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HIGHLIGHTS

» We investigate the biodiesel production directly from jatropha seeds.

» We examine influences of reaction conditions on biodiesel yield and its quality.

» Increasing methanol to seed ratio and alkali concentration will increase yield and quality.
» Increasing reaction temperature will increase yield.

» Temperature, time and stirring speed effects on biodiesel quality were less important.
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The objective of this study was to investigate solvent extraction and in situ transesterification in a single
step to allow direct production of biodiesel from jatropha sceds. Experiments were conducted using
milled jatropha seeds, and n-hexane as extracting solvent. The influence of methanol to seed ratio
(2:1-6:1), amount of alkali (KOH) catalyst (0.05-0.1 mol/L in methanol), stirring speed (700-900 rpm),
temperature (40-60°C) and reaction time (3-5 h) was examined to define optimum biodiesel yield
and biodiesel quality after water washing and drying. When stirring speed, temperature and reaction
time were fixed at 700 rpm, 60°C and 4 h respectively, highest biodiesel yield (80% with a fatty acid
methyl ester purity of 99.9%) and optimum biodiesel quality were obtained with a methanol to seed ratio
of 6:1 and 0.075 mol/L KOH in methanol. Subsequently, the influence of stirring speed, temperature and
reaction time on biodiesel yield and biodiesel quality was studied, by applying the randomized factorial
experimental design with ANOVA (F-test at p = 0.05), and using the optimum values previously found for
methanol to seed ratio and KOH catalyst level. Most experimental runs conducted at 50 °C resulted to
high biodiesel yields, while stirring speed and reaction time did not give significantly effect. The highest
biodiesel yield (87% with a fatty acid methy! ester purity of 99.7%) was obtained with a methanol to seed
ratio of 6:1, KOH catalyst of 0.075 mol/L in methanol, a stirring speed of 800 rpm, a temperature of 50 °C,
and a reaction time of 5 h. The effects of stirring speed, temperature and reaction time on biodiesel qual-
ity were not significant. Most of the biodiesel quality obtained in this study conformed to the Indonesian
Biodiesel Standard.

Keywords:

Biodiesel

Jatropha seed

In situ transesterification
Solvent extraction
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1. Introduction

Jatropha curcas is a drought-resistant shrub or tree belonging to
the family Euphorbiaceae, which is cultivated in Central and South
America, South-East Asia, India and Africa [1]. It is a plant with
many attributes, multiple uses and considerable potential [2-4].
In Indonesia, the land area for jatropha plantation is increasing be-

* Corresponding author. Tel.: +62 251 8621974; fax: +62 251 8625088.
E-mail address: ikatk@yahoo.com (1. Amalia Kartika).

0016-2361/8 - see front matter @ 2013 Elsevier Ltd. All rights reserved.
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cause this plant can be used to reclaim land, prevent and/or control
erosion, plus it provides a new agricultural development mode
with no competition between food and non-food uses.

The seed is the part of the jatropha plant with the highest po-
tential for utilization. It contains between 40% and 60% oil, and be-
tween 20% and 30% proteins. The jatropha seed is generally toxic to
humans and animals, with phorbol ester and curcin identified as
the main toxic agents [1,5].

J. curcas oil is regarded as a potential alternative to diesel fuel,
and vegetable oils have numerous advantages in this respect
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because they are safe to store and handle because of their high
flash points. The fact that jatropha oil cannot be used for nutri-
tional purposes without detoxification makes its use as an energy
source for fuel production, very attractive [6,7].

In Indonesia, the availability of biofuel as a substitute for fossil
fuel is urgently needed because national oil production has been
falling over the past 5 years due to the natural decline of cil wells.
The use of bicdiesel from jatropha oil is a promising alternative be-
cause it is renewable, and environmentally friendly, and it can also
be produced locally. Cultivating jatropha plants on land where no
other crops can grow, and using its oil as an alternative energy
source does not, at least in theory, reduce the availability of edible
oils in the country.

Conventional industrial technology for the synthesis of biodie-
sel from vegetable oils involves isolation of the oil from the seed,
refining, and then transesterification. Industrial oil extraction from
oilseeds is usually done by mechanical pressing with a hydraulic or
single expeller press, followed by solvent extraction. The combina-
tion of these operations produces oil extraction yields up to 98% in
the case of sunflower, with residual oil content in cake meal be-
tween 0.5% and 1.5% [8]. The solvent extraction most commonly
used today is by percolation with a countercurrent flow using hex-
ane as extracting solvent [9-13]. Currently, twin-screw extrusion
has been successfully carried out to extract oil from oilseeds [14-
19], and to conduct mechanical pressing and solvent extraction
of sunflower oil in a single step [20]. Highest oil extraction yield
(98%) with best cake meal quality (residual oil content lower than
3%) was obtained using a screw rotation speed of 185 rpm, feed
rate of 30 kg/h, and solvent-to-solid ratio of 0.55. Industrial oil
refining normally includes many separate steps including degum-
ming, neutralization, bleaching and deodorisation. These processes
consume large amounts of energy, water and chemicals with much
loss of neutral oil, and the production of large amounts of un-
wanted by-products [21].

