PROCEEDINGS OF
THE HOKKAIDO INDONESIAN STUDENT ASSOCIATION SCIENTIFIC MEETING
HISAS

Today's Vision, Tomorrow's Reality

SCOPE
- Agriculture and Forestry
- Energy and Eco-friendly Engineering
- Field Engineering
- Environmental and Earth Science
- Human and Social Environmental Studies

Organized by:
PPI HOKKAIDO
Chair of Committee's Message

The 11th HISAS (Hokkaido Indonesian Student Association Scientific Meeting) met in Sapporo at February 08 2014, hosted by PPIH (Indonesian student Association in Hokkaido) with the gracious support from Hokkaido University by providing venue in the Faculty of Earth and Environmental Science. Our thanks and appreciation go out to KBRI Tokyo, KITAGAS and other sponsors, great invited speakers, participants and to all the others that contributed in the largest HISAS meeting ever held.

We are very pleased to have been able to invite Prof Noriyuki Tanaka from Census Hokkaido University, Prof Yuichi Kamiya from Faculty of Environmental and Earth Science Hokkaido University, Dr. Yosuke Okimoto from Faculty of Agriculture Hokkaido University and Dr. Aditya Riadi Gusman from Institute of Seismology and Volcanology Hokkaido University. We had very great talk delivered by such experts in their respective field which can broaden our knowledge.

The aim of HISAS is communicating research progress from Indonesian student under sustainability framework for better future. Although it originally targeted Indonesian students who are studying at Hokkaido, many participants came from outside of Japan with diverse scientific background. More than 60 papers were delivered and presentations made on these and related topics. All of the presented papers will be available in this proceeding. It was almost impossible to capture all of the content and enthusiasm from the various fields of new information and new technologies which were introduced in this meeting. We are optimistic these proceeding will broaden our knowledge in many topics and related fields.

At last we want to acknowledge the editors. We are extraordinarily grateful to the generous help of these colleagues. It was with great pleasure that our colleagues and we had this opportunity to host such a great meeting.

Sapporo, 8 February 2014

Jaka Fajar Patriansyah M.Sc
Table of Content

Preface i
Table of content ii
Redaksional viii

Keynote Lectures

Center for Sustainability Science, Hokkaido University
Professor Noriyuki Tanaka
Remediation of Groundwater Polluted with Nitrate by Catalytic and Photocatalytic Reactions
Professor Yuichi Kamiya
Study on Thinning Practice Model of the Mangrove Rehabilitation for Sustainable Development of Coastal Communities
Dr. Yosuke Okimoto
A New Methodology for Near-Field Tsunami Inundation Forecasting (Neartif) And Its Application To The 2011 Tohoku Tsunami
Dr. Aditya Riadi Gusman

Parallel Sessions

Utilization of Ozone-Slurry Ice Combined Refrigeration System as Strategy to Maintain The Quality of Fresh (Rastrelliger neglectus) Fish
Achmad Wildan, Tri Winarni Agustini, and Muhammad Nur
Diponegoro University, Indonesia
Response of The Yield through The Pruning Flowers Technique in Purple Sweet Potato Cultivar Ayamurasaki
Desty Dwi Sulistyowati, Irza Arnita Nur, and Suwarto
Bogor Agricultural University
The Implementation of Integrated Farming System Based on Eco Techno Farming (IFS-ET) As a Way to Develop Creative Agribusiness Area in Bogor Regency, Indonesia
Diana Lestari Ningsih, Melissa Amandasari, and Sabrina
Bogor Agricultural University
The Use of Euphoria longana Seed Waste in Extract Form as Antioxidant and Anti-inflammatory to Accelerate Wound Healing Through Increasing of Platelet Derived Growth Factor-BB Expression
Rizki Kusumadhika, Nia Rahma Lutfiani, Elda Yuliantari, and Ratri Pradnya Paramita
Airlangga University
Potential of Velvet Bean (*Mucuna Pruriens*) as Defaunation Agent to Reduce Methane Production
Sindi Fathonah, Yanto Hardiyanto, Dwieera Evvyernie, dan Didid Diapari
Institut Pertanian Bogor

Vitis vinifera Extract Inhibition on the Growth of *Candida albicans* as Denture Cleanser
Zahrina Sandra Difya, Kirana Mahadewi, and Laily Iman Sari
Airlangga University

Catfish (*Pangasius hypophthalmus*) Bone Gelatin: Extraction Optimization with Acid Concentration, Temperature, and Time of Extraction Treatment
Ayu Purnama Sari, Adi Sutakwa, and Siti Khotijah
Sebelas Maret University, Indonesia

Application of Antibiotic and Giberelin Acid as The Inductor of Seedless *Lansium domesticum*
Louis Eben Ezer Ginting, Mita Dianasari, and Yuanda Pangi Harahap
Bogor Agricultural University

