CONCLUSIONS AND RECOMMENDATIONS	53
REFERENCES	54
BIOGRAPHY	65

Hak Cipta Dilindungi Undang-undang
1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber :
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
b. Pengutipan tidak mengulik kepentingan yang wajar IPB University.
2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB University.

LIST OF TABLES

Table 2.1 The detailed timeline for the research	4
Table 2.2 Variations of batch experiment	7
Table 2.3 POME effluent standard in Indonesia	12
Table 2.4 The reference value of biokinetic parameter	15
Table 2.5 Biokinetic parameter starting value of Monod Model	15
Table 3.1 POME characteristic value	23
Table 3.2 The EFB batch adsorption experiments result	26
Table 3.3 The EDX analysis result	29
Table 3.4 Monod Biokinetic Coefficient	35
Table 3.5 The statistical analysis of Monod models	38
Table 3.6 The constants and coefficient of adsorption kinetic models	42
Table 3.7 The statistical analysis of adsorption kinetic models	43
Table 3.8 The constants and coefficient of adsorption isotherm model	44
Table 3.9 The statistical analysis of adsorption isotherm models	44

LIST OF FIGURES

Figure 2.1 Flowchart of the research	5
Figure 2.2 The raw EFB sample	7
Figure 2.3 Design of the modified UASB unit	9
Figure 2.4 Configuration and sampling point of the modified UASB unit	10
Figure 2.5 Acrylic plates to hold EFB inside the modified UASB unit	11
Figure 2.6 Excel interface for Monod Model	16
Figure 2.7 GoldSim interface	21
Figure 2.8 Sensitivity analysis interface in GoldSim	21
Figure 3.1 Biomass seeding and acclimatization data	24
Figure 3.2 Biomass after the seeding and acclimatization process	24
Figure 3.3 The EFB variations	25
Figure 3.4 SEM image of 0.8M CA treated EFB	28
Figure 3.5 The pH value of the modified UASB unit	30
Figure 3.6 The temperature value of the modified UASB unit	31
Figure 3.7 The TDS value of the modified UASB unit	31
Figure 3.8 The TSS value of the modified UASB unit	32
Figure 3.9 The sCOD value of the modified UASB unit	33
Figure 3.10 The OG value of the modified UASB unit	33
Figure 3.11 The EFB condition inside the modified UASB unit	34
Figure 3.12 Experiment data of substrate effluent compared to Monod models	37
Figure 3.13 The sensitivity analysis of the Monod models with	39
Figure 3.14 The Monod-adsorption model sequence	40
Figure 3.15 Adsorption kinetic models	41
Figure 3.16 Adsorption isotherm models	44
Figure 3.17 Experiment data compared to Monod and Adsorption model	46

Figure 3.18 The influence of operational parameter to substrate effluent	47
Figure 3.19 The influence of biokinetic coefficient to substrate effluent	49
Figure 3.20 The influence of adsorption model	51

LIST OF APPENDIX

Appendix 1 The UASB unit Monod equations	60
Appendix 2 The VBA coding for the Monod Model	62
Appendix 3 The EDX test result for 0.8M CA-treated EFB	64

LIST OF NOTATIONS

A	= the energy interaction between adsorbate and EFB surface
C_t	= effluent concentration of OG after t days (mg/L)
C_0	= influent concentration of OG (mg/L)
K	= adsorption equilibrium constant
k	= hydrolyzed substrate transport rate coefficient ($L g^{-1} d^{-1}$)
K_1	= HB model's parameter constant (L/mg)
k_1	= pseudo-first-order adsorption rate constant (g/mg.d)
K_2	= HB model's energetic constant (kJ/mol)
k_2	= rate constant of pseudo-second-order adsorption (g/mg.d)
K_e	= constant of death rate (d^{-1})
K_{FH}	= equilibrium constant
K_h	= hydrolysis rate coefficient (d^{-1})
K_s	= the substrate concentration at half of the maximum rate (mg OG L^{-1})
m	= weight of adsorbent in the modified UASB unit (g)
n	= number of observations
n_{FH}	= number of adsorbate ions occupying sorption sites
pH_{max}	= maximum pH
pH_{min}	= minimum pH
q_e	= amount of solute adsorbed at equilibrium per weight of adsorbent (mg/g)
q_t	= amount of solute adsorbed at a given time (mg/g)
S_h	= concentration of hydrolyzed substrate
S_{an}	= concentration of substrate effluent (mg OG L^{-1})
S_{in}	= concentration of substrate influent (g OG L^{-1})
t	= experiment day (d)
T_{max}	= maximum temperatures
T_{min}	= minimum temperatures
T_{opt}	= optimal temperatures
V	= volume of the modified UASB unit (L)
$X_{an\ eff}$	= biomass concentrations in the effluent of the UASB unit (g MLSS L^{-1})
X_{an}	= biomass concentrations in the UASB unit (g MLSS L^{-1})
x_m	= the amount of OG adsorbed by the EFB to form a monolayer (mg/mg)
Y	= yield coefficient (g MLSS g OG $^{-1}$)
y_i	= observed values

= mean of the observed values
= predicted values from the model
= HRT of the modified UASB unit (d)
= specific growth rate (d^{-1})
= maximum specific growth rate (d^{-1})