The preparation of biodiesel from various vegetable oils using
alkaline transesterification of triglycerides with monghydric alco-
hol has been studied for several decades, and a large part of indus-
trial production has been achieved using this method [22,23],
although it requires extra-steps during the extraction and refining
processes. As the cost of vegetable oil production accounts for
approximately 70% of biodiesel production costs [24-26], there is
a need for the development of a new bicdiesel production process
that is simple, compact, efficient, low-cost, and that consumes less
energy.

Recently, the preparation of bicdiesel using in situ transesterifi-
cation has been successfully carried out with various oilseeds [24-
32). In situ transesterification is a biodiesel production method
that uses the original agricultural products as the source of triglyc-
erides, instead of purified oil, with direct transesterification, and
works with virtually any lipid-bearing material. It reduces the
time-consuming pre-extracted oil production system, and maxi-
mizes ester yield.

The conversion of jatropha seed to fatty acid methyl esters
(FAME) by acid-catalyzed in situ transesterification has been suc-
cessfully carried out [31]. Using seed size less than 0.355 mm
and n-hexane as co-solvent under reaction conditions of 60 °C tem-
perature, for 24 h, 7.5 mL/g methanol to seed ratio, and 15 wt.% of
H,S0,, the FAME yield reached 99.8%. However, the conversion of
jatropha oil to FAME by in situ alkaline transesterification has
never been reported. Thus, a systematic study should be conducted
to investigate and identify optimal reaction conditions for single
step in situ alkaline transesterification combined with solvent
extraction of jatropha oil.

The objective of this study was thus to investigate solvent
extraction and in situ transesterification in a single step to produce
biodiesel directly from jatropha seeds. The influence of methanol

to seed ratio, amount of alkali (KOH) catalyst, stirring speed, tem-
perature and reaction time was examined to identify the optimal
reaction conditions and define best performance of biodiesel yield
and quality.

2. Materials and methods
2.1. Materials

All trials were carried out using jatropha seeds (IP2 Lampung
variety) supplied by the Indonesian Spices and Industrial Crops Re-
search Institute (Sukabumi, Indonesia), and shells were removed
manually before the study. Seed moisture content at storage was
6.2+ 0.5% (standard NF V 03-909) [33]. Methanol (>98% purity)
and n-hexane (>98% purity) were supplied by BRATACO Chemical
Ltd. (Indonesia), and all analysis solvents and chemicals were pure
analytical grades obtained from Sigma-Aldrich, Fluka and J.T. Ba-
ker (Indonesia and France).

2.2, Experimental

For all trials, moisture content determined by weight loss
according to standard NF V 03-809 [33] and mesh size of jatropha
seeds were less than 1% and 35, respectively. To obtain a moisture
content of less than 1%, jatropha seeds were dried at 70-90 °C for
24-48 h, and then milled using an electric grinder fitted with a
mesh size of 35.

The effect of methanol! to seed ratio and amount of KOH on bio-
diesel yield and biodiesel quality was studied first. 100 g of milled
jatropha seeds were mixed with methanol in which KOH had been
dissolved. The methanol to seed ratio (v/w, expressed in mL/g) and
the amount of KOH in methanol were 2:1-6:1 and 0.05-0.1 mol/L,
respectively. The amount of KOH used in this study was based on
literature values [30]. 100 mL of n-hexane (seed to n-hexane ratio
(w/v) of 1:1) was then added to increase oil miscibility in the mix-
ture, accelerate the reaction and complete it in a single phase. The
reaction was carried out in a three-necked 2000 mL round bottom
flask equipped with a reflux system, a magnetic stirrer and a hea-
ter, under reaction conditions of 700 rpm stirring speed, 60 °C tem-
perature and 4 h reaction duration.

At the end of the reaction period, the mixture was cooled to
room temperature, and vacuum filtered to separate the filtrate
from the cake. The filtrate was then evaporated using a rotary
evaporator to recover methanol and n-hexane, and allowed to set-
tle and separate into twao layers. The lower layer was dark brown in
color and contained glycerol, while the upper layer (crude biodie-
sel) was yellow in color and contained the fatty acid methyl esters,
the unreacted glycerides (triglycerides, diglycerides and monogly-
cerides), and other impurities. Methanol and n-hexane may extract
materials other than triglycerides, such as fatty acids and phospho-
lipids. The crude biodiesel was then washed with water until neu-
trality, and dried at 105 °C for 1 h. The fatty acid methyl ester,
triglyceride, diglyceride, monoglyceride and fatty acid contents in
crude biodiesel after washing and drying were then determined
by gas chromatography. The mass of crude bicdiesel after washing
and drying was measured, and the biodiesel yield was calculated
from the equation:

