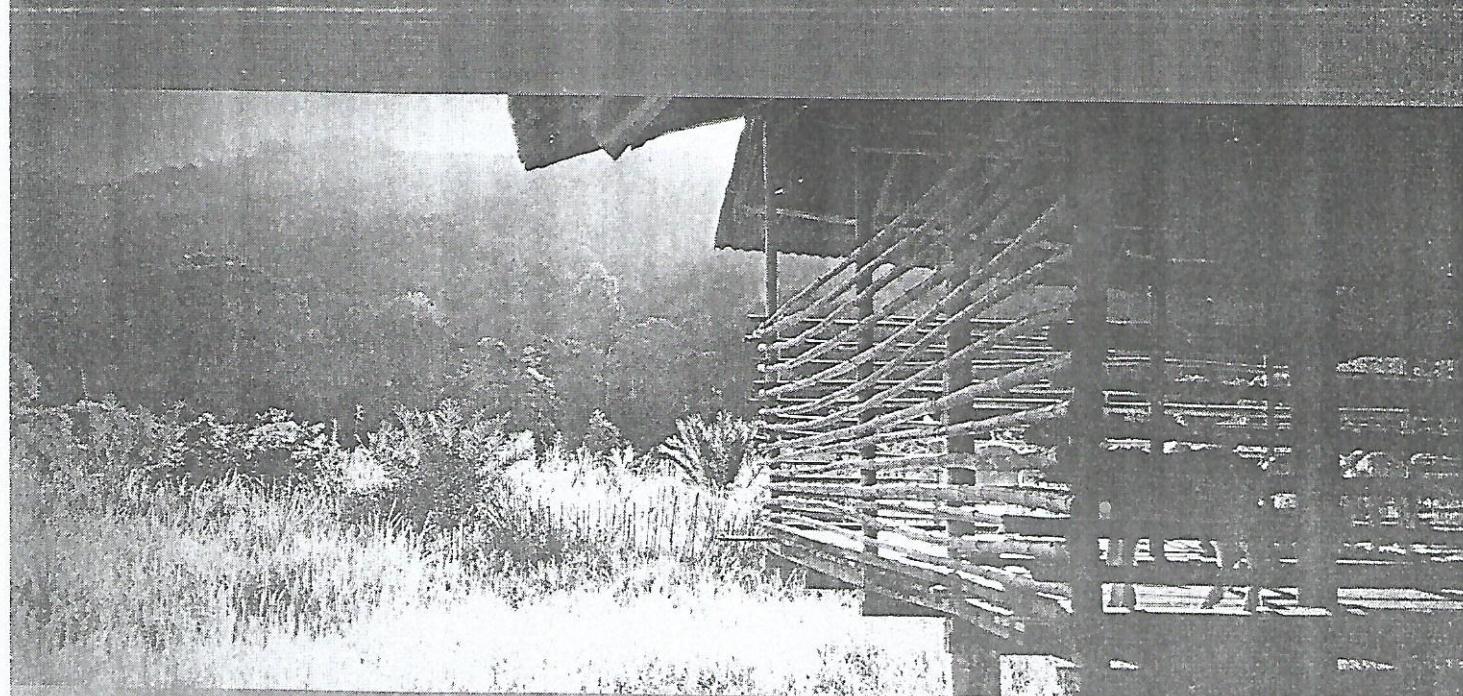


PROCEEDINGS



5th **SAADC 2015**

The 5th International Conference on
Sustainable Animal Agriculture for Developing Countries

**"CLIMATE SMART SUSTAINABLE ANIMAL AGRICULTURE FOR FOOD SECURITY
AND LIVELIHOOD IMPROVEMENT IN THE DEVELOPING COUNTRIES"**

