The 3rd Animal Production International Seminar
The 3rd ASEAN Regional Conference on Animal Production
3rd APIS & 3rd ARCAP – 2016

Enhancing Synergistic Roles of Stakeholders for Development of Sustainable Livestock Production
Assalamualaikum warohmatullahi wabarakatuh

Distinguished Guests and Delegates, Ladies and Gentlemen,

It gives me great privilege and pleasure to extend to you all a very warm welcome on behalf of Brawijaya University and to say how grateful we are to the organizing committee of The Third Animal Production International Seminar (3rd APIS) and The Third ASEAN Regional Conference on Animal Production (3rd ARCAP) who made this important event happening from today onward. Your attendance in this conference will not be enough before exploring the serendipity of Batu city which has attracted so many visitors in the recent years. It offers you many attractive places to visit varying from leisure facilities to smallholder dairy farms that are relevant to the topic of this conference.

The issues of livestock production and food security have been a hot topic of debates all over the world to challenge our capability to feed human population living on earth that is believed will reach 25 billion people by the middle of this millennium. The global call on quality human resources especially in developing countries may not be achieved without adequate supply of animal protein. This has urged animal scientists to make significant effort to increase animal production by inventing new technologies and approaches but have no negative impact on our natural resources because the majority of smallholder farmers face scarcity of cultivable land to produce adequate quantity and quality fodder for their animals. The practice of uncontrolled fodder scavenging from forest and open land may provoke a serious natural disaster such as landslide, flood and loss of water resources for human beings. Through this stage I would like to extend my concern to all distinguished guests and delegates to pay more attention on sustainable development of animal production that assures our young generation lives on earth safely and happily.

As the rector of Brawijaya University, I am also delighted to welcome you in our green campus sometime in the middle of the conference to hasten mutual collaboration between Brawijaya University and either national or international partners. We are fully aware that in a modern life higher education quality should be built on the basis of collaboration for many reasons. Brawijaya University has 14 faculties that can be grouped into four science trees, that is engineering, humanity, economics, and life sciences. They have been growing significantly not only in the number of student enrollements but many prestigious achievement on research findings, student competitions and administrative transparency are our flagships in the last ten years. Nevertheless, we also realize that first and foremost constraint for any institution is the limit of resources and thereby underpinning the importance of establishing mutual collaboration. It is our opportunities to meet delegates from varying places of origin that open initial discussion for further networking on relevant topics of interest concordance to the main topic of this conference and beyond.

To conclude my address, once again I would like to express my sincere gratitudes to all delegates, partners and conference committee who have made this important international conference occurs. I do hope that your stay and participation in these seminar and conference will be fruitful and unforgettable.
By the name of Almighty Allah Swt. I declare that The Third Animal Production International Seminar (3rd APIS) and The Third ASEAN Regional Conference on Animal Production (3rd ARCAP) are officially open.

Thank you very much

Wassalamualaikum warohmatullahi wabarokatuh.

Batu, 19 October 2016
Brawijaya University
Rector
Prof.Dr.Ig. Mohammad Bisri, MS.
STEERING COMMITTEE

- Prof. Dr. Sc. Agr. Suyadi, MS. (Brawijaya University, Indonesia)
- Prof. Dr. Kusmartono (Brawijaya University, Indonesia)
- Prof. Ifar Subagiyo, Ph.D. (Brawijaya University, Indonesia)
- Prof. Hendrawan Soetanto, Ph.D. (Brawijaya University, Indonesia)
- Prof. Dr. Abdul Razak Alimon (Universiti Putra Malaysia, Malaysia)
- Prof. Dr. Ali Agus, (Indonesian Society of Animal Science)
- Dr. Abu Hasan (Malaysian Society of Animal Production)
- Prof. Liang Chou Hsia, Ph.D. (National Pingtung University of Science and Technology, Taiwan)
- Prof. Dr. E.R. Ærskov (International Feed Resources Unit, Macaulay Land Use Research Institute - MLURI, Scotland, UK).
- Assoc. Prof. Dr. Suntorn Wittayakun (Faculty of Science and Agriculture Technology, Rajamangala University of Technology Lanna, Thailand)
- Prof. Dr. Zaenal Fanani (Brawijaya University, Indonesia)
- Prof. Dr. Djalal Rosyidi (Brawijaya University, Indonesia)
- Prof. Dr. Budi Hartono (Brawijaya University, Indonesia)
- Prof. Dr. Luqman Hakim (Brawijaya University, Indonesia)