Mass of crude biodiesel after washing and drying (g)
Mass of triglycerides in jatropha seeds (g)

x 100

Biodiesel yield (%) =

with Mass of triglycerides in jatropha seeds (g)= Mass of oil con-
tained in jatropha seeds (g) x Glyceride fraction content in jatropha
oil (%) x Triglyceride content in glyceride fraction (%). The bicdiesel
yield is calculated on the basis of a pure bicdiesel (i.e. containing
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only fatty acid methyl esters). Taking into account the fact that
components contained in the crude biodiesel are not only fatty acid
methyl esters, such formula may lead to a potential source of error.

Each experiment was conducted twice to give an average bio-
diesel yield with corresponding standard deviation. After the fil-
trate separation, the cake was not washed with methanol to take
out the esters, meaning that it still contained a part of the fatty acid
methyl esters produced during the in situ transesterification. It was
directly dried overnight at room temperature, and the total volatile
matter content and the n-hexane extracted matter content (i.e.
weight loss upon n-hexane extraction) were then determined
according to standards [33,34], respectively. All determinations
were carried out in duplicate.

The effect of three other operating conditions (stirring speed,
temperature and reaction time) on biodiesel yield and biodiesel
quality was studied in the second stage. The corresponding exper-
iments were conducted using a methanol to seed ratio of 6:1 (v/w)
and 0.075 mol/L KOH in methanol. The stirring speed, the temper-
ature and the reaction time were 700-900 rpm, 40-60 °C and 3-
5 h, respectively. Sample collection and analyses were performed
using the same procedure as for effect of methanol to seed ratio
and amount of KOH on biodiesel yield and biodiesel quality. Each
experiment was duplicated, and bicdiesel yield was taken as the
average with corresponding standard deviation. The randomized
factorial experimental design with ANOVA (F-test at p=0.05)
was used to study the effects of stirring speed, temperature and
reaction time on bicdiesel yield and biodiesel quality using SAS
software.

2.3. Analytical methods

Seed oil content was determined according to standard NF V 03-
908 [34]. Ground seed was placed into an extraction thimble, and
the oil was extracted using Soxhlet extraction apparatus with
n-hexane for 6 h. The solvent was then evaporated using rotary
vacuum evaporator, and the remaining oil was weighed. Seed oil
content was expressed as percent by mass of the dry matter.

The fatty acid composition of oil extracted from jatropha seed
was determined by gas chromatography (GC) using the following
FAME method. The sample analyzed (i.e. the oil extracted from
jatropha seed using the Soxhlet extraction apparatus and n-hexane
as extracting solvent) was diluted in tert-butyl methyl ether
(TBME) (concentration of around 20 mg/mL). A 100 pL aliquot of
the prepared sample was then converted to methyl esters using
50 uL of 0.5 mol/L trimethylsulphonium hydroxide (TMSH) in
methanol. The GC (VARIAN 3800) was equipped with a flame ion-
ization detector using helium as carrier gas (1.2 mL/min). The sam-
ple injected (i.e. methyl esters) was separated in a CP Select CB
(VARIAN) column (50 m x 0.25 mm). GC oven temperature was
programmed at 185 °C for 40 min, then increased at a rate of
15°Cmin~' to 250°C, and then maintained at 250°C for
11.68 min. Injector temperature was programmed at 250 °C for
55 min, and detector temperature set at 250 °C.

The glyceride fraction content in jatropha oil and its composi-
tion (i.e. distribution between triglycerides, diglycerides, monogly-
cerides, and free fatty acids) was also determined by GC using the
following method. 1.5 mg of the sample analyzed (i.e. the oil ex-
tracted from jatropha seed using the Soxhlet extraction apparatus
and n-hexane as extracting solvent) was diluted in 1 mL of
chloroform. 20 pL of silylation reagent (a mixture of 1 mL of N-
methyl-N-trimethylsilyl-heptafluorobutyramide (MSHFBA) and
50 pL of 1-methyl imidazole) was added to a 180 pL aliquot of
the prepared sample, and then heated at 103 °C for 3 min. The
GC (Perkin Elmer) was equipped with a flame ionization detector
using helium as carrier gas, and the injected sample was separated
in a CP Sil 8CB (VARIAN) column (15 m x 0.32 mm). GC oven tem-

