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Abstract

Ebola Virus Disease (EVD) is a deadly disease caused by Ebola virus.
The mathematical model of Ebola virus transmission dynamics is
formulated by considering both human and vector populations. This
research aims to analyse dynamic systems of EVD transmission
considering vaccination treatment. The equilibrium points and basic
reproduction number (Rq) are determined. There are two equilibrium
points, namely, disease-free equilibrium and endemic equilibrium
points. The results of model analysis show that the disease-free
equilibrium is locally asymptotically stable if Ry < 1. The endemic
equilibrium is found to be unique, positive and asymptotically stable
if R >1. Numerical simulation is performed for showing the

population dynamic of both human and vector for time.
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1. Introduction

Ebola virus is one of the Filoviridae families that causes severe
hemorrhagic fever in human and non-human primates. Animal which is
considered as natural vector are fruits bat of Pteropodidae family. EVD
spread in human populations occurred after the susceptible individual had
direct contacted with infected human blood, body fluids or skin, or comes in
contained environmental Ebola virus.

EVD had occurred in the region of Central Africa to West Africa which
began in Guinea on December 2013, then spread to the territory of Liberia,
Sierra Leone, and Nigeria. On June 10th, 2016, World Health Organization
(WHO) states that there are 28.616 people confirmed, probable and
suscepted cases have been reported in Guinea, Liberia, and Sierra Leone,
with 11.310 deaths [7].

Mathematical model is an important tool to analyze the characteristics of
epidemiology of this infectious disease. Kalu et al. [2] formulated a
mathematical model for Ebola disease into SEIR type. Osemwinyen and
Diakhaby [4] formulated a mathematical model for Ebola disease into
SIQRD type, and the result shows that quarantine increased the number of
recovered people. Martins et al. [3] developed a mathematical model of
Ebola disease involving the vector population, namely, SEIQR-SI type, and
the result shows that disease-free equilibrium is locally and globally stable.

In this article, Ebola disease compartment is formulated by modifying
model SEIQR-SI type by involving vaccine compartment model [3], in order
to obtain SVEIQR-SI type model. In addition, Ebola disease compartment is
formulated by involving assumption that exposed population can be
diagnosed prior to symptoms and infected populations recover naturally [5].
Furthermore, this model is called SVEIQR-SI model.

This article is divided into five sections: Section 1 is the background and
purpose of this article. Section 2 describes the model formulation. Section 3
describes model analysis. Section 4 shows numerical simulation. Finally, the
conclusions are provided in Section 5.
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2. Model Formulation

The total human population is categorized into six compartments:
susceptible human population (S ), vaccinated human population (Vi ),

exposed human population (Ep ), infected human population (14 ),
quarantined human population (Qy) and recovered human population
(Ry ). Total vector population is categorized into two compartments:

susceptible (Sy ) and infected vector population (I ).

The underlying assumptions establishing this model are as follows.
The rate of incoming human individuals into the susceptible population is
constant A . The rate of change of infected human population is dependent

on the level of population of infected human (I ), quarantined human
(Qq) and the infected vector (ly), and mathematically expressed as
a1(ly +nNQn + Iy ). The susceptible population receives the vaccine at
level & The rate of change of infected human population from the

vaccinated human is dependent on the level of population of infected
human (1), quarantined human (Qp ) and the infected vector (I ), and

mathematically expressed as (1—1)oy(ly + nQn + Iy ), where | is the
vaccine effectiveness (0 <1 <1). The exposed human can move into the
infected human individual with rate o; or be diagnosed prior to symptoms
with rate y,. The infected human individual becomes the quarantined human
individual with rate o, or recovers naturally with rate y,. The quarantined

human individual can infect the susceptible or vaccinated human population
with probability m. The infected and quarantined human individual can be

killed by Ebola virus with rate ;. The natural mortality rate for all human
compartments is py. We do not consider the exposed vector population. The
rate of incoming vector individuals into the susceptible is constant A,,. New

infectious occur only produced due to contact between the susceptible vector
individual and the infected vector individual with an incidence rate asly, .
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The infected vector individual infects the susceptible vector individual or the
susceptible and vaccinated human individuals. The infected vector individual
can be killed by Ebola virus with rate 5,. The natural mortality rate for all

vector compartments is p.