Optimization of Genetic Resources from Local Varieties Through Collaborative of Participatory Plant Breeding
Nidya Sharah Pane, Louis Eben Ezer Ginting, and Dewi Valentina
Bogor Agricultural University

Utilization of Moringa Leaves (*Moringa oleifera*) for Malnutrition Solution in Tropical Area to Realize Indonesia Food and Nutrition Security
Virgi Rya Anggraini, and Fitria Irsbawati
Bogor Agricultural University

Fortification Antioxidants Vitamin E and Selenium in the Diet on Blood Profile as Effort to Reduce the Heat Stress of Laying Hen
Teguh Cahya Gumilar, Febrianti Indah Maryani, and Hafidz Ilman Albana
Bogor Agriculture University

The Utilization of Methyl Ester Sulfonate (Surfactant) from *Jatropha curcas* Oil as High Powercleaner, Renewable, Biodegradable and Better Quality of Detergent Color
Mujtahid Alfajri, Ilham Marvie, and Hidayatul Munawaroh
Bogor Agricultural University

Strategy to Development of Cocodiesel as an Alternative Replacement for Fuel Diesel in Remote Areas
Muh Fadhil Albab, Andi Ilman Alqadri, and Muhammad Ridha Jihad
University of Indonesia
A Study on Organically Cross-linked Polymer: Mathematical Model of Gelation Time Polymer to EOR Application
Farizal Hakiki, Nuraeni, and Zihnil Adha Islamy Mazrad
Bandung Institute of Technology

Application of Biosorption Using Algae *Spirogyra hyalina* to Reduce Water Pollutant in Jakarta Bay
Farah Aisyah Sukmawati, and Riana Santoso
Bogor Agricultural University

Building Performance And Thermal Comfort In Naturally Ventilated Building: Case In Convention Center Building In Tropical Climate
Muhammad Nur Fajri Alfata, and Yuri Hermawan Prasetyo
Ministry of Public Works, Indonesia

The Use of Cacao (*Theobroma cacao*) Pod Husk Waste to Inhibit the Growth of Supragingival Bacteria in Mouth
Nia Rahma Lutfiani, Rizki Kusumadhika, Eida Yuliantari, and Ratri Pradnya Paramita
Airlangga University

Synthesis of Methyl Eugenol Based on Green Chemistry Using Dimethyl Carbonate
Nurcahyo Iman Prakoso and Tutik Dwi Wahyuningsih
Gadjah Mada University

Solving The Fuel Crisis In Indonesia With Creative Solution Called Local (Low Carbon-Emission Lifestyle) Movement
Sabilil Akbar Husniaputra, Fuad Azminuddin, and Era Perkasa Lanomi
Bandung Institute of Technology

Utilization of Oscillating Vortices As Renewable Energy Resource At Suramadu Bridge or Completing the Problem of Energy Crisis, and Environmental Pollution
A. Labib Fardany, and Aldi Pratama Putra
University of Indonesia

Groundwater Condition Assessment Using Waterbalance Approach in Jatinangor, West Java for Groundwater Conservation
Ahmad Egi Pratama Hanif, Yudhi Listiawan, Rifky Meisa Anugrah, and Sapari Dwi Hadian
Padjadjaran University

Effectiveness of Moringa seeds (*Moringa oleifera*) in Reducing Levels of Turbidity, Iron and Manganese in Water Flocculation Process in Makassar
Amaltea F. Firdauzi
Hasanuddin University
Evaluating Effectiveness of Relocation Programs After Tsunami 2004: A Case Study of Jacky Chan Village, Budha Tzu-chi Village, Islamic Relief Housing in Aceh Province, Indonesia
Rahmi, Chao Tzu-Yuan
National Cheng Kung University, Taiwan

Rehabilitation after Eruption of Merapi Mountain Through Utilization of Hydrant Pump Without Fuel to Overcome Water Shortages in Tlogolele Village, Selo, Boyolali
Yahya Dwi Putra Nugraha
Sebelas Maret University

Converting Saltwater into Drinkwater as a Solution for Global Crisis in a Fresh Water Needs: an Approach Using Green Technology
Frisca Marina Renandia, Ryando Perdana, and Nurrahmah Azizah
Diponegoro University

Geo-ecology Restoration Master Plan on Limestone Quarry of PT Indocement Tunggal Prakarsa Paliman, Cirebon, West Java, Indonesia
FX Anjar Trilaksono and Yan Bachtiar Muslih
Diponegoro University

Campgrounds Based Disaster Mitigation, Payaman Village, District Bantul, Yogyakarta
Erpin Habibah, and Luki Aprilia
Gadjah Mada University