SCIENTIFIC COMMITTEE

- Prof. Dr. Trinil Susilawati (Brawijaya University, Indonesia)
- Prof. Dr. Abdul Razak Alimon (Universiti Putra Malaysia, Malaysia)
- Prof. Dr. Ramli Abdullah (Universiti Malaya, Malaysia)
- Cynthia D.K. Bottema, Ph.D. (University of Adelaide, Australia)
- Prof. Marsytyo, Ph.D. (Tadulako University, Palu, Central Sulawesi, Indonesia)
- Dr. Umar Paputungan (Sam Ratulangi University, Manado, North Sulawesi, Indonesia)
- Assist. Prof. Dr. Wilaiporn Chanchai (Faculty of Science and Agriculture Technology, Rajamangala University of Technology Lanna, Thailand)
- Prof. Dr. Siti Chuzaemi (Brawijaya University, Indonesia)
- Dr. Gatot Ciptadi (Brawijaya University, Indonesia)
- Dr. Lilik Eka Radiati (Brawijaya University, Indonesia)
- Dr. Qilar Sjofjan (Brawijaya University, Indonesia)
- Dr. Masdiana Ch Padaga (Brawijaya University, Indonesia)
- Dr. Eko Widodo (Brawijaya University, Indonesia)
- Dr. Mashudi (Brawijaya University, Indonesia)
- Dr. Iter Wahyu N (Brawijaya University, Indonesia)
- Hari Dwi Utami, Ph.D (Brawijaya University, Indonesia)
- Anie Eka K., M.Sc (Brawijaya University, Indonesia)
ORGANIZING COMMITTEE

Honorary Chairperson
- Prof. Dr. Mochammad Bisri (Rector/President, Brawijaya University, Malang, Indonesia)
- Prof. Dr. Kusmartono (Vice-Rector of Academic Affair, Brawijaya University, Malang, Indonesia)
- Prof. Dr. Sc. Agr. Ir. Suyadi (Dean, Faculty of Animal Husbandry, Brawijaya University, Malang, Indonesia)

Chairman
- Dr. Ir. Marjuki, M.Sc.

General Secretary
- Chairperson: Aswah Ridhowi, M.Sc.
- Members: Wike Andre, M.Si

Treasurers
- Chairperson: Asri Nurul Huda, MP., M.Sc
- Vice-chairperson: Dr. Ir. V. M Ani N., M.Sc

Secretariat Team
- Chairperson: Firman Jaya, MP
- Vice-chairperson: Dr. M. Halim Natsir
- Members: Jaisy Aghniarahim Putritamara., MP

Fund Raising and Sponsorship Committee
- Chairperson: Aulia Puspita A. Y., MP., M.Sc
- Vice-chairperson: Dr. Kuswati,
- Member: Yuli Frita N., MP., M.Sc

Program Committee
- Chairperson: Dr. Herly Evanuarini
- Members: Dr. Siti Azizah
- Trianti Djoharjani, M.Agr. St
- Awang Tri Satria, ME

Consumption Committee
- Chairperson: Dr. Tri Eko Susilorini
- Members: Dr. Sri Minarti
- Aris Sri Widati, MS
- Ria Dewi Andriani, MP., M.Sc

Receptionist Team
- Chairperson: Poespita Sari Hazanah N., MP
- Members: Premy Puspitawati R., MP
- Mulia Winirsya Apriliyani, MP

Field Trips Committee
- Chairperson: Firmansyah Tri MP
- Members: Dr. Agus Susilo
- Mr. Djarot Sunarto
Transportation Committee

Chairperson
Dr. Agus Budiarto

Members
Mrs. Nadhiroh
Mr. Sutikno
Mr. Yusuf

Venue and Documentation Committee

Chairperson
Nanang Febrianto, MP

Members
Hely Tistiana, MP
Mr. Kusno Waluyo
Mr. Rosyidi
Mr. Zaenal Abidin
Ms. Dita Anggraini
Congress Name:
3rd Animal Production International Seminar (3rd APIS) & 3rd ASEAN Regional Conference on Animal Production (3rd ARCAP)

Themes:
Enhancing Synergistic Roles Of Stakeholders for development Of Sustainable Livestock Production