Ha iy 3,

t 1

AH—> > IH % QH y R
vl Ty
ko LH16) 6y s
1 1 r

Figure 1. Compartment of Ebola transmission model.

Based on the assumptions, the model of Ebola virus transmission is given
by eight ordinary differential equations as follows:

ds

d—tH=AH —og(ly +MQu + lv)Sy — Sy — &Sy,

dv

d—tH=§SH —(@=Doy(ly +MQu + Iy )Vy — wVy,

dE

d_,:_i:al(lH +MQu + Iy )Sy — (g + o1 + K)Eyy
+(@=Doyg(ly +MQy + Iy )V,

dl

d—';':GlEH —(m + 02 +8) Iy —vrly,

dQy

it = 2! — (i + 8 +7)Qy +KEh,
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dR
d_:IZYQH - wRy +vrlnH,

ds
d_;/ = Ay —azlySy —upSy,

di
d—}/:az'vsv —(ug +32)ly, 1)

with NH (t) = SH (t) +VH (t) + EH (t) + IH (t) + QH (t) + RH (t) is the total
human population at time t and Ny (t) = Sy (t) + Iy (t) is the total vector

population at time t. The initial value for the system (1) is Sy (0) = Sy,

V{(0) =Vhy, Ex(0)=Eny, 1H(0)=1hy, Qu(0)=Qn,. RH(0)=Ry,,

Sv(0) = Sy, and Iy (0) = ly,. All parameters are non-negative constants.

Lemma 1. The set
_ 8 Ay
D= (SH,VH,EH, IH'QH’RH'SV'IV)ER+|OS NH S—+NHO,
H1

AH

0<Sy <
H=w+e

+SHO,0S NV S/:l—\z/+ NVO}

is the positive bounded region from the system (1), where Ny, and Ny, are

the total human and vector populations at t = 0, respectively.

3. Model Analysis

The disease-free equilibrium of the system (1) is given by

To(SH. VH, EH. 1H. Quy Ry, Sy Iv)

Ay Apé Ay j
= ) ) Ol 01 01 01 T O ’
[Hl +&" (g +8) H2
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and the endemic equilibrium of the system (1) is given by
T*(SH+ Vi Eno 11y QHy Ry, Svy Iv)

= (Sh. Vit, Bfy, 15, QAL RiL SV, 1),

where

o An «  KE + 10,

H = L T T
ag(lf +nQfy + W)+ + & Hp oLty

v = ShE R, < 1A+ lntr
agL=D(H +nQf + V) + 1y H1

er _ oa(@= DV +S5) (15 +nQfy + 1) VY

H k+op+ ' ool +py

2lyv T 12
k
P I = 0. by

C Yr+0p+p+38]

We calculate the basic reproduction number by using the next generation
operator approach by van den Driessche and Watmough [6]. The next
generation matrix at the disease-free equilibrium Ty is given by:

A (@-DE+p) wAR(@-DE+w) oAg(@-DE+u)

0
pi(pg +8) pi(pg +8) pi(pg +8)
0 0 0 0
F = b
0 0 0 0
0 0 0 Gy
Ho +&
k + (o] + W1 0 0 0
Vv —01 Yr +51+02+M1 0 0
- -k —G» Y + 81 + W 0

0 0 0 62 + U2



Dynamical System for Ebola Outbreak within Vaccination ... 1717

The basic reproduction number R is dominant eigenvalue of FV 1 thus
we get

A (X =D&+ pg)(kn(yy + 81 + 02 + 1)

Ra = +51(M1+61+Y+1152)) ] (3)
ui(ug + 8 +v)(ug + &) (k + o1 +ug)(yp + 02 + g +87)

The stability of system (1) is dependent on the basic reproduction

number Rg. The stability analysis of both equilibrium Ty and T™ will be
provided through the following theorems:

Theorem 1. The disease-free equilibrium T is locally asymptotically
stable if Rg <1, and unstable if R > 1.