Investigation of Worldview-2 Spectral Cover. for Identify Indonesia Coral Reef Stratum Types
Masita Dwi Mandini Manessa, Ariyo Kanno, Masahiko Sekine, and Nurjannah Nurdin
Yamaguchi University, Japan

Space-based Detection of Peatlands’ Landcover Changes and Its Impact on Coastal Erosion
Muhammad Haidar, Koichi Yamamoto, Noerdin Basir, Ariyo Kanno, and Masahiko Sekine
Yamaguchi University, Japan

Mitigation Planning on 2014 Predictive Eruption of Mount Merapi, Yogyakarta, Indonesia: A Lesson from Merapi’s 4 Years Eruption Cycle
Widiastuti Nur Farida, and Agatha Armadhea Vashti
Diponegoro University

HOLGETOR 3 in 1 Eco-friendly Vegetables and Fruits Preservative Tools, Less Energy Based on Automatic Water Spray and Nano Co Doped ZnO
Fajar Budi Laksono, Arif Sony Wobowo, and Alfin Darari
Diponegoro University
Determine Best Practice of COBIT to support Business of Small Medium Enterprise (SME) in Indonesia (Case Study: SME in West Java)
Aceng Salim, and Eka Nurmuzaki
Bandung Institute of Technology

“Sekolah Alam Pertanian” for Increasing Interest and Attention on Agriculture, Environment, and Rural Local Wisdom
Jajang Jaelani
Bogor Agricultural University

Using English-translated Indonesian Kid-songs in English Class to Teach English Vocabulary and Noun Phrases, and to Encourage Indonesian Young Learners’ Concern About Nature
Puthut Prechantoro
Hokkaido University of Education, Japan

Phenomenological Studies of Leadership in Ecological Intelligence of Nature Lovers
Titis Sekti Wijayanti, Adi Sutakwa, and Luthfiyah Dyaka
Sebelas Maret University

Liquid Fertilizer as A Solution for Organic Waste Problems and Empowerment of Scavenger
Bagus Harjanto Sukra Ardi, Lisa Karis, Niken Rahmah Ghanny, and Novi Andrianto
Bogor Agricultural University

Amelia Warliana, Desi Wulan Dhari, Indah Rosidah Maemunah, Khatlya Rivana Putri, Seny Damayanti, Shabrina Nida Alhusna, and Shuffah Nur Hijrah
Bandung Institute of Technology

The Relationship between Water Quality and Distribution of Aquatic Biota in Sagara Menyan, Subang West Java-Indonesia
Lusita Meilana, Ayu Ramadhini Hastuti, and Hefni Effendi
Bogor Agricultural University

The Effect of Chromium Waste Pollution In Cikijing River to Physical and Chemical Quality of Well in Linggar Village, Rancaekek, Bandung
Moch Prahastomi Muttahari Suprayitna, Eriya Utama, Sofyan Multazam, Ade Putra, Muhammad Syarif Ali Akbarsyah, Taufiqurrhaman, and Ryandi Adlan
Padjadjaran University

Horizontal Distribution of Total Suspended Solid in Madura Strait
Aries Dwi Siswanto, and Achmad Fachruddin Syah
Trunojoyo University
Effect of Addition Lerak Fruit Extract \textit{(Sapindus rarak)} in Feed Containing \textit{Omega-3} Fatty Acids to Broiler Performance and Fatness

Rahma Khalifatul Jannah, Ahmad Baidlowi, and Rini Karyaningsih

Gadjah Mada University
The Relationship between Water Quality and Distribution of Aquatic Biota in Segara Menyan, Subang West Java-Indonesia

Lusita Meilana1, Ayu Ramadhini Hastuti2, Hefni Effendi3

1Department of Living Aquatic Resources Management, Bogor Agriculture University, Bogor, Indonesia
2Department of Living Aquatic Resources Management, Bogor Agriculture University, Bogor, Indonesia
3Center for Environmental Research of Bogor Agriculture University, Bogor, Indonesia

Abstract—Coastal known as the aquatic ecosystem have a very large resource potential. This area has been widely utilized and made a significant contribution. However, coastal get constant pressure in the form of ecological pollutants resulting from human activities. These conditions will lead to a decrease in water quality that will bring harm to the aquatic biota. This observation purposed to measure the characteristics of the quality parameters and the distribution of coastal and estuarine biota in Segara Menyan. Water temperature at Segara Menyan ranged from 30 to 32 °C. Water depths ranged 59 to 250 cm. The transparency ranged 50 to 89.5 cm. Range levels of DO 1.5 to 54 mg/L. Range levels of salinity 30 to 36 psu. Range levels of total phosphate 0.03 to 0.2 mg/L. Range levels of nitrate 0.0023 to 0.0257 mg/L. Range levels of nitrite 0.0065 to 0.0058 mg/L. Range levels of ammonia 0.0071 to 0.2429 mg/L. D1 dan D2. The range of chlorophyll-a 0.0032 to 0.122 mg/L. Based on the STORET Method analysis obtained, Segara Menyan was fertility waters with medium polluted in water quality. It has low diversity, low stable community, medium similarity and high dominance of biota aquatic. Caused by pressure in the form of ecological pollutants originating from human activity and the management indiscretion.

