Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/154270
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNurdiati, Sri-
dc.contributor.advisorJulianto, Mochamad Tito-
dc.contributor.authorFauzan, Muhammad Daryl-
dc.date.accessioned2024-07-19T02:25:25Z-
dc.date.available2024-07-19T02:25:25Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/154270-
dc.description.abstractForest and land fires have become a concerning phenomenon in Indonesia. As mitigation, hotspots are used as an early stage to identify fires. In an effort to predict the number of hotspots, deep learning models such as Long Short-Term Memory (LSTM) can be used. The purpose of this research is to build the best LSTM model architecture to predict the number of hotspots in Kalimantan based on climate indicators. The model is trained using the glorot uniform method as a weight initiation method, Nadam optimizer with a learning rate of 0.001, and early stopping as model regularization on training data with a proportion of 80%. The results show that the best LSTM model in this research is a model with 2 LSTM layers and 4 dense layers trained to minimize the Root Mean Squared Error (RMSE) as a loss function. The model uses a window of size 12 and a hidden layer with 64 nodes. On testing data, the model is able to predict the number of hotspots with an explained variance score of 83.4%.-
dc.description.abstractKebakaran hutan dan lahan sudah menjadi fenomena yang memprihatinkan di Indonesia. Sebagai mitigasi, titik panas (hotspot) digunakan sebagai tahap awal untuk mengidentifikasi kebakaran. Dalam upaya memprediksi jumlah hotspot, model deep learning seperti Long Short-Term Memory (LSTM) dapat digunakan. Tujuan penelitian ini adalah membangun arsitektur model LSTM terbaik untuk memprediksi jumlah hotspot di Kalimantan berdasarkan indikator iklim. Model dilatih menggunakan metode glorot uniform sebagai metode inisiasi bobot, optimizer Nadam dengan learning rate 0,001, dan early stopping sebagai regularisasi model pada data training dengan proporsi sebesar 80%. Hasil penelitian menunjukkan bahwa model LSTM yang terbaik pada penelitian ini adalah model dengan 2 layer LSTM dan 4 dense layer yang dilatih untuk meminimumkan Root Mean Squared Error (RMSE) sebagai loss function. Model tersebut menggunakan window berukuran 12 dan hidden layer dengan 64 node. Pada data testing, model mampu memprediksi jumlah hotspot dengan explained variance score sebesar 83,4%.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePrediksi Jumlah Hotspot di Kalimantan Menggunakan Model Long Short-Term Memory Berdasarkan Indikator Iklimid
dc.title.alternativePredicting the Number of Hotspots in Kalimantan Using Long Short Term Memory Model Based on Climate Indicators-
dc.typeSkripsi-
dc.subject.keywordhotspotid
dc.subject.keywordlayerid
dc.subject.keywordLSTMid
dc.subject.keywordWeightid
dc.subject.keyworddenseid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201087_bf72e28767aa4b5b99474173fedbdda6.pdfCover488.24 kBAdobe PDFView/Open
fulltext_G5401201087_29875563d7ca4209bf592662aa3e81dc.pdf
  Restricted Access
Fulltext1.72 MBAdobe PDFView/Open
lampiran_G5401201087_f8848d4a278e4486884f1309eee5e5df.pdf
  Restricted Access
Lampiran503.83 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.