Proof. The Jacobian matrix at T for system (1) is given by

oA amA oA
-y - 0 0 _AH _ oAy 0 oAy
S (Hl‘*)i (Hl;é wp+é
(Xll—l AH& (X,ll—l 'I’]AHE_,
- - - 0 0 J
S T R 2
0 Jss Ja4 J3s 0 0 J3g
‘]TO — 0 0 o1 J44 0 0 0 0
0 0 «k oy 8- O 0O 0
0 0 0 Yr Y Y 0
0o 0 o0 0 0 0 —p, -22hv
U2
0o 0 o0 0 0 0 0  Jg
where
‘]28 - _ OL].(]'_ I)AHFv
(g +€)

Jaz =k —o1 —py,

_u@-DAKE | aAy
p(ug +€) o +€
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Jup = M@=DNAKE  onAy
35 = :
pi(pg +8) M+ &

Jag = ag1-1ARE | ogAy
plu +8)  pp+&

Jag = —vr =8 -0 — 1,
A
Jgg = 0tp —- =85 — .
H2
The characteristic polynomial of the matrix I1, is
(A =311) (A = J22) (A — Jg) (A = I77) (A — Jgg)
(03 + ap® + a\ + ag) = 0, (4)

where

g =kK+op+u +yr +01+02 + 1y + 7+ 01 + U,

_ . AnS Ay
2= [al(l Vi 8" g+ &j(cl o

+(k+op +p)(yr +8 + 05 +ug)+(K+o0p +ug) (v + 3 + 1)
+(yr +8 +0p + ) (y + 31 + 1),

ag = — oA H (L-1E+ ) ((vr + 8 + 05 +p MK + o1 (v + 8 + py +nG2))
py(pg +8)

+(k+ 01 +p)(yr +8 + 0 +ug)(y + 81 + ).

Based on (4), eight eigenvalues can be determined. The five eigenvalues are
AM=d11=-(n+&), Ap =Jp =-n1, Az =Jgs =y, rg=1Jd77 =-H2,

A .
A5 = Jgg = 0y — — 85 — . Four of them are found to be negative.
U2

Assume Ag < 0. The other three eigenvalues of (4) can be determined as
follows:
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Ag +A7 +Ag = -,
Agh7 + A7Ag + Aghg = Ay,
Agh7Ag = —a. (5)
As a; > 0, then Ag + A7 +Ag <0. Let Ag < 0. The disease-free equilibrium
Ty stability will be dependent on the values of A; and ig. If A7 <0 and

Ag < 0, then the equilibrium is stable. But, if A; > 0 and Ag > 0, then the

disease-free equilibrium Ty is not stable.

If Rg <1 then a, >0 and ag > 0 (in equation (4)). As a, > 0 and
ag > 0, then

Ag(L7 +Ag)+A7hg >0 and AghsArg <O. (6)
Since Ag < 0, by condition (6),
A7hg >0 and A7 +2Ag <O. @)
This implies that A; <0 and Ag < 0. This concludes that if Ry <1, then
disease-free equilibrium T is local asymptotically stable.

Next, if Ry > 1, then the disease-free equilibrium Ty will be proved not
stable. Based on equation (3), if Ry > 1, then ag < 0 (in equation (4)). As
ag < 0, the inequity (5) implies

)\,6)\.77\.8 > 0. (8)

If condition (8) holds, then A;Ag < O given that Ag < 0, which concludes
that A; and Ag must have opposite signs. As a consequence, either the
value of L; or Ag must be positive, which concludes that the disease-free

equilibrium Ty is unstable.

As a conclusion, the disease-free equilibrium T for system (1) is locally

asymptotically stable if Ry <1, and unstable if Ry > 1.
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Theorem 2. For system (1), the disease-free equilibrium Ty exists.

Moreover, endemic equilibrium T* is unique and positive if and only if
RO > 1.

Proof. From equation (2), we have
% %2 *
En(AEH + AEQ + A3) =0, 9)

where

_ x0g(d-1) (Ml(ul +&)(k+ 01 +p)Rg )2
mm +&8) U oAy (@-1E+ ) -

Ap = (@1 +E)(k+op +ug)(vr +02 + g +81)(ug +31 +7)
+ug(K + o1 + ) (vr +0g +pg +87)(ug +81 +7v)
— oAy @ =1)(o1(ug + o1 +v) + K(yy + 02 + 1y +31)

R
#1920)) X (@ DE+ )’

Ag =1- Ry.