October 27-30, 2015, Dusit Thani Pattaya Hotel, THAILAND

Jointly organized by

Livestock Farming System		
LF-022	Development of farmer champions and their role in progressing smallholder beef production in Vietnam	624
LF-072	The assessment of cattle and palm oil plant integration system in West Sumatera, Indonesia	628
LF-162	Characterization of native pig raisers and their current production systems in the integrated sweet potato –native pig production system in Baliem valley, Jayawijaya regency, Papua province, Indonesia	634
LF-218	Smallholder identified constraints to adoption of new forage options in South Central Coast Vietnam	638
LF-220	Studies on socio-economical profile of the dairy farmers in Latur district of Maharashtra state	645
LF-234	Economic impact of spatial development on goat farming in Banjarnegara district Indonesia	644
LF-349	Pasture management and supplemented feed enhanced the performance of farmed buffaloes in Sabah, Malaysia	649
LF-361	Developing technology and husbandry skills required for efficient animal production in villages in the highlands of Papua Indonesia	654
LF-378	Partnership in broiler farm closed house system (case study at Tuban, East Java, Indonesia)	657
LF-381	Moving families from subsistence animal production to small commercial production using a participatory approach with a multidisciplinary team	660
LF-389	Development of local cattle with sustainable in North Sulawesi	663
LF-393	Analysis of the resource potential of the coconut crop-cattle in the district of East Likupang	667
LF-404	Utilization of cattle waste as compost fertilizer	671
LF-465	The Study of nutritive value of plant for goat in Pattani province of Thailand	674
Livestock Management		
LM-044	Production performance of laying hen housing on litter system with different temperature	677
LM-046	Use of agricultural by-product in pig ration to reduce feed cost in Manokwari Regency, West Papua Province, Indonesia	680
LM-079	Evaluation of goat milk quality to support dairy goat development	683
LM-155	Insight into broiler development in East Java	687
LM-203	Association among fat, protein, lactose and total solid of milk produced by farmers in central part of Thailand	690
LM-215	Conventional and deep - litter pig production system: income over feed cost of three breed cross fattening pigs	693
LM-306	Application of PCR technique to detect <i>Staphylococcus aureus</i> that causes mastitis in dairy cows	696
LM-345	Enhancing goat farm performance thru the farmer livestock school –goat enterprise management modality	699
LM-443	Constraints to improved productivity of smallholder cow-calf systems in South Central Coast Vietnam – insights from recent surveys	703
LM-553	Efforts to increase production of cow's milk through the cooperation empowerment in Sinjai Regency	707
LM-589	Why poultry welfare in Kuwait is an obstacle to trade?	711
Meat Science		
M-045	Nutrition, fatty acid and cholesterol content of Garut lamb meat at different ages fed with diet containing mungbean sprouts waste	715
M-163	Some functional properties of beef liver protein concentrates	718
M-245	Meat quality assessment in goats subjected to conscious halal slaughter and slaughter following minimal anaesthesia	722
M-270	Effects of dietary blend of canola oil and palm oil on fatty acid composition, color and antioxidant profile of <i>biceps femoris</i> muscle in goats	726

PROCEEDINGS
of
The 5th International Conference on
Sustainable Animal Agriculture for Developing Countries
(SAADC 2015)
October 27-30, 2015
Dusit Thani Pattaya Hotel, Thailand

Jointly Organized by:

- Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan
- Institute of Agricultural Technology, Suranaree University of Technology
- Faculty of Technology, Mahasarakham University
- Faculty of Veterinary Medicine, Mahanakorn University of Technology
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University Phetchaburi IT Campus
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
- Faculty of Technology, Udon Thani Rajabhat University
- Tropical Feed Resources Research and Development Center (TROPFREC)
- Department of Livestock Development
Thailand
- The Animal Husbandry Association of Thailand under the Royal Patronage of
H.R.H. Princess Maha Chakri Sirindhorn

