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Abstract 

Ebola Virus Disease (EVD) is a deadly disease caused by Ebola virus. 
The mathematical model of Ebola virus transmission dynamics is 
formulated by considering both human and vector populations. This 
research aims to analyse dynamic systems of EVD transmission 
considering vaccination treatment. The equilibrium points and basic 

reproduction number ( )0R  are determined. There are two equilibrium 

points, namely, disease-free equilibrium and endemic equilibrium 
points. The results of model analysis show that the disease-free 

equilibrium is locally asymptotically stable if .10 <R  The endemic 

equilibrium is found to be unique, positive and asymptotically stable  

if .10 >R  Numerical simulation is performed for showing the 

population dynamic of both human and vector for time. 
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1. Introduction 

Ebola virus is one of the Filoviridae families that causes severe 
hemorrhagic fever in human and non-human primates. Animal which is 
considered as natural vector are fruits bat of Pteropodidae family. EVD 
spread in human populations occurred after the susceptible individual had 
direct contacted with infected human blood, body fluids or skin, or comes in 
contained environmental Ebola virus. 

EVD had occurred in the region of Central Africa to West Africa which 
began in Guinea on December 2013, then spread to the territory of Liberia, 
Sierra Leone, and Nigeria. On June 10th, 2016, World Health Organization 
(WHO) states that there are 28.616 people confirmed, probable and 
suscepted cases have been reported in Guinea, Liberia, and Sierra Leone, 
with 11.310 deaths [7]. 

Mathematical model is an important tool to analyze the characteristics of 
epidemiology of this infectious disease. Kalu et al. [2] formulated a 
mathematical model for Ebola disease into SEIR type. Osemwinyen and 
Diakhaby [4] formulated a mathematical model for Ebola disease into 
SIQRD type, and the result shows that quarantine increased the number of 
recovered people. Martins et al. [3] developed a mathematical model of 
Ebola disease involving the vector population, namely, SEIQR-SI type, and 
the result shows that disease-free equilibrium is locally and globally stable. 

In this article, Ebola disease compartment is formulated by modifying 
model SEIQR-SI type by involving vaccine compartment model [3], in order 
to obtain SVEIQR-SI type model. In addition, Ebola disease compartment is 
formulated by involving assumption that exposed population can be 
diagnosed prior to symptoms and infected populations recover naturally [5]. 
Furthermore, this model is called SVEIQR-SI model. 

This article is divided into five sections: Section 1 is the background and 
purpose of this article. Section 2 describes the model formulation. Section 3 
describes model analysis. Section 4 shows numerical simulation. Finally, the 
conclusions are provided in Section 5. 
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2. Model Formulation 

The total human population is categorized into six compartments: 
susceptible human population ( ),HS  vaccinated human population ( ),HV  

exposed human population ( ),HE  infected human population ( ),HI  

quarantined human population ( )HQ  and recovered human population 

( ).HR  Total vector population is categorized into two compartments: 

susceptible ( )VS  and infected vector population ( ).VI  

The underlying assumptions establishing this model are as follows.       
The rate of incoming human individuals into the susceptible population is 
constant .HΛ  The rate of change of infected human population is dependent 

on the level of population of infected human ( ),HI  quarantined human 

( )HQ  and the infected vector ( ),VI  and mathematically expressed as 

( ).1 VHH IQI +η+α  The susceptible population receives the vaccine at 

level .ξ  The rate of change of infected human population from the 

vaccinated human is dependent on the level of population of infected     
human ( ),HI  quarantined human ( )HQ  and the infected vector ( ),VI  and 

mathematically expressed as ( ) ( ),1 1 VHH IQIl +η+α−  where l is the 

vaccine effectiveness ( ).10 << l  The exposed human can move into the 

infected human individual with rate 1σ  or be diagnosed prior to symptoms 

with rate .rγ  The infected human individual becomes the quarantined human 

individual with rate 2σ  or recovers naturally with rate .rγ  The quarantined 

human individual can infect the susceptible or vaccinated human population 
with probability .η  The infected and quarantined human individual can be 

killed by Ebola virus with rate .1δ  The natural mortality rate for all human 

compartments is .1μ  We do not consider the exposed vector population. The 

rate of incoming vector individuals into the susceptible is constant .VΛ  New 

infectious occur only produced due to contact between the susceptible vector 
individual and the infected vector individual with an incidence rate .2 VIα  
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The infected vector individual infects the susceptible vector individual or the 
susceptible and vaccinated human individuals. The infected vector individual 
can be killed by Ebola virus with rate .2δ  The natural mortality rate for all 

vector compartments is .2μ  

 

Figure 1. Compartment of Ebola transmission model. 