Chairman:
Dr.Ir. Marjuki, M.Sc (Brawijaya University, Indonesia)

Date:
19-21 October 2016

Venue:
Royal Orchid Garden Hotel and Condominiums The Shining City of Batu

Official Website:
http://apis.ub.ac.id

Secretariat for APIS 2016:
Faculty of Animal Husbandry Brawijaya University, Malang Indonesia
Telephone: +62 341 553513
Mobile/Line/WA: +62 857 076 327 91
E-mail: info.apis@ub.ac.id
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30-</td>
<td>Legumes wafer for improvement the post-weaning etawah crossbreed goats performance¹</td>
<td>Brilian Desca Dianingtyas</td>
<td>FN - 352</td>
</tr>
<tr>
<td>12.40</td>
<td>Utilization of cricket meal in creep feed diet of growing etawah crossbreed goats²</td>
<td>Dewi Apri Astuti</td>
<td>FN - 332</td>
</tr>
<tr>
<td>12.50</td>
<td>Performance of first cutting of Pennisetum purpureum cv. Mott under different level of light and nitrogen fertilizer³</td>
<td>David A. Kaligis</td>
<td>FN - 360</td>
</tr>
<tr>
<td>13.00-</td>
<td>Amino acid characterization of tofu waste fermentation using effective microorganism-4 and Lactobacillus plantarum culture⁴</td>
<td>Eka Fitasari</td>
<td>FN - 325</td>
</tr>
<tr>
<td>13.10</td>
<td>In vitro digestibility profiles of cricket meal as protein source in the ration¹</td>
<td>Dewi Apri Astuti</td>
<td>FN - 331</td>
</tr>
<tr>
<td>13.20</td>
<td>Production of roughage feed under different drying methods and evaluation of the feeding value¹</td>
<td>Jayaweera B. P. A.</td>
<td>FN - 333</td>
</tr>
<tr>
<td>13.30</td>
<td>In vitro nutrient digestibility of Chromolaena odorata-based silage treated with Corypha gebanga meal and rumen content¹</td>
<td>Yelly M. Mulik</td>
<td>FN - 335</td>
</tr>
<tr>
<td>13.40</td>
<td>Production, characterization and purification of xylanase from Staphylococcus aureus MBXi-K4¹</td>
<td>Indah Wijayanti (MODERATOR 1)</td>
<td>FN - 336</td>
</tr>
<tr>
<td>13.50</td>
<td>To estimate intestinal truly absorbed protein of alfalfa hay and alfalfa silage using new dutch system (DVE/OEB)¹</td>
<td>Parisa Kheyrandish</td>
<td>FN - 340</td>
</tr>
<tr>
<td>14.00</td>
<td>Chitosan protection to saga leaves extract (Abrus precatorius Linn) and Lingzhi mushroom (Ganoderma lucidum) from rumen microbial degradation¹</td>
<td>Dwierra Evvyernie</td>
<td>FN - 342</td>
</tr>
<tr>
<td>14.10</td>
<td>Effects of different types of cakes in rations on the</td>
<td>Amani Osman</td>
<td>FN - 348</td>
</tr>
</tbody>
</table>

¹ Presented by J. Oralia, Nguyen Huy Linh, and Pham Huu Huy.
² Presented by J. Oralia, Nguyen Huy Linh, and Pham Huu Huy.
³ Presented by J. Oralia, Nguyen Huy Linh, and Pham Huu Huy.
⁴ Presented by J. Oralia, Nguyen Huy Linh, and Pham Huu Huy.
⁵ Presented by J. Oralia, Nguyen Huy Linh, and Pham Huu Huy.
LIST OF CONTENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECTOR SPEECH</td>
<td>3</td>
</tr>
<tr>
<td>FOREWORD DEAN THE FACULTY OF ANIMAL HUSBANDRY</td>
<td>5</td>
</tr>
<tr>
<td>WELCOME MESSAGE</td>
<td>6</td>
</tr>
<tr>
<td>SPEECH FROM CHAIRMAN OF APIS 2016</td>
<td>7</td>
</tr>
<tr>
<td>WELCOME SPEECH FROM MSAP PRESIDENT</td>
<td>8</td>
</tr>
<tr>
<td>CONGRESS COMMITTEE</td>
<td>9</td>
</tr>
<tr>
<td>OUTLINE OF THE CONGRESS</td>
<td>12</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>13</td>
</tr>
<tr>
<td>GENERAL INFORMATION OF BATU</td>
<td>14</td>
</tr>
<tr>
<td>GENERAL INFORMATION OF THE CONGRESS</td>
<td>15</td>
</tr>
<tr>
<td>OPENING/CLOSING CEREMONIES</td>
<td>17</td>
</tr>
<tr>
<td>ORGANIZATION DETAIL</td>
<td>19</td>
</tr>
<tr>
<td>INFORMATION AND CONFERENCE DETAILS</td>
<td>20</td>
</tr>
<tr>
<td>GUIDELINE FOR POSTER PRESENTATION CONFERENCE</td>
<td>23</td>
</tr>
<tr>
<td>ORAL PRESENTATION PROGRAM</td>
<td>25</td>
</tr>
<tr>
<td>LIST OF CONTENT</td>
<td>26</td>
</tr>
</tbody>
</table>