CONTENTS

Aquaculture		
A-338	Aquaculture in a protected gulf: The case of Amvrakikos (Greece)	1
A-369	Meat and bone meal as an alternative for fish meal in diets for black carp (<i>Mylopharyngodon piceus</i>)	4
A-524	Growth performance of carrageenan-producing seaweeds of <i>Kappaphycus</i> and <i>Eucheuma</i> in Sumbawa	11
A-531	Advantages of environmentally sound poly-eco-aquaculture in fish farms	15
Animal Biotechnology		
AB-125	Study of humoral immune response using IBD Blen® and Vaxxitek HVT-IBD® vaccines even high maternal derived antibody in broiler chickens	17
AB-169	Fertility status of local PO cattle and its crosses with Limousin and Simmental bull in Situbondo Regency, East Java, Indonesia	20
AB-319	Reliable monoclonal antibodies for immunodiagnosis of fasciolosis in both animal and human	23
AB-342	Vitrification of mouse embryos: comparison of Cryotop and hemi straw closed system methods	26
AB-343	Impact of complete feed silage from sugar cane waste product on Bali beef cattle performance	29
AB-437	Development of a rapid immunochromatography test for detecting antibodies after anthrax vaccination in cattle. A preliminary study	32
AB-481	The effect of <i>Cinnamomum burmannii</i> extract as an immunomodulator on the increase of GR-1 expressing IFN γ and macrophage	36
AB-555	Genetic variation of MHC Class II DRB3 gene in local goat from South Sulawesi Indonesia	39
Animal Genetic/Breeding		
AG-080	The relationship between longevity and reproductive efficiency in Lori-Bakhtiari ewes	43
AG-095	The Interleukin-8 gene polymorphism and its association with milk production traits in Holstein Cows	46
AG-100	Genetic improvement of production performance for Yorkshire	49
AG-104	Genetic parameters and trends for growth and carcass traits of Landrace in Korea	52
AG-105	Effect of sex and carcass weight on pork belly characteristics of Large White	55
AG-107	Influence of sex and carcass weight on pork belly muscle of Large White	58
AG-130	Production and reproduction characteristics of tegal and magelang ducks	61
AG-149	Breeding potency of Bali cattle as indigenous beef cattle breed in Sumbawa Island Indonesia	64
AG-161	Institutional development on conservation of Madura cattle	67
AG-164	Annual trend of genetic improvement for production performance of three swine breeds	70
AG-182	Phenotypic and chromosome band intensity characters of swamp buffalo in very isolated area of East Java, Indonesia	73
AG-211	The study of reproductive efficiency over the lifetime of Lori-Bakhtiari ewes	76
AG-263	Performance testing of Kamphaeng Saen bulls	80
AG-356	Modelling genomic selection strategies to improve genetic gain in swine breeding programs using ZPLAN+	84
AG-431	Effects of different mating methods on hatchability and embryonic mortality of indigenous chicken eggs	87
AG-530	Proximity of genetic cross Boer goat with Local goat to parent based on gene DNA <i>Capra hircus</i> growth hormone (ChGH)	91

Livestock Farming System		
LF-022	Development of farmer champions and their role in progressing smallholder beef production in Vietnam	624
LF-072	The assessment of cattle and palm oil plant integration system in West Sumatera, Indonesia	628
LF-162	Characterization of native pig raisers and their current production systems in the integrated sweet potato –native pig production system in Baliem valley, Jayawijaya regency, Papua province, Indonesia	634
LF-218	Smallholder identified constraints to adoption of new forage options in South Central Coast Vietnam	638
LF-220	Studies on socio-economical profile of the dairy farmers in Latur district of Maharashtra state	645
LF-234	Economic impact of spatial development on goat farming in Banjarnegara district Indonesia	644
LF-349	Pasture management and supplemented feed enhanced the performance of farmed buffaloes in Sabah, Malaysia	649
LF-361	Developing technology and husbandry skills required for efficient animal production in villages in the highlands of Papua Indonesia	654
LF-378	Partnership in broiler farm closed house system (case study at Tuban, East Java, Indonesia)	657
LF-381	Moving families from subsistence animal production to small commercial production using a participatory approach with a multidisciplinary team	660
LF-389	Development of local cattle with sustainable in North Sulawesi	663
LF-393	Analysis of the resource potential of the coconut crop-cattle in the district of East Likupang	667
LF-404	Utilization of cattle waste as compost fertilizer	671
LF-465	The Study of nutritive value of plant for goat in Pattani province of Thailand	674
Livestock Management		
LM-044	Production performance of laying hen housing on litter system with different temperature	677
LM-046	Use of agricultural by-product in pig ration to reduce feed cost in Manokwari Regency, West Papua Province, Indonesia	680
LM-079	Evaluation of goat milk quality to support dairy goat development	683
LM-155	Insight into broiler development in East Java	687
LM-203	Association among fat, protein, lactose and total solid of milk produced by farmers in central part of Thailand	690
LM-213	Conventional and deep - litter pig production system: income over feed cost of three breed cross fattening pigs	693
LM-306	Application of PCR technique to detect <i>Staphylococcus aureus</i> that causes mastitis in dairy cows	696
LM-345	Enhancing goat farm performance thru the farmer livestock school –goat enterprise management modality	699
LM-443	Constraints to improved productivity of smallholder cow-calf systems in South Central Coast Vietnam – insights from recent surveys	703
LM-553	Efforts to increase production of cow's milk through the cooperation empowerment in Sinjai Regency	707
LM-589	Why poultry welfare in Kuwait is an obstacle to trade?	711
Meat Science		
M-045	Nutrition, fatty acid and cholesterol content of Garut lamb meat at different ages fed with diet containing mungbean sprouts waste	715
M-163	Some functional properties of beef liver protein concentrates	718
M-245	Meat quality assessment in goats subjected to conscious halal slaughter and slaughter following minimal anaesthesia	722
M-270	Effects of dietary blend of canola oil and palm oil on fatty acid composition, color and antioxidant profile of <i>biceps femoris</i> muscle in goats	726