Based on the assumptions, the model of Ebola virus transmission is given 
by eight ordinary differential equations as follows: 

( ) ,11 HHHVHHH
H SSSIQIdt

dS
ξ−μ−+η+α−Λ=  

( ) ( ) ,1 11 HHVHHH
H VVIQIlSdt

dV
μ−+η+α−−ξ=  

( ) ( ) HHVHH
H EkSIQIdt

dE
+σ+μ−+η+α= 111  

( ) ( ) ,1 1 HVHH VIQIl +η+α−+  

( ) ,1211 HrHH
H IIEdt

dI γ−δ+σ+μ−σ=  

( ) ,112 HHH
H kEQIdt

dQ
+γ+δ+μ−σ=  
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,1 HrHH
H IRQdt

dR
γ+μ−γ=  

,22 VVVV
V SSIdt

dS
μ−α−Λ=  

( ) ,222 VVV
V ISIdt

dI
δ+μ−α=  (1) 

with ( ) ( ) ( ) ( ) ( ) ( ) ( )tRtQtItEtVtStN HHHHHHH +++++=  is the total 

human population at time t and ( ) ( ) ( )tItStN VVV +=  is the total vector 

population at time t. The initial value for the system (1) is ( ) ,0 0HH SS =  

( ) ,0 0HH VV =  ( ) ,0 0HH EE =  ( ) ,0 0HH II =  ( ) ,0 0HH QQ =  ( ) ,0 0HH RR =  

( ) 00 VV SS =  and ( ) .0 0VV II =  All parameters are non-negative constants. 

Lemma 1. The set 

( )
⎩
⎨
⎧ +

μ
Λ

≤≤∈= + ,0|,,,,,,, 01

8
H

H
HVVHHHHHH NNISRQIEVSD R  

⎭
⎬
⎫+

μ
Λ

≤≤+
ξ+μ

Λ
≤≤ 00 21

0,0 V
V

VH
H

H NNSS  

is the positive bounded region from the system (1), where 0HN  and 0VN  are 

the total human and vector populations at ,0=t  respectively. 

3. Model Analysis 

The disease-free equilibrium of the system (1) is given by 

( )VVHHHHHH ISRQIEVS ,,,,,,,0T  

( ) ,0,,0,0,0,0,,
2111

⎟
⎠
⎞

⎜
⎝
⎛

μ
Λ

ξ+μμ
ξΛ

ξ+μ
Λ= VHH  
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and the endemic equilibrium of the system (1) is given by 

( )VVHHHHHH ISRQIEVS ,,,,,,,∗T  

( ),,,,,,,, ∗∗∗∗∗∗∗∗= VVHHHHHH ISRQIEVS  

where 

( )
,,

11
2

11
γ+σ+μ
σ+=

ξ+μ++η+α

Λ=
∗∗

∗
∗∗∗

∗ HH
H

VHH

H
H

IKEQ
IQI

S  

( ) ( )
,,

1 111
μ

γ+γ=
μ++η+−α

ξ=
∗∗

∗
∗∗∗

∗
∗ rHH

H
VHH

H
H

IQR
IQIl

SV  

(( ) ) ( ) ,,1

2211
1

μ+α

Λ
=

μ+σ+
+η++−α

= ∗
∗

∗∗∗∗∗
∗

V

V
V

VHHHH
H

I
Sk

IQISVlE  

.0,
112

1 =
δ+μ+σ+γ

σ= ∗
∗

∗
V

r
H

H IEI  (2) 

We calculate the basic reproduction number by using the next generation 
operator approach by van den Driessche and Watmough [6]. The next 
generation matrix at the disease-free equilibrium 0T  is given by: 

( )( )
( )

( )( )
( )

( )( )
( )

,

000

0000

0000

1110

2
2

11
11

11
11

11
11

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ξ+μ
Λα

ξ+μμ
μ+ξ−Λα

ξ+μμ
μ+ξ−Λα

ξ+μμ
μ+ξ−Λα

=

V

HHH lll

F  

.