Keynote Speakers Presentation

<table>
<thead>
<tr>
<th>Speakers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of Researches for Development of Sustainable Livestock Production</td>
<td>66</td>
</tr>
<tr>
<td>Breeding Program of Local and Imported Beef/Dairy Cattle Breed for Development of Sustainable Livestock Production</td>
<td>72</td>
</tr>
<tr>
<td>Current Analysis on Beef Self Sufficiency Program in Indonesia</td>
<td>78</td>
</tr>
<tr>
<td>Current Development Trends in Global Broiler Production</td>
<td>79</td>
</tr>
<tr>
<td>Feeding Management of Ruminant Animals to Reduce Their Contribution for Gas Emission</td>
<td>85</td>
</tr>
<tr>
<td>Manipulation of Ruminal Fermentation and Methane Mitigation by Feeding Management: Strategic Success Keys for Smallholder Dairy Farm with Environmentally Friendly</td>
<td>88</td>
</tr>
</tbody>
</table>

Oral Presentation 1 Focus Session: Feed and Nutrition (1)

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallholder dairy cattle farmer capacity in providing feeds and nutrient in several population densities of villages of Sleman Regency DIY Province – Indonesia</td>
<td>95</td>
</tr>
<tr>
<td>Nutritional properties of several seaweeds species for dairy cattle</td>
<td>98</td>
</tr>
<tr>
<td>Inclusion of various levels of peanut hay (rendeng) in the rabbit diet</td>
<td>101</td>
</tr>
<tr>
<td>The use of corn fodder for rabbit production</td>
<td>104</td>
</tr>
<tr>
<td>Development of beef cattle using agricultural by-product in West Java</td>
<td>107</td>
</tr>
<tr>
<td>Changes in nutrition and fibre silage water hyacinth (Eichomia crassipes) as ruminant feed fermented with several fermentative materials</td>
<td>110</td>
</tr>
</tbody>
</table>

Oral Presentation 1 Focus Session: Feed and Nutrition (2)

<table>
<thead>
<tr>
<th>Presentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance of broiler chickens fed diets supplemented with several palm polysaccharides</td>
<td>116</td>
</tr>
<tr>
<td>Supplementation of the diets with rich – selenium feedstuffs on the performance of 4 weeks old broiler chickens</td>
<td>121</td>
</tr>
</tbody>
</table>
Effect of storage time and physical form of diet with formulated from local feed based on nutrient composition of the diets

Effect of storage time and physical form of diet with formulated from local feed based on nutrient composition of the diets

Enrichment of Feedstuff With Fermented Soybean Peel to Increase Rabbit Body Weight

Broiler chickens performance as affected by animal fat and plant oil under hot arid conditions of Sudan

Calcium and phosphorous absorption of field grass during the dry season at medium altitude in Garut

Isolation and screening of lactic acid bacteria from dadih for glutamic acid production as precursor of γ-Amino Butyric Acid (GABA) induced heat stress in broiler

The effect of fertilizers on soil characteristics of sand-mining land and nutrients content of sorghum patir 3.7 (Sorghum bicolor (L) Moench)

Arbuscular mycorrhizal fungi and rock phosphate role on plant growth of sorghum (Sorghum bicolor L.) as a forage

The Potential of Local Feed Sources for Silage Production in Supporting The Cattle Raising Business in East Ranotongkor Village

Legumes wafer for improvement the post-weaning etawah crossbreed goats performance

Utilization of cricket meal in creep feed diet of growing etawah cross breed goats