Based on (9), three values of Ejj can be obtained. The first root was found

AH
w+&’

to be Ef; =0. This gives Iy =0, Q5 =0, R =0, Sj =

A .
Vi = _Ans Sy =—Y and Iy, = 0. As a consequence, the existence
(g + &)y H2

of the disease-free equilibrium Ty was successfully proved. Other two roots
of (9) can be determined as follows:

o)

% 1

* *
EH1 +EH2 = -

Efy B, = (10)

2|z
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The value of Ag in (9) was defined previously, i.e., A =1-Rq. If Rg > 1,
then Ag <0. As A >0 (in equation (9)), then Efy Efy, <0 given that
Ag < 0, which concludes that Ey;, and Ej;, must have opposite signs. As
a consequence, either the value of E'*ﬁ or Eﬁz must be positive. This

*

concludes that there is only one positive root Ejy so that Sy, Vi, 1y,
Qi Ry, Sy and ly exist and are positive unique.

If the endemic equilibrium T is unique and positive, then Ry > 1.

If Rg<1 then Ay >0 and A3 =1-Rp >0 (in equation (9)). As
A, >0, then Epy +Efy, <0 and Efy Efy, >0 given that Ag > 0, which
concludes that Eﬁl <0 and E,’ii2 < 0. As a consequence, there is not
positive endemic equilibrium T*. This concludes that endemic equilibrium
T* is positive and unique, and therefore R > 1.

If Rop=1 then Ay >0 and A3 =1-TRgy =0 (in equation (9)). As
Ao >0, then Efy +Efy, <0 and Ejy Efy, =0 given that Ag = 0, which
concludes that one of the roots of (9) is zero and the other root is negative.

As a consequence, there is not positive unique endemic equilibrium T*. This

concludes that endemic equilibrium T* is positive unique if Ro > 1L
As a result, the supposition is wrong. It is proven that if the endemic

equilibrium T* is unique and positive, then Ry > 1.

As a consequence, the endemic equilibrium T* is unique and positive if

and only if Ry > 1 was successfully proved. g

Theorem 3. If Ry >1, then the endemic equilibrium T* is locally

asymptotically stable.



1722 Egi Irwan, Jaharuddin and Paian Sianturi

Proof. Based on Castillo-Chaves and Song [1], let ¢ = oy be the

bifurcation parameter. Based on condition R =1, we have

*

¢=¢

_ P + 8y +7) (g +E)(K+ 01+ pg) (vr + 02 + 1y +81)
Ap(@-DE+ug)(kn(yy +81 + 0 + 1)+ o1(y + 81 + 7 +nG2)

-y

Consider J1,- Disease-free equilibrium Ty has one zero eigenvalue

and seven negative eigenvalues if Ry =1 or ¢ = ¢". The zero eigenvalue
has right eigenvector (uq, Us, Ug, U4, Us, Ug, U7, Ug) and left eigenvector
(vq, Vo, V3, V4, Vs, Vg, V7, Vg). As indicated previously that uy is arbitrary
positive, then u; = ug =0,

agAy (v + 81 + py)op + anApk(y, +8; + 05 +1p)
+OL1T'|AH0261

=" (Mg +&)(ug + &) (v + 81 + py)oyg Ua <0,

G AHE((y + 81 + g + oon)og + kn(yy + 31 + 0z + Up))
b = | (e A-D(y +8) U <0
2 4 )

(ng + &) (g + &) (v + 81 + pg oy

U3 :(Yr +8;+ 07 +M1ju4 >0,
(o}
1

Us = (k(Yr +981 + 03 +H1)+0102ju 0
(v + 81 + py)oy '

Ug = (Y_r LYK 48 oy )+ Y0201)u4 S0,
Hy pyor(y + 8y + py)

as indicated previously that vg > O is arbitrary positive, then v; = v, = vg

:V7 :O,
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va = \02AY — 1987 — ok ) ( +8)
5 =
po(on(I=1AHE+ monAy )

8>0,

—(apAy —12dy — uang) (W + &)y
_ ((k+ o1 + ) (v + 8 +pg) + k) v
(v + 81 + pg)(ag(X = A {E + oAy Jupoy

Vg

Ve = — (apAv — 18 — porp) (g + E)mm
oy + 81 + ) (@ - DAKE+ aApiy)