perature was programmed from 55°C to 360°C at a rate of
45 °C min™" to 80 °C, followed by 10 °C min~', and was then main-
tained at 360 °C for 16 min. Injector temperature was programmed
from 55 °C to 340 °C at a rate of 200 °C min~! and then maintained
at 340 °C for 40 min, and detector temperature was set at 365 °C.
Heptadecane was used as the internal standard. The peaks corre-
sponding to the different glycerides and free fatty acids were iden-
tified by comparing the retention times of each detected
component in the sample with the ones of pure glyceride and fatty
acid standard compounds. To quantify each compound family (tri-
glycerides, diglycerides, monoglycerides and free fatty acids) in the
sample, a stock solution of triolein, diolein, monoolein and oleic
acid added in the same proportions was prepared and then diluted
to different concentrations. Stock solution and diluted solutions
were used to obtain standard curves relating each peak area to
the actual amounts of triolein, diolein, olein and oleic acid. For each
of the four families above mentioned, the compound mass in the
sample was obtained first by summing the peak areas from all
same-family compounds, and then by relating area sums to stan-
dard curves. In each family, response factor of all the compounds
was considered to be the same as the one of the corresponding
oleic compound. The ratio between the sum of masses for triglyc-
erides, diglycerides, monoglycerides and free fatty acids and the
test sample mass was used to determine the glyceride fraction con-
tent in jatropha oil. The glyceride distribution between the four
compound types was also calculated.

Once the biodiesel produced, its quality was analyzed. It in-
cludes the following parameters: (i) its acid value, expressed in
mg of KOH/g of sample (standard NF T 60-204) [35], which is an
indication of the free fatty acid content of the sample, (ii) its sapon-
ification value, expressed in mg of KOH/g of sample (standard NI
01-3555-1998) [36], which is the amount of alkali necessary to
saponify a certain quantity of the sample, (iii) its iodine value, ex-
pressed as the number of centigrams of iodine absorbed per gram
of sample (standard AOCS-Cd 1d-92) [37], which is a measurement
of the unsaturations of the sample, and (iv) its viscosity, estimated
using the AOAC 974:07 method [38] with an Ostwald viscometer,
measured at 40 °C.

In addition, the biodiesel fatty acid methyl ester content was
determined by gas chromatography using the method described
as follows. The sample was diluted in cyclohexane (concentration
of around 8 mg/mL). The GC (Perkin Elmer Autosystem XL) was
equipped with a flame ionization detector using helium as carrier
gas, and the injected sample was separated in a VF-5 ms (VARIAN)
column (15 m x 0.32 mm). GC oven temperature was programmed
from 55 °C to 360 °C at a rate of 45 °C min~" to 80 °C, followed by
10 °C min~', and was then maintained at 360 °C for 15 min. Injec-
tor temperature was programmed from 55 °C to 340 °C at a rate of
200 °C min~! and then maintained at 340 °C for 35 min, and detec-
tor temperature was set at 365 °C. Methyl heptadecanoate was
used as the internal standard. The peaks of different methyl esters
were identified by comparing the retention time of each compo-
nent in the sample with the peaks of pure methyl ester standard
compounds.

The biodiesel produced under the optimal reaction conditions
was completely characterized in accordance with Indonesian Bio-
diesel Standard [39]. All determinaticns were carried out in
duplicate.

3. Results and discussion

In transesterification reactions with alkaline catalysts, the pres-
ence of water can cause ester saponification. Thus jatropha seeds
with less than 1% moisture content were used in all experiments.
Moreover, results from previous studies showed that this seed
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moisture content affected biodiesel yield [24,30,40), and that the
latter increased as moisture content of jatropha seed was de-
creased [40]. In addition, this decrease in seed moisture content in-
creased the amount of oil dissolved in methanol [30].

The oil content of the jatropha seed used in this study was
39.4 +1.5% relative to its dry matter content (standard NF V 03-
908), and this agrees with the 22-48% results reported by some
researchers [4,41]. The fatty acid composition of jatropha oil (FAME
method) was palmitic (14.7 £ 0.2%), palmitoleic (0.9 + 0.0%), stearic
(7.4 £0.3%), oleic (39.4£0.8%), linoleic (36.5+0.9%), linolenic
(0.7 £0.0%), arachidic (0.2 £ 0.0%), and gadoleic (0.2 + 0.0%). Thus,
the oil in this study was rich in oleic and linoleic fatty acids, like
other jatropha oils described in the literature [1-5,41,42]. Its glyc-
eride fraction content, i.e. the content of triglycerides, diglycerides,
monoglycerides and free fatty acids in the oil, was 99.0 + 0.5%,
meaning that the unsaponifiable compounds such as sterols and
tocopherols were minor compounds. It was composed of triglycer-
ides (95.8 +0.2%), diglycerides (2.6+0.1%) and monoglycerides
(0.3 £0.0%), and it contained 1.4 £ 0.1% of free fatty acids. These
are carboxylic acids released from triglycerides via lipase or oxida-
tion. There is a high risk of oxidation of the jatropha oil inside the
seed due to its high unsaturated fatty acid content, especially oleic
and linoleic, and those containing one or more of the non-conju-
gated pentadiene system (—CH=CH—CH,—CH=CH—) are espe-
cially sensitive [43]. In alkaline transesterification, the free fatty
acids quickly react with the catalyst to produce soaps that are dif-
ficult to separate, and this may reduce the quantity of catalyst
available for transesterification, lowering the ester production
yield. Soaps produced could cause an increase in viscosity, and
the appearance of gels, and also make the separation of glycerol
difficult [30]. Low free fatty acid content in the oil (less than 3%)
is therefore required for alkali-catalyzed transesterification [44].
An attractive way to control free fatty acids in the seed is by con-
trolling its water activity (a,,) to a level that disables any undesir-
able reactions or enzyme activities. This means understanding seed
characteristics and behavior in response to changes in environ-
mental conditions, particularly relative humidity, which has been
successfully applied to jatropha seed [45]. Thus, control of free
fatty acids in the seed, can be achieved by proper handling and
storage before oil extraction and in situ transesterification.