000

0

00

000

22

112

1211

11

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

μ+δ

μ+δ+γσ−−

μ+σ+δ+γσ−

μ+σ+

=
k

k

rV  



Dynamical System for Ebola Outbreak within Vaccination … 1717 

The basic reproduction number 0R  is dominant eigenvalue of ,1−FV  thus 
we get 

( )( ) ( ( )

( ))
( ) ( ) ( ) ( ) .

1

112111111
2111

12111

0

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

δ+μ+σ+γμ+σ+ξ+μγ+δ+μμ
ησ+γ+δ+μσ+

μ+σ+δ+γημ+ξ−Λα

=
r

rH

k

kl

R  (3) 

The stability of system (1) is dependent on the basic reproduction 

number .0R  The stability analysis of both equilibrium 0T  and ∗T  will be 

provided through the following theorems: 

Theorem 1. The disease-free equilibrium 0T  is locally asymptotically 

stable if ,10 <R  and unstable if .10 >R  

Proof. The Jacobian matrix at 0T  for system (1) is given by 

( )
( )

( )
( )

,

J0000000

000000

00000

00000

000000

0000

00110

0000

88

2
2

2

1

112

441

38353433

28
11

1
11

1
1

1
1

1
1

1
1

1

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

μ
Λα

−μ−

μ−γγ

μ−δ−γ−σ

σ

ξ+μμ
ξΛη−α

−
ξ+μμ
ξΛ−α

−μ−ξ

ξ+μ
Λα

−
ξ+μ

Ληα
−

ξ+μ
Λα

−ξ−μ−

=

V

r

HH

HHH

k

J

JJJJ

Jll

0TJ  

where 

( )
( ) ,1

11
1

28 ξ+μμ
ξΛ−α

−= HlJ  

,1133 μ−σ−−= kJ  

( )
( ) ,1

1
1

11
1

34 ξ+μ
Λα

+
ξ+μμ
ξΛ−α

= HHlJ  
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( )
( ) ,1

1
1

11
1

35 ξ+μ
Ληα

+
ξ+μμ

ξΛη−α
= HHlJ  

( )
( ) ,1

1
1

11
1

38 ξ+μ
Λα

+
ξ+μμ
ξΛ−α

= HHlJ  

,12144 μ−σ−δ−γ−= rJ  

.22
2

288 μ−δ−
μ
Λ

α= VJ  

The characteristic polynomial of the matrix 0TJ  is 

( ) ( ) ( ) ( ) ( )8877662211 JJJJJ −λ−λ−λ−λ−λ  

( ) ,032
2

1
3 =+λ+λ+λ⋅ aaa  (4) 

where 

,11121111 μ+δ+γ+μ+σ+δ+γ+μ+σ+= rka  

( ) ( ) ( )kla HH η+σ⎟
⎠
⎞

⎜
⎝
⎛

ξ+μ
Λ

α+
ξ+μμ

ξΛ
−α−= 1

1
1

11
12 1  

( ) ( ) ( ) ( )111112111 μ+δ+γμ+σ++μ+σ+δ+γμ+σ++ kk r  

( ) ( ),11121 μ+δ+γμ+σ+δ+γ+ r  

( )( ) ( ) ( )( )
( )ξ+μμ

ησ+μ+δ+γσ+ημ+σ+δ+γμ+ξ−Λα−=
11

211112111
3

1 kla rH  

( ) ( ) ( ).1112111 μ+δ+γμ+σ+δ+γμ+σ++ rk  

Based on (4), eight eigenvalues can be determined. The five eigenvalues are 
( ),1111 ξ+μ−==λ J  ,1222 μ−==λ J  ,1663 μ−==λ J  ,2774 μ−==λ J  

.22
2

2885 μ−δ−
μ
Λ

α==λ VJ  Four of them are found to be negative. 

