Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/154715
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNurdiati, Sri-
dc.contributor.advisorJulianto, Mochamad Tito-
dc.contributor.authorNurdianto, Hari-
dc.date.accessioned2024-07-24T06:30:13Z-
dc.date.available2024-07-24T06:30:13Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/154715-
dc.description.abstractHotspot merupakan suatu indikator kebakaran hutan yang sangat dipengaruhi oleh indikator iklim lokal dan global. Kebakaran hutan merupakan salah satu bencana alam yang cukup rutin terjadi di Indonesia terutama di pulau Kalimantan. Penelitian ini mengembangkan model dengan low hyperparameter complexity untuk memprediksi jumlah hotspot berdasarkan indikator iklim. Tujuan penelitian ini yaitu mengonstruksi model regresi proses Gaussian menggunakan data jumlah hotspot di Kalimantan dengan fungsi kernel ARD eksponensial kuadrat dan melakukan tuning pada hyperparameter yakni nilai varian dari noise pada fungsi kernel. Tuning hyperparameter dilakukan dengan tiga metode optimisasi yaitu Bayesian optimization, grid search, dan random search. Hasilnya, model regresi proses Gaussian terbaik diperoleh menggunakan metode Bayesian optimization dan random search dengan nilai varian dari noise masing – masing sebesar 1401.3 dan 1128.2. Metode prediksi regresi proses Gaussian yang telah dioptimisasi menggunakan dua metode tersebut menghasilkan nilai metrik akurasi pada data testing yaitu nilai RMSE, MAE, dan R-squared masing-masing sebesar 844.47, 354.29, 54.52% dan 846.58, 350.93, 54,29%.-
dc.description.abstractAn hotspot is an indicator of forest fires heavily influenced by the local and global climate indicators. Forest fires are a natural disaster that regularly occurs in Indonesia, especially on the island of Kalimantan. This study develops a model with low hyperparameter complexity to predict the number of hotspots based on climate indicators. The purpose of this research is to construct a model using Gaussian Process Regression (GPR) with data on hotspot numbers in Kalimantan employing the ARD squared exponential kernel functions and tuning hyperparameters such as the variance value of noises in the kernel function. The hyperparameter tuning was performed using three optimizations. The methods are the Bayesian optimization, the grid search, and the random search. The results shows that the best GPR model was obtained using the Bayesian optimization and the random search, with sigma values of 1401.3 and 1128.2, respectively. The optimized GPR prediction methods using these two methods produce in accuracy metrics of RMSE, MAE, and Rsquared values of 844.47, 354.29, 54.52% and 846.58, 350.93, 54.29% respectively.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePrediksi Jumlah Hotspot Di Kalimantan dengan Metode Regresi Proses Gaussian Berdasarkan Indikator Iklimid
dc.title.alternativePredicting the Number of Hotspot in Kalimantan Using Gaussian Process Regression Based on Climate Indicators.-
dc.typeSkripsi-
dc.subject.keywordhotspotid
dc.subject.keywordkernelid
dc.subject.keywordclimateid
dc.subject.keywordGaussian process regressionid
dc.subject.keywordhyperparamater tuningid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201089_483b3ce790f64db4abc82506bdb29f12.pdfCover699.5 kBAdobe PDFView/Open
fulltext_G5401201089_a64fea63753d4197be3e3c3dc5767300.pdf
  Restricted Access
Fulltext2.47 MBAdobe PDFView/Open
lampiran_G5401201089_2083b504812c45baadbbbdfe14f8c4ff.pdf
  Restricted Access
Lampiran279.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.