Production performance of laying hen housing on litter system with different temperature

Ulupi, N, R. Afnan & T. Setiawati*

Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, 16680, Indonesia

Abstract

High ambient temperature in the cage system during rearing time of laying hens are causing high level of stress and low productivity. So the purpose of this study was to evaluate the response of laying hens with different rearing temperature in the litter system of housing toward the production performance and egg quality. A number of 36 laying hens with 30 weeks old were used. They were placed at 2 pers in small closed house (18°C and 30°C). This study used completely randomized design. Data of production performance was analyzed by t-test, whereas data of egg quality was analyzed descriptively. Performance of production included hens day production, egg weight, egg mass and feed conversion ratio (FCR) of laying hens that reared in 18°C and 30°C were not significant different. The 18°C of rearing temperature produced income over feed cost (IOFC) of Rp 376/chicken/day, and it was only Rp 5 higher than 30°C. All of egg had the same value of Haugh unit (HU), thick and egg shell percentage and there was no broken or cracked egg. At 18°C rearing temperature, there was no dirty egg, but at 30°C there were 16.67% of dirty eggs. It can be concluded that the negative impact of high environmental temperature on the rearing of laying hen toward the production performance and eggs quality (except of dirty eggs) can be overcome by using the litter system of housing.

Keywords : egg quality, income over feed cost, litter system, production performance

**Corresponding author: niken.ulupi@gmail.com*

Introduction

Badan Pusat Statistik (2014), stated that the needs of people of Indonesia to eggs in 2013 was 1,159,549 tons, and it increased by 5.53% from the previous year. To meet this need, laying chicken population in 2013 was amounted to 147.2 million chickens, and it increased by 6.17% from 2012. Therefore the commercial laying hens were one kind of the poultry that very potential in Indonesia.

Environmental factors which have great impact on the productivity of the chicken is the temperature of rearing. The comfortable temperature (thermoneutral zone) for chicken is 20-24°C (Bell and Weaver, 2002). In this temperature range, chicken is not much to produce body heat, so the use of energy becomes more efficient. The temperature change will be responded quickly by chickens.

The environmental temperature in Indonesia, especially during the daytime (30-34°C), is above the range of comfortable temperatures for chicken. This is a major constraint in rearing of laying hens. Moreover, the majority of laying hens in Indonesia were reared in cage system. These fact make the laying hens more stress. At high temperatures, the chicken release the body heat through panting. Respiratory rate of chicken can increase by up to 200 times/min (Cunningham and Klein, 2007). The impact of it is a decrease in body resistance, production and

quality of eggs produced. Even at extreme temperature ($> 34^{\circ}\text{C}$), can lead to death until 31.7% (Mashaly *et al.*, 2004).

Efforts that could be made to suppress the negative effects of high temperature on productivity of laying hens, among others, is the use housing of litter system with control the rearing temperature. Therefore, the purpose of this study was to find out the response of laying hens toward the difference of rearing temperature in the litter system on production performance and quality of eggs produced.

Materials and methods

Animal Experiments and Rearing

The study was conducted in the Poultry Laboratory, Department of IPTP, Faculty of Animal Science, IPB. 36 commercial laying hens from Lohmann strains, 30 weeks old were used. The small closed house that be equipped temperature controller was used in this study. It consists of 2 pens, each measuring $2 \times 2 \text{ m}^2$.

Each of pen was filled with 18 chickens. Temperature in the first pen was set at 18°C , and 30°C in the second pen. The feed and water were placed in the pen. Every pen was equipped with light bulb (75 Watt). The feed was commercial feed that contain 14-17% of crude protein, and 2850 kcal/kg of metabolizable energy. Feed was given 120 g/chicken/day, but the water was given *ad libitum*.

Rearing was carried out for 6 weeks. Every day was done recording of egg production, then they were weighed. Feed were weighed every week for calculate FCR. Every weekend, all of the eggs produced were analyzed their quality (HU, shell thickness, shell weight, shell integrity and level of dirtiness eggshell).

Data analysis

Data were analyzed with t-test using completely randomized design. The temperature of rearing (18°C and 30°C) were as treatment and observation data were as response. Statistical model was used $Y_{ij} = \mu + P_i + \epsilon_{ij}$ (Mattjik and Sumertajaya, 2002). Data on egg quality were analyzed descriptively.