Assume .05 <λ  The other three eigenvalues of (4) can be determined as 

follows: 
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,1876 a−=λ+λ+λ  

,2868776 a=λλ+λλ+λλ  

.3876 a−=λλλ  (5) 

As ,01 >a  then .0876 <λ+λ+λ  Let .06 <λ  The disease-free equilibrium 

0T  stability will be dependent on the values of 7λ  and .8λ  If 07 <λ  and 

,08 <λ  then the equilibrium is stable. But, if 07 >λ  and ,08 >λ  then the 

disease-free equilibrium 0T  is not stable. 

If ,10 <R  then 02 >a  and 03 >a  (in equation (4)). As 02 >a  and 

,03 >a  then 

 ( ) 087876 >λλ+λ+λλ    and   .0876 <λλλ  (6) 

Since ,06 <λ  by condition (6), 

 087 >λλ    and   .087 <λ+λ  (7) 

This implies that 07 <λ  and .08 <λ  This concludes that if ,10 <R  then 

disease-free equilibrium 0T  is local asymptotically stable. 

Next, if ,10 >R  then the disease-free equilibrium 0T  will be proved not 

stable. Based on equation (3), if ,10 >R  then 03 <a  (in equation (4)). As 

,03 <a  the inequity (5) implies 

 .0876 >λλλ  (8) 

If condition (8) holds, then 087 <λλ  given that ,06 <λ  which concludes 

that 7λ  and 8λ  must have opposite signs. As a consequence, either the  

value of 7λ  or 8λ  must be positive, which concludes that the disease-free 

equilibrium 0T  is unstable. 

As a conclusion, the disease-free equilibrium 0T  for system (1) is locally 

asymptotically stable if ,10 <R  and unstable if .10 >R  
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Theorem 2. For system (1), the disease-free equilibrium 0T  exists. 

Moreover, endemic equilibrium ∗T  is unique and positive if and only if 
.10 >R  

Proof. From equation (2), we have 

 ( ) ,032
2

1 =++ ∗∗∗ AEAEAE HHH  (9) 

where 

( )
( )

( ) ( )
( )( ) ,1

1 2

11
01111

11
11

1 ⎟
⎠
⎞

⎜
⎝
⎛

μ+ξ−Λα
μ+σ+ξ+μμ

ξ+μμ
−αα

= l
klA

H

R  

(( ) ( ) ( ) ( ) ( )γ+δ+μδ+μ+σ+γμ+σ+ξ+μ−= 111121112 1 rklA  

( ) ( ) ( )γ+δ+μδ+μ+σ+γμ+σ+μ+ 11112111 rk  

( ) ( ( ) ( )1121111 1 δ+μ+σ+γη+γ+σ+μσ−Λα− rH kl  

)) ( )( ) ,1 1
0

12 μ+ξ−Λ
σησ+ lH

R  

.1 03 R−=A  

Based on (9), three values of ∗
HE  can be obtained. The first root was found 

to be .0=∗
HE  This gives ,0=∗

HI  ,0=∗
HQ  ,0=∗

HR  ,
1 ξ+μ
Λ

=∗ H
HS  

=∗
HV ( ) ,

11 μξ+μ
ξΛH  

2μ
Λ

=∗ V
VS  and .0=∗

VI  As a consequence, the existence 

of the disease-free equilibrium 0T  was successfully proved. Other two roots 

of (9) can be determined as follows: 

,
1
2

21 A
AEE HH −=+ ∗∗  

.
1
3

21 A
AEE HH =∗∗  (10) 
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The value of 3A  in (9) was defined previously, i.e., .1 03 R−=A  If ,10 >R  

then .03 <A  As 01 >A  (in equation (9)), then 021 <∗∗
HH EE  given that 

,03 <A  which concludes that ∗
1HE  and ∗

2HE  must have opposite signs. As  

a consequence, either the value of ∗
1HE  or ∗

2HE  must be positive. This 

concludes that there is only one positive root ∗
HE  so that ,∗

HS  ,∗
HV  ,∗

HI  

,∗
HQ  ,∗

HR  ∗
VS  and ∗

VI  exist and are positive unique. 