Simultaneous solvent extraction and in situ transesterification
on biodiesel processing of jatropha seeds had a positive effect on
both biodiesel yield and biodiesel quality. The main advantage of
this combined process is that it allows solvent extraction to be ap-
plied to oilseeds and then in situ transesterification of the ex-
tracted oils. Methanol was not a very effective solvent for oil
extraction due to its immiscibility. However, the addition of a co-
solvent such as n-hexane into the reaction mixture can signifi-
cantly improve mass transfer of oil into alcohol (methanol or eth-
anol) and also intensify the transesterification reaction between oil
and alcohol [31,32,46,47]. n-Hexane is an efficient solvent for oil
extraction from oilseeds and, in the case of jatropha seed, its
non-polarity can also limit the removal of free fatty acids and
water from the seed [47]. In this study, the ratio of n-hexane added
to seed was 1:1 (volume/weight, expressed in mL/g) for all
experiments.

As previously observed by some researchers [25,29,30,47], Fig. |
shows that the methanol to seed ratio and the amount of alkali
(KOH) catalyst affected the biodiesel yield. For the three levels of
KOH tested, a systematic increase in biodiesel yield was observed
when the methanol to seed ratio increased from 2:1 to 6:1. In addi-
tion, for a methanol to seed ratio of 2:1, the biodiesel yield re-
mained relatively stable (between 35% and 38%), meaning that it
did not depend on the amount of KOH in the methanol. Conversely,
increasing the amount of KOH from 0.05 to 0.075 mol/L in metha-
nol significantly increased the biodiesel yield when the methanol
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Fig. 1. Influence of methanol to seed ratio and amount of alkali (KOH) catalyst on
biodiesel yield (700 rpm stirring speed, 60 °C temperature, and 4 h reaction time).

to seed ratio was at least 4:1. Thus, a methanol to seed ratio of only
2:1 was not sufficient for complete transesterification of the tri-
glycerides released from jatropha seed. However, when the
amount of KOH exceeded 0.075 mol/L in methanol, it had less ef-
fect on the biodiesel yield, with only a slight increase when the
methanol to seed ratio was 4:1 (from 62% to 68%). For a methanol
to seed ratio of 6:1, increasing the amount of KOH from 0.075 to
0.1 mol/L in methanol even caused a drop in yield (from 80% to
74%). Thus, 0.075 mol/L KOH in methanol is the optimal concentra-
tion of alkali catalyst. Excess catalyst gave rise to formation of an
emulsion that increased the viscosity and led to the formation of
a gel, lowering the ester production yield [48].

For the reaction conditions investigated (2:1-6:1 methanol to
seed ratio, and 0.05-0.1 mol/L KOH in methanol), the best biodiesel
yield (80% with a fatty acid methyl ester purity of 99.9%) was
therefore obtained with a methanol to seed ratio of 6:1 (expressed
in mL/g) and 0.075 mol/L KOH in methanol. For comparison, the
optimal molar ratio for conventional alkaline transesterification
of different oils is of the order of 6:1 (expressed in mol/mol) at
60°C [4,22,23,42,48,49]. Thus, the in situ transesterification of
jatropha oil from seed used about 17 times more methanol (lipid
to methanol ratio of 1:104, expressed in mol/mol) than the conven-
tional method (1:6). However, the excess reagents could be recov-
ered for reuse.