V8 > 0.
Define

8 2
a= > Vw2 e (To, ©°)
- Uil Bax; 1o @)
k,i, j=1 =)

b = 28: vu-ﬁ(T ")
L k Iaxia(P 09 )
where
Xt =SH, X2 =Vy, X3=Ey, X4=1Ix,

X5 =QH, Xs =Ry, X7 =35y, Xg=ly,

dx

fi = d_tl = Ap —9(Xg +MX5 + X7)X — X — 84,
dX2

f) = T (L =Dag(xq +n%5 + Xg)Xo — p1Xo,

dx
f3 = d_t3 = (p(X4 +NX5 + XS)X]_ - (Ml +01+ k)X3

+ (1= o(x4 +nX5 + Xg) X2,

dx
fy = d_t4 = 01X3 — (1 + 02 +81)X4 — V¢ Xg,

1723

(12)
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dx
fs = d—tS = %4 — (Mg + 81 +7)X5 + Kxg,

dx
fe = d_tG = YX5 — X + VrXa,

dX7
f7 =~ = Av — aaXgXy — HaX7,

dx
d_t8 = apXgXy — (1o +82)Xg.

fg
Based on equation (12), we have
a = 2VaUyUa®" + 2ValhUs® M + 2VaUoUa (1 — 1™ + 2vsuous(1— 1) o™
and

Ap(u+8A-1) ~  Apnl +EL-1)

b= Vala w(pg + ) 5 m(ug + )

AS V3, Ug, Ug >0, ug, Uy <0, and (p* > 0, then a < 0. As Uy, Ug, v3 > 0,

then b > 0. Consequently, when ¢ changes from ¢ < ¢ to ¢ > ¢, the
disease-free equilibrium Ty changes from stable and becomes unstable,
while endemic equilibrium T* changes from negative and becomes positive
and thus becomes local asymptotically stable. As a consequence, the endemic

equilibrium T* is locally asymptotically stable if Ro > 1L g

4. Numerical Simulation

The numerical simulations were performed to visualize stability
properties of the equilibrium points of both Ty and T* based on the theorem
in Section 3. The initial values used are Sy (0) =100, Vy(0) =10,
Eq(0)=20, 14(0)=20, Qy(0)=20, Ry(0)=0, Sy(0)=100 and

Iy (0) = 10. The parameter values used in this simulation are Ay = 0.65,
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o1 =0.016, =08, oy =002, 0,=8 o5=6, y=03, p; =02,
u, =06, 8 =06, 6, =05 [3]. k=14.697, vy, =5 [6]. Ay =50
(assumed).
For the disease free equilibrium, additional values of & =0.39 and
| =0.9487 give R =0.933156 <1. But, for the endemic equilibrium,
additional values of & = 0.039 and | = 0.5487 give Ry = 2.278 > 1.

=

%
SE

£ __/"'f Sy g

= Vy E I

= 10 4 = I

) > 4 By — £ 9 Sy

< by == 2 g

§ 0 / Qy = ; v
0 5 10 15 20 2 30 0 5 10 15 20 s 30

Tme | Moath Tme | Mouth

Figure 2. The population dynamics of human and vector for the disease-free
equilibrium.

100

=

&0

£ w £
= Su = Sy
2 Vi g2 @ Iy
= p— =
= 40 H 5 40
= IH— ]
Z 2 Qe = ¥
== H
0 jl‘]H'— 0’\_ ........................
0 3 10 5 20 3 0 5 o 15 2 23 X
Tme | Moath Tme | Muith

Figure 3. The population dynamics of human and vector for the endemic
equilibrium.

Exposed population (Ep ) is almost the same with infected population
(I'4) (invisible). Figure 2 supports Theorem 1 and Figure 3 supports

Theorems 2 and 3. This simulation shows that the system will be stable at
around disease-free equilibrium when R <1 and the system will be stable

at around endemic equilibrium when R > 1.
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5. Conclusions

This work carried out dynamical analysis for mathematical model of
Ebola outbreak to consider vaccination. The results of the model analysis
obtained two equilibria, namely, disease-free equilibrium and endemic
equilibrium. The basic reproduction number (Ro) was determined. The

disease-free equilibrium is locally asymptotically stable on condition
R <1, whereas the endemic equilibrium is locally asymptotically stable on

condition R > 1. The numerical simulation of population dynamics of both

humans and vectors showed similar patterns as expected.
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