If the endemic equilibrium ∗T  is unique and positive, then .10 >R  

If ,10 <R  then 02 >A  and 01 03 >−= RA  (in equation (9)). As 

,02 >A  then 021 <+ ∗∗
HH EE  and 021 >∗∗

HH EE  given that ,03 >A  which 

concludes that 01 <∗
HE  and .02 <∗

HE  As a consequence, there is not 

positive endemic equilibrium .∗T  This concludes that endemic equilibrium 
∗T  is positive and unique, and therefore .10 >R  

If ,10 =R  then 02 >A  and 01 03 =−= RA  (in equation (9)). As 

,02 >A  then 021 <+ ∗∗
HH EE  and 021 =∗∗

HH EE  given that ,03 =A  which 

concludes that one of the roots of (9) is zero and the other root is negative. 

As a consequence, there is not positive unique endemic equilibrium .∗T  This 

concludes that endemic equilibrium ∗T  is positive unique if .10 >R  

As a result, the supposition is wrong. It is proven that if the endemic 

equilibrium ∗T  is unique and positive, then .10 >R  

As a consequence, the endemic equilibrium ∗T  is unique and positive if 

and only if 10 >R  was successfully proved. 
 

Theorem 3. If ,10 >R  then the endemic equilibrium ∗T  is locally 

asymptotically stable. 
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Proof. Based on Castillo-Chaves and Song [1], let 1α=ϕ  be the 

bifurcation parameter. Based on condition ,10 =R  we have 

∗ϕ=ϕ  

( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) .1 21111211

112111111
ησ+γ+δ+μσ+μ+σ+δ+γημ+ξ−Λ

δ+μ+σ+γμ+σ+ξ+μγ+δ+μμ=
rH

r
kl

k  (11) 

Consider .0TJ  Disease-free equilibrium 0T  has one zero eigenvalue        

and seven negative eigenvalues if 10 =R  or .∗ϕ=ϕ  The zero eigenvalue 

has right eigenvector ( )87654321 ,,,,,,, uuuuuuuu  and left eigenvector 

( ,,, 321 vvv  ).,,,, 87654 vvvvv  As indicated previously that 4u  is arbitrary 

positive, then ,087 == uu  

( ) ( )

( ) ( ) ( ) ,04
11111

121

22111111

1 <
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

σμ+δ+γξ+μξ+μ
σσΛηα+

μ+σ+δ+γΛηα+σμ+δ+γΛα

−= u

k

u H

rHH

 

(( ) ( ))
( ) ( )( )

( ) ( ) ( ) ,01
4

1111111
11

22112111

2 <
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

μμσμ+δ+γξ+μξ+μ
ξ+μ−+μ⋅

μ+σ+δ+γη+σησ+μ+δ+γξΛα

−= ul
k

u

rH

 

,04
1

121
3 >⎟

⎠
⎞

⎜
⎝
⎛

σ
μ+σ+δ+γ

= uu r  

( )
( ) ,04

111
21121

5 >⎟
⎠
⎞

⎜
⎝
⎛

σμ+δ+γ
σσ+μ+σ+δ+γ

= uku r  

( )
( ) ,04

1111
12121

1
6 >⎟

⎠
⎞

⎜
⎝
⎛

μ+δ+γσμ
σγσ+μ+σ+δ+γγ

+
μ
γ

= uku rr  

as indicated previously that 08 >v  is arbitrary positive, then 621 vvv ==  

,07 == v  
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( ) ( )
( )( ) ,01 8

1112
1122222

3 >
Λαμ+ξΛ−αμ

ξ+μμμμ−δμ−Λα
−= vlv

HH
V  

( ) ( )
( ) ( )( )

( ) ( )( ) ,1 8
1211111

1111

1122222

4 vl
kkv

HH

V

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

σμΛαμ+ξΛ−αμ+δ+γ
η+μ+δ+γμ+σ+

μξ+μμμ−δμ−Λα−

=  

( ) ( )
( ) ( )( ) .01 8

111112
1122222

5 >
μΛα+ξΛ−αμ+δ+γμ

ημξ+μμμ−δμ−Λα
−= vlv

HH
V  

Define 

( )∑
=

∗ϕ
∂∂

∂
=

8

1,,

2
,,

jik ji
k

jik xx
fuuva 0T  

( )∑
=

∗ϕ
ϕ∂∂

∂
=

8

1,,

2
,,

jik i
k

ik x
fuvb 0T  (12) 