Performance of first cutting of Pennisetum purpureum cv. Mott under different level of light and nitrogen fertilizer

Amino acid characterization of tofu waste fermentation using effective microorganism- and Lactobacillus plantarum culture

In vitro digestibility profiles of cricket meal as protein source in the ration

Production of roughage feed under different drying methods and evaluation of the feeding value

In vitro nutrient digestibility of Chromolaena odorata-based silage treated with Corypha gebanga meal and rumen content

Production, characterization and purification of xylanase from Staphylococcus aureus MBXi-K4

To estimate intestinal truly absorbed protein of alfalfa hay and alfalfa silage using new dutch system (DVE/OEB)

Chitosan protection to saga leaves extract (Abrus precatorius Linn) and Lingzhi mushroom (Ganoderma lucidum) from rumen microbial degradation

Effects of different types of cakes in rations on the performance of culled Cyprus shami does in Half Elgieda, Kassala State, Sudan

Changes in nutrition and fiber silage water hyacinth (Eichornia crassipes) as ruminant feed fermented with several fermentative materials

Effect of Phanerochaete chrysosporium to enzymatic activity and lignin on fermentation process of cocoa pod (Theobroma cacao)

Effect of fish oil and its combination with tomato powder supplementation on laying performance of native chicken

Effect of substitution of meat bone meal with protein concentrate of mealworm (Tenebrio molitor L) on performance of broilers
Legumes Wafer for Improvement The Post-Weaning Etawah Crossbreed Goats Performance

Dianingtyas, B. D\(^1\), Retnani, Y.\(^2\), Evvyernie, D.\(^2\)

\(^1\)M.Sc Student from Indonesia, Postgraduate Program of Nutrition and Feed Science, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
\(^2\)Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia

Corresponding author: yuli.retnani@yahoo.com

Abstract

This research aimed to evaluate the effect of feeding legumes wafer to improve the performance of post weaning Etawah Crossbreed goats. The research was designed using completely randomized block with 4 treatments and 4 blocks of 16 heads post weaning Etawah Crossbreed goats with average body weight 13.10±0.91 kg. The treatments were TO (basal diet = control), T1 (TO + 13.79\% Indigofera zollingeriana wafer), T2 (TO + 15.66\% Leucaena leucocephala wafer) and T3 (TO + 14.12\% Calliandra calothyrsus wafer). The post weaning Etawah Crossbreed goats performances observed dry matter and organic matter intake, average daily gain (ADG), feed efficiency (FE), income over feed cost (IOFC). The result showed that the performance of the goats especially ADG, FE, and IOFC significantly increased (P < 0.05) by supplementation of legumes wafer. The best performance of the goat was achieved by supplementation of Leucaena leucocephala wafer (18.36\% dry matter intake, 29.20\% organic matter intake, 66.18\% ADG, 41.63\% FE, 19.09\% IOFC). As conclusion, all of legumes wafer have a potency to improve the post-weaning Etawah Crossbreed goats performance, and the Leucaena leucocephala wafer is the best wafer.

Keywords: post-weaning Etawah Crossbreed goats, performance, wafer supplement of legumes.

Introduction

Milk consumption is still low in Indonesia society which is around 11.09 litres per capita per year compared to some countries in ASEAN (Association of South East Asian Nations) are around 20 litres per capita per year (Kemenperin, 2014). The biggest contributor of national milk consumption is derived from dairy cattle. Whereas in addition to the supplied from dairy cattle, small ruminants such as dairy goats can also contribute to the fulfillment of the needs of the milk consumption of Indonesia society. One of the dairy goats as potential to produces milk is Etawah Crossbreed goat.

The growing phase of post weaning goat is the initial phase to determine the success rate of productivity of a goat, either as a candidate for dairy goat or breeding (Mathius et al., 2002). Mellado et al. (2011) showed that this growth period is very influential on the productivity of the dairy goats that is the level of production of milk produced at the same time profit for breeders. So it takes an effort to increase the growing phase of post weaning goat, one of them, namely through the quality improvement of the feed. The use of an additional source of protein as legume for livestock can be used as one of the efforts to improve the
quality of feed. Legume which can be utilized as an alternative forage feed include *Indigofera zollingeriana*, *Leucaena leucocephala* and *Calliandra calothyrsus*.