Compared with acid-catalyzed in situ transesterification of
jatropha oil from seed (over 12h reaction time and 15 wt.%
H,504) [31], the alkali-catalyzed process is faster and uses less re-
agents (4 h reaction time and 6.4 wt.% KKOH). For 4 h reaction time,
the yield obtained from acid-catalyzed in situ transesterification of
Jjatropha oil from seed was only 40% |31] instead of 80% with the
alkali-catalysed process described in this study. The greater yield
with alkaline catalysis is consistent with its greater effectiveness
in transesterification of triglycerides, and may also indicate better
access of the transesterification reagent to the oil component of
the seed, under alkaline conditions [25]. As observed in previous
studies [25,30], alkaline alcohol could destroy intracellular com-
partments in oilseeds, allowing solubilisation and subsequent
transesterification of triglycerides. In the present study, maximum
ester yield (80% with a fatty acid methyl ester purity of 99.9%) was
achieved with a reaction time of 4 h and 6.4 wt.% KOH (compared
to the oil contained in the jatropha seed) or 0.075 mol/L in metha-
nol. For comparison, the amount of catalyst (KOH) required for the
conventional alkaline transesterification of different vegetable oils
is 1% (based on oil weight) [48]. Thus, the in situ transesterification
of jatropha oil from seed used about 6.4 times more KOH than the
conventional method.

The biodiesel produced by in situ transesterification of jatropha
oil from seed was of excellent quality using a methanol to seed ra-
tio of 6:1 (Table 1). And, for this ratio, an increase in the amount of



Table 1

1. Amalia Kartika et al./Fuel 106 (2013) 111-117

115

Crude biodiesel quality at different methanol to seed ratios and amounts of alkali (KOH) catalyst (700 rpm stirring speed, 60 °C temperature, and 4 h reaction time).

Methanol to seed  Amount of KOH (mol/L  Acid value (mg Saponification value Viscgsit)zr at40°C  Composition (wt.X)

ratio (vfw) in methanol) KOH/g) (mg KOH/g) (107° m?/s) FAME MAG DAG TAG FA

2:1 0.05 1.48 £0.00 2124 24.1+00 30+01 0200 4101 917201 1.0x0.1
2:1 0.075 1.4810.00 1951 21935 35215 01+00 29:+02 919:16 16x03
2:1 0.1 0.81+0.00 193¢1 219:1.38 83:08 01100 2501 883110 0800
41 0.05 0.27 £ 0.00 2074 21.5%1.2 106%10 03:01 29101 854:10 08:00
4:1 0.075 0.27 £0.00 2151 8.1£09 56.2+35 02101 20100 40971 0.7x0.1
4:1 01 0.27 £0.00 209+0 3.7+00 91.2+08 01100 0301 81+13 0301
6:1 0.05 0.27 £0.00 215£2 3500 99.6+01 0100 0000 0000 03:0.1
6:1 0.075 0.27 +0.00 2121 34101 999+01 0000 0000 0000 0.1:00
6:1 0.1 0.27 £0.00 1931 35101 997105 00x00 0000 00:00 02101

FAME, fatty acid methyl esters; MAG, monoglycerides; DAG, diglycerides; TAG, triglycerides; FA, free fatty acids.

Table 2

Effect of operating conditions on process performance and crude biodiese] quality (6:1 metharnol to seed ratio and 0.075 mol{L KOH in methanol).

Stirring Temperature  Reaction Crude Acid value Saponification Viscr;sity2 at 40°C  Cake meal
speed (rpm) (°C) time (h) {‘::[It; \ (mg KOH/g) value (mg KOH/g) (107° m¥[s) Total volatile n-Hexane extracted
- matter content (¥)  matter content (%)

700 40 3 811 049+0.10 198+2 36100 102+0.6 1461238
800 40 3 82+3 042+0.10 19016 35+00 9.8+09 13.5+0.5
800 40 3 83:1 049+0.10 201 +1 35+00 113111 148+ 05
700 50 3 831%1 035+0.10 1975 35+00 10.7+0.3 13.0£0.7
800 50 3 81+0 0.28 £0.00 2000 3500 11.3+0.7 ‘11914
S00 50 3 8212 0421 0.00 2004 35+00 100203 145121
700 60 3 770 035+0.10 205+3 35101 98106 14717
800 60 3 83+3 028 +0.00 199+1 35+00 11.1£0.2 152+30
500 60 3 85+1 028 +0.00 2005 3500 10.1:0.7 143+ 1.7
700 40 4 792 0.28 +0.00 1972 35+00 11.2+18 154103
800 40 4 76+3 0.28 £0.00 2032 35+00 104+0.8 14.0+ 09
S00 40 4 83+2 0.42 £ 0.00 20111 3500 109 0.6 15.0+05
700 50 4 862 042 £ 0.00 194+0 3.5+00 11.8+04 158124
800 50 4 83+0 0.35+0.10 19410 3.5:00 11504 149+ 0.0
800 50 4 84¢1 049+0.10 2025 3500 9.7+14 11.5+£20
700 60 4 76 £1 0.28 £ 0.00 20014 35:00 106 0.7 14.1+£09
800 60 4 85+2 042 +0.00 196+3 35+00 10.7+0.8 14.7£ 0.0
900 60 4 75%3 035+0.10 20010 35101 91102 122+29
700 40 5 84+3 0.42 +0.00 1962 35+00 10.0£03 1561038
800 40 5 83%2 0.42 £0.00 198+3 3500 10.6 £ 0.7 124+£01
800 40 5 84+1 0.28 +0.00 201 +1 35%0.1 119125 13.8+1.2
700 50 5 85+1 0.42 £ 0.00 2002 35100 100+ 04 125+13
800 50 5 8711 035+0.10 1994 35+00 105103 139+18
800 50 5 8510 0.28 £+ 0.00 1981 35+00 94102 128+ 14
700 60 5 80+2 0.28 +£0.00 2061 35100 10.8103 14.9+0.8
800 60 5 76t1 0.28 +0.00 203 +4 35+0.1 102103 13.4+33
S00 60 5 7610 0.28 +0.00 2001 35+0.0 10.5+0.1 13.7+08