where 

,,,, 4321 HHHH IxExVxSx ====  

,,,, 8765 VVHH IxSxRxQx ====  

( ) ,1111754
1

1 xxxxxxdt
dxf H ξ−μ−+η+ϕ−Λ==  

( ) ( ) ,1 21285411
2

2 xxxxxlxdt
dxf μ−+η+α−−ξ==  

( ) ( ) 3111854
3

3 xkxxxxdt
dxf +σ+μ−+η+ϕ==  

( ) ( ) ,1 2854 xxxxl +η+ϕ−+  

( ) ,4412131
4

4 xxxdt
dxf rγ−δ+σ+μ−σ==  
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( ) ,351142
5

5 kxxxdt
dxf +γ+δ+μ−σ==  

,4615
6

6 xxxdt
dxf rγ+μ−γ==  

,72782
7

7 xxxdt
dxf V μ−α−Λ==  

( ) .822782
8

8 xxxdt
dxf δ+μ−α==  

Based on equation (12), we have 

( ) ( ) ηϕ−+ϕ−+ηϕ+ϕ= ∗∗∗∗ luuvluuvuuvuuva 121222 523423513413  

and 

( )( )
( )

( )( )
( ) .11

11
1

53
11

1
43 ξ+μμ

−ξ+μηΛ+
ξ+μμ
−ξ+μΛ= luvluvb HH  

As ,0,, 543 >uuv  ,0, 21 <uu  and ,0>ϕ∗  then .0<a  As ,0,, 354 >vuu  

then .0>b  Consequently, when ϕ  changes from ∗ϕ<ϕ  to ,∗ϕ>ϕ  the 

disease-free equilibrium 0T  changes from stable and becomes unstable, 

while endemic equilibrium ∗T  changes from negative and becomes positive 
and thus becomes local asymptotically stable. As a consequence, the endemic 

equilibrium ∗T  is locally asymptotically stable if .10 >R  
 

4. Numerical Simulation 

The numerical simulations were performed to visualize stability 

properties of the equilibrium points of both 0T  and ∗T  based on the theorem 

in Section 3. The initial values used are ( ) ,1000 =HS  ( ) ,100 =HV  

( ) ,200 =HE  ( ) ,200 =HI  ( ) ,200 =HQ  ( ) ,00 =HR  ( ) 1000 =VS  and 

( ) .100 =VI  The parameter values used in this simulation are ,65.0=ΛV  
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,016.01 =α  ,8.0=η  ,02.02 =α  ,81 =σ  ,62 =σ  ,3.0=γ  ,2.01 =μ  

,6.02 =μ  ,6.01 =δ  5.02 =δ  [3]. ,697.14=k  5=γr  [5]. 50=ΛH  

(assumed). 

For the disease free equilibrium, additional values of 39.0=ξ  and 

9487.0=l  give .1933156.00 <=R  But, for the endemic equilibrium, 

additional values of 039.0=ξ  and 5487.0=l  give .1278.20 >=R  

 

Figure 2. The population dynamics of human and vector for the disease-free 
equilibrium. 

 

Figure 3. The population dynamics of human and vector for the endemic 
equilibrium. 

Exposed population ( )HE  is almost the same with infected population 

( )HI  (invisible). Figure 2 supports Theorem 1 and Figure 3 supports 

Theorems 2 and 3. This simulation shows that the system will be stable at 
around disease-free equilibrium when 10 <R  and the system will be stable 

at around endemic equilibrium when .10 >R  



Egi Irwan, Jaharuddin and Paian Sianturi 1726 

5. Conclusions 

This work carried out dynamical analysis for mathematical model of 
Ebola outbreak to consider vaccination. The results of the model analysis 
obtained two equilibria, namely, disease-free equilibrium and endemic 
equilibrium. The basic reproduction number ( )0R  was determined. The 

disease-free equilibrium is locally asymptotically stable on condition 
,10 <R  whereas the endemic equilibrium is locally asymptotically stable on 

condition .10 >R  The numerical simulation of population dynamics of both 

humans and vectors showed similar patterns as expected. 
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