Forage as feed ruminants have a weakness that its availability depending on the season, easily foul, and voluminous. So the necessary processing technology forage that can be applied throughout the year with the manufacture of wafers. Wafer feed is one of the results of feed preservation technology to make it more durable during storage, easy to store, distributed, and easy to given to the animal. The research objective was to evaluate the effect of feeding legumes wafers to improve the performance of post weaning Etawah Crossbreed goats.

Methodology

Sixteen (16) post-weaning Etawah Crossbreed goats aged about 4 months with average body weight around 13.10±0.91 kg were maintained in individual cages shaped stage equipped. The experimental design used in this study was completely randomized block design with 4 treatments and 4 blocks as replications. The treatments were: T0 (basal diet = control), T1 (T0 + 13.79% *Indigofera zollingeriana* wafer), T2 (T0 + 15.66% *Leucaena leucocephala* wafer) and T3 (T0 + 14.12% *Calliandra calothyrsus* wafer). Parameters measured were dry matter and organic matter intake, average daily gain (ADG), feed efficiency, and income over feed cost (IOFC). The data were analyzed using an ANOVA and the differences among treatments were examined with Duncan test.

Result and Discussion

Performance of post-weaning Etawah Crossbreed goats were presented in Table 1. It is shown that dry matter intake of post-weaning Etawah Crossbreed goats in this research was almost similar among the treatments, with average 661.40 – 792.77 g/head/d. According to Suparjo et al. (2011) the range of dry matter intake is around 434 – 560 g/head/day and 556 – 603 g/head/d (Lee et al., 2014). The dry matter intake affect the supply of nutrients for maintenance and growth of animal. The nutrient intake depends on the amount of dry matter intake and nutrient content are given to the animal. The dry matter intake was influenced by the difference of nutrient energy and protein (Negesse et al., 2001), physiological condition of livestock, sex, and feed.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
<th>Sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0</td>
<td>T1</td>
</tr>
<tr>
<td>Intake (g/head/d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>661.40±57.95</td>
<td>770.72±36.62</td>
</tr>
<tr>
<td>Organic matter</td>
<td>92.64±8.15a</td>
<td>119.94±5.05b</td>
</tr>
<tr>
<td>Average daily gain (g/d)</td>
<td>46.99±16.62a</td>
<td>72.87±5.73b</td>
</tr>
<tr>
<td>Feed efficiency</td>
<td>6.99±1.82a</td>
<td>9.43±0.76ab</td>
</tr>
<tr>
<td>IOFC (Rp/head/d)</td>
<td>18288±2695a</td>
<td>20945±1173ab</td>
</tr>
</tbody>
</table>

Ns: Non significant, ** = significant (α 0.95)

The addition of legumes wafers either *Indigofera zollingeriana* wafer, *Leucaena leucocephala* wafer, and *Calliandra calothyrsus* wafer on post-weaning Etawah Crossbreed goats showed increasing average daily gain 32.62% to 66.18% higher than control. This is due to feed intake in post-weaning Etawah Crossbreed goats given wafer supplement of legumes are higher than without any given wafer supplement of legumes. Body weight gain was influenced by several factors, i.e. the total consumption of protein, sex, age, genetic, environmental, physiological condition of livestock and management (NRC, 1985).
The post-weaning Etawah Crossbreed goats are given legumes wafer have feed efficiency, higher than control. The higher value of feed efficiency indicated that more efficient feed is used to increase the daily body weight gain. *Leucaena leucocephala* wafer is the best in feed efficiency because the post-weaning Etawah Crossbreed goats given *Leucaena leucocephala* wafer have the highest ADG with the lowest organic matter intake. Feed efficiency was influenced by feed intake and average daily gain.

Income over feed cost (IOFC) is an advantage gained by breeders by analyzing income after deducting the cost of feed used during this research. The post-weaning Etawah Crossbreed goats given *Leucaena leucocephala* wafer have the highest ADG with the lowest organic matter intake.

Feed efficiency was influenced by feed intake and average daily gain.

Conclusion

The conclusion of this research is all of legumes wafer have a potency to improve the post-weaning Etawah Crossbreed goats performance, and the *Leucaena leucocephala* wafer is the best wafer.

Acknowledgements

The authors would like to thank the Agency Manager Education Fund, Ministry of Finance, Republic of Indonesia, for the financial support through the the scholarship of thesis with contract No PRJ-627/LPDP.3/2016.

References