Results and discussion

Performance of Production

Production performance of laying hens that reared in housing of litter system with different temperature were presented in Table 1.

Table 1. Henday production, egg weight, egg mass and feed conversion ratio of laying hens for 6 weeks of rearing at different temperature

Performance of production	18°C	30°C
Henday production (%)	89.20 ± 10.50	86.10 ± 14.00
Egg weight (g/egg)	61.40 ± 3.98	63.38 ± 3.14
Egg mass (kg/6 weeks)	41.43 ± 0.75	41.25 ± 0.74
Feed conversion ratio	2.20 ± 0.16	2.21 ± 0.15
Income over feed cost (Rp/chicken/day)*	376.00	371.00

*) Not analyzed statistically

Production performances (henday production, egg weight, egg mass, and FCR) of laying hens that were reared at temperature of 18°C and 30°C were not statistically different. This is because in this study using the litter system, so the heat stress due to high temperature (30°C) still be overcome. This will be very different if the chickens were reared in individual cages. The chickens will suffer a double stress (from the cage system and high temperature of rearing). This condition significant reduced the performance of laying hens (Yousev, 1985).

These results were consistent with the IOFC value that obtained. Chickens that were reared at 18°C in the litter system, generating value of IOFC Rp 376/chicken/day, and only Rp 5/chicken/day higher than the chickens were reared at high temperature (30°C).

Egg Quality

The quality of eggs produced by chickens that were reared in housing of litter system with different temperature were presented in Table 2.

Table 2. Quality of egg that produced during the 6 weeks at different rearing temperature

Egg quality	18°C	30°C
Haugh Unit	74.20 ± 6.62	73.90 ± 8.30
Thick of eggshell (mm)	0.42 ± 0.04	0.42 ± 0.04
Weight of eggshell (%)	11.25 ± 0.65	11.97 ± 0.80
Shell integrity (%)	100.00 ± 0.00	100.00 ± 0.00
Level of dirtiness eggshell (%)	0.00 ± 0.00	16.67 ± 0.40

Haugh Unit value is reflecting the level of egg white thickness. The higher of the rearing temperature caused the egg whites produced more dilute, and the quality is declining. The chickens that were reared at 18°C, generate eggs with the value of HU slightly higher than at 30°C, but based on the USDA (1964), the quality of them is the same, AA (HU ≥ 72).

All of egg that were produced (at 18°C and 30°C), have ideal eggshell thickness (≥ 0.33 mm). The percentage of eggshell weight that produced were also in the normal range, namely 11% (Stadelman dan Cotterill, 1995).

Although all chickens were reared in litter system, but the egg of cracked or broken was not found. At 18°C was also not found the dirty eggs, but at 30°C was found as much as 16.67%. This is due to the rearing at high temperature (30°C), the metabolic interference was occurs, which in turn produces the excreta that more dilute (Daghir, 2008), and cause the percentage of the dirty eggs increased.

Conclusion

Rearing of laying hens in litter system with different temperatures (18°C and 30°C) resulted in the production performances, value of income over feed cost, and eggs quality were almost the same. At 18°C temperature rearing, was not found the dirty eggs but there was as much as 16.67% at 30°C.

References

Badan Pusat Statistik. 2014. Statistik Indonesia 2004. Jakarta. Indonesia.

Bell, D.D., W.D. Weaver. 2002. *Commercial Chicken Meat and Egg Production*. 5th Ed. New York. USA. Springer Science and Business Media Inc.

Cunningham, J.G., B.G. Klein. 2007. *Textbook of Veterinary Physiology*. 4th Ed. St. Louis Missouri. WB Saunders Company.

Daghir, N.J. 2008. *Poultry Production in Hot Climates*. 2th Ed. CABI Publishing. London, UK.

Mashaly, M.M., G.L. Hendricks, M.A. Kalama, A.E. Gehad, A.O. Abbas, P.H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. *J Poult Sci.* 83: 889-894.

Mattjik, A.A., M. Sumertajaya. 2013. *Rancangan Percobaan dengan Aplikasi SAS dan Minitab*. Jilid 1. IPB Press. Bogor.

Stadelmen, W.J., O.J. Cotterill. 1995. *Egg Science and Technology*. 4th Ed. New York. Food Products Press.

USDA. 1964. Egg Grading Manual. Washington DC (US) : Federal Crop Insurance Corporation.

Yousef, M.K. 1985. *Stress Physiology in Livestock*. Vol 3 Poultry. Florida, USA. CRC Press, Inc.