KOH (from 0.05 to 0.1 mol/L in methanol) had no significant influ-
ence on the biodiesel quality which remained excellent. The acid
value and the viscosity remained stable at less than 0.3 mg of
KOH/g of biodiesel and less than 3.5 1075 m?fs, respectively.
Saponification value and fatty acid methyl ester purity were high
(more than 190 mg of KOH/g of bicdiesel and more than 99.6%,
respectively). These qualities would favor the use of such biodiesel
as automotive fuel. The quality of the biodiesel obtained in this
study was equivalent to that of one produced using the conven-
tional method, and it conformed to the Indonesian Biodiesel Stan-
dard [39]. Moreover, the biodiesel quality was directly correlated
to its yield. Indeed, best biodiesel quality was achieved with a
methanol to seed ratio of 6:1 (Table 1) that also gave the best bio-
diesel yield (Fig. 1).

The quality of biodiesels produced by in situ transesterification
of jatropha oil from seed with a methanol to seed ratio of less than
6:1 (Table 1) was relatively poor. Acid value and viscosity were
high, whereas fatty acid methyl ester purity was low. Increasing
the methanol to seed ratio and the amount of KOH in methanol im-

proved the biodiesel quality. Acid value and viscosity decreased,
and fatty acid methyl ester purity increased with an increase in
methanol to seed ratio and amount of KOH in methanol. The
saponification value remained stable at over 130 mg of KOH/g of
biodiesel with increasing methanol to seed ratio and amount of
KOH in methanol.

The influence of stirring speed, temperature and reaction time
on biodiesel yield was studied using randomized factorial experi-
mental design with three variables. For this study, methanol to
seed ratio was 6:1, and KOH amount was 0.075 mol/L in methanol.
The results obtained are shown in Table 2 and generally, stirring
speed, temperature and reaction time affected biodiesel yield.
But here, applying ANOVA to actual data (F-test at p = 0.05) shows
that the effect of temperature on bicdiesel yield was more signifi-
cant than the two others. Five of the seven best yields corre-
sponded to experiments conducted at 50°C, with different
stirring speeds (700-900rpm) and different reaction times
(4-5 h). Temperature can influence reaction rate and jatropha oil
conversion, because intrinsic rate constants are largely dependent
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Table 3

Jatropha crude biodiesel quality produced under optimal reaction conditions (6:1 methano! to seed ratio, 0.075 mol/L KOH in methanol, 800 rpm stirring speed, 50 °C

temperature, and 5 h reaction time).

Parameter Unit Jatropha biodiesel Biodiesel standard [39)
Density at 40 °C glem® 0.885 0.850-0.890
Viscosity at 40 °C 10~ m?/s 35 23-6.0

Flash point °C 107 100 min
Pour point °C 0 0 max {60}
Cloud point °C 11 18 max

Acid value mg KOH/g 035 0.8 max
Cetane number - 47 51 min
Water and sediment content wt.% Trace (<0.05) 0.05 max
Sulfated ash content wt.% 0 0.02 max
lodine number g iodine/100 g 107 115 max
HHV M)/kg 40 35 min [60]
Composition: wt.X

Fatty acid methyl esters 99.7 96.5 min [60]
Monoglyceride (MAG) 0.1 0.8 max [60}
Diglyceride (DAG) 1] 0.2 max [60]
Triglyceride (TAG) 0 0.2 max |60]

on temperature [47]. A higher temperature can decrease the
viscosities of oils, can increase the solubility of reactants, and can
result in an increased reaction rate and a shorter reaction time
[23]. In addition, high temperatures favor reactions with higher
activation energy, and low temperatures those with lower activa-
tion energy [50]. However, in this study, results indicated that
when reaction temperature was increased from 50 to 60 °C, biodie-
sel yield mostly decreased (from 86% to 76% with 700 rpm stirring
speed and 4 h reaction time, and from 87% to 76% with 800 rpm
stirring speed and 5 h reaction time, for example). Indeed, with a
reaction temperature close to the boiling points of methanol and
n-hexane, the methanol and n-hexane would partially vaporize
and form some bubbles, which would restrain the reaction. This
phenomencn was already observed during preparation of biodiesel
from J. curcas oil produced by two-phase solvent extraction [47]. A
reaction temperature of 50 °C for in situ transesterification of jatro-
pha oil from seed led to the best biodiesel yields, and the highest
one (87% with a fatty acid methyl ester purity of 99.7%) was ob-
tained with 800 rpm stirring speed, 50 °C temperature, and 5h
reaction time.

Generally, reaction time is an important factor that affects alka-
li-catalyzed in situ transesterification, and triglyceride conversion
increases at longer reaction time [23,25,29,30,47]. Nevertheless,
within the 3-5 h reaction time investigated in this study, increas-
ing this parameter did not systematically increase the biodiesel
yield, as previously reported by Ozgul-Yucel and Turkay [51]. In-
stead, bicdiesel yield remained relatively constant as the reaction
time increased from 3 to 5 h, meaning that the equilibrium compo-
sition had already been achieved by the system after only 3 h. Nor-
mally, bicdiesel yield reaches a maximum as reaction time
increases (e.g. at a value less than 90 min for transesterification
of isolated and refined vegetable oils), and then remains relatively
constant with any further increase [23]. Moreover, a reaction time
that is too long will lead to a reduction in the biodiesel yield, due to
reverse transesterification reactions. A previous study [29] has
shown that the alkali-catalyzed in situ transesterification reaction
from sunflower seeds is extremely fast, requiring only 20 min for
complete conversion.

In transesterification reactions, reactants initially form a two
phase liquid system [S0]. The reaction is diffusion-controlled, and
poor diffusion between the two phases results in a slower rate.
As methyl esters are formed, they act as a co-solvent for the reac-
tants and a single phase system is formed. When the single phase is
established, the mixing effect is insignificant and reaction rate is
primarily influenced by reaction temperature. In this study, stirring
speed did not affect the bicdiesel yield, and this remained rela-

tively constant as the stirring speed increased from 700 to
900 rpm, meaning that the lowest stirring speed of 700 rpm was
sufficient to efficiently mix up the reactants before the establish-
ment of the single phase.

For all the reaction conditions tested, the biodiesel quality was
satisfactory (Table 2). The acid value and the viscosity remained
stable at less than 0.5 mg of KOH/g of biodiesel and less than 3.6
107% m?/s, respectively. The saponification value was high (more
than 190 mg of KOH/g of biodiesel), and these qualities favor its
use as automotive diesel, and conform to the Indonesian Bicdiesel
Standard [39].

ANOVA applied to actual acid and saponification values (F-test
at p=0.05) shows that temperature significantly affected them,
while stirring speed and reaction time had no significant effect.
The same tendency was previously cbserved for biodiesel yield,
meaning that reaction conditions had exactly the same effect on
both biodiesel yield and biodiesel quality.

ANOVA applied to actual viscosity data (F-test at p=0.05)
shows that stirring speed, temperature and reaction time did not
significantly affect viscosity. Biodiesel viscosity remained rela-
tively constant when stirring speed, temperature and reaction time
increased.

The residual oil and fatty acid methyl ester contents in the cake
meal were high (more than 11%, cf. Table 2). Although this quality
was a disadvantage for direct utilization of the cake meal, it can be
converted into usable energy by combustion, gasification or pyro-
lysis [52,53], or transformed into agromaterials [54-59].

The analysis of the bicdiesel produced by solvent extraction and
in situ transesterification of jatropha oil from seed under optimal
reaction conditions (6:1 methanol to seed ratio, 0.075 mol/L KOH
in methanol, 800 rpm stirring speed, 50 °C temperature, and 5 h
reaction time) indicated that the product met the standard specifi-
cation for biodiesel fuel in most regards (Table 3). Even if its cetane
number (47) did not meet the Indonesian Biodiesel Standard spec-
ification (51 min) [39], it met the specification of ASTM D 6751
(47 min) [60].

4. Conclusion

This study showed that a new application for simultaneous sol-
vent extraction and in situ transesterification of jatropha oil from
seeds has been successfully carried out, and was a promising alter-
native technology for biodiesel processing from jatropha seeds.
Biodiesel yield was 87% under the optimal reaction conditions with
a FAME purity of 99.7%. Most of the quality of bicdiesel produced
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from such conditions conformed to the Indonesian Biodiesel Stan-
dard. The process flexibility would allow different oilseeds to be
treated and other co-solvents to be used. Moreover, the process
compactness, its flexibility, and the lack of interdependence be-
tween the oil extraction from oilseeds and the transesterification
of the extracted oil allow seed treatment capacities which are low-
er than those of the conventional method. These lower capacities
could be adapted for treatment of local oilseed production, espe-
cially concerning specific varieties, to increase the added value of
the oilseeds.
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