Keywords—Water quality, Waters condition, Organism, Segara Menyan, Human Activity

I. INTRODUCTION

As it mentioned in that entitled "Institutional Arrangements for Managing Coastal Resources and Environments", Sorensen & MC CREATY (1990) defines the border or coastal zone is the space where the two major environmental change, namely sea and land. There are 17,508 islands and 81,000 miles of coastline along Indonesia known as the mega-biodiversity countries in terms of biodiversity, coastal areas and has huge potential to various development options (Rahmatan, 2004). Marine and coastal areas are a very important area for the majority of the Indonesian population and 60% of the total population of Indonesia, living and active in marine and coastal areas (Dahuri, 1995). Indonesian marine and coastal areas are also an important area in the world environment. Indonesia is recognized as a world center of biodiversity for marine biota and coastal, including coral reefs, reef fish, mollusks and mangrove (Tomascik et al., 1997). However, coastal areas face constant pressure in the form of ecological pollutants originating from human activity and the management indiscretion has caused many marine ecosystems and certain marine biota decreased quality and quantity and water quality at a very worrying rate (Dirhamsyah, 2006). One of the coastal water affected is the Segara menyan. This is one of the coastal areas and estuaries in West Java. In addition to having a broad estuary, the area has mangrove forest vegetation. Hence, the estuarine region Mayangan has abundant resources of coastal biota contained therein.

The purpose of this research is to measure the quality parameters characteristics of the aquatic biota distribution in coastal and estuarine in Segara Menyan Mayangan Subang.

II. MATERIAL AND METHOD

A. Sampling Period and Study Sites

The sampling was carried out in December 2012 in Segara Menyan, Subang West Java-Indonesia. A total of 4 stations were chosen according to the water character of environmental conditions. Station 1 is located in the body of the river, Station 2 is located at the mouth of the river, Station 3 is located at the mouth of the close river and Station 4 is located off the coastal area. Water quality parameters were observed at each station such as temperature, depth, transparency, DO, salinity, total phosphate, nitrate, nitrite, ammonia, and chlorophyll-a. While the biological parameters observed were macro benthos, plankton, and fish.

B. Sampling Methods

Physico-chemical analysis

The concentrations of total phosphate, Nitrogen (Nitrate, Nitrite, Ammonia) were measured using inductively coupled plasma spectrometry after digestion with aqua regia (HNO3:HCl: 1:3) in teflonized high pressure decomposition vessels. Salinity was recorded with a refractometer, abiotic parameters (temperature and
dissolved oxygen) were recorded with an oxygen meter, and water transparency was estimated based on turbidity and Secchi depth, according to Yáñez-Arancibia et al., 1983 (in Rebelo, 1992).

Biological samples processing

Biotic parameters (chlorophyll-a) was measured using spectrometry methods. Fishes were preserved by freezing. At the laboratory each specimen was identified, according to the taxonomic keys of Bauchot and Pras (1987) and Whitehead et al. (1986), measured (total length) and weighed (total weight). The mollusc samples were processed through a sieve with a mesh size of 0.5 mm and the retained fraction was fixed in 4% neutral formalin stained with Rose Bengal. Organisms were sorted out of the residue by eye (see De Grave and Whitaker, 1999), identified to species level when possible, and counted.

Data analysis

The total number of species, the Shannon Wiener diversity index (Shannon and Weaver, 1963), the Simpson dominance index (Odum, 1971), and Eveness Index (Bengen, 2000). The condition of water quality was analysis with STORET Index (KepMen No 51, 2004). Describe the condition from reference study and ecology side.

Fig 1. Map of the Segara Menyan showing sampling stations: st 1 (the body of the river), st 2 (the mouth of the river), st 3 (the mouth of the close river), st 4 (the coastal).

Sources: modification from google map (Zahid, 2012)

Tabel 1. Material and Methods Used in Analysis of Water Samples on The Physics, Chemistry, And Biology Parameters (APHA 1989; 2005)

<table>
<thead>
<tr>
<th>No</th>
<th>Station</th>
<th>Unit</th>
<th>Material/methods</th>
<th>In situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature</td>
<td>°C</td>
<td>Thermometer / Expansion</td>
<td>In situ</td>
</tr>
<tr>
<td>2</td>
<td>Depth</td>
<td>cm</td>
<td>Secchi disk / Visual</td>
<td>In situ</td>
</tr>
<tr>
<td>3</td>
<td>Transparency</td>
<td>cm</td>
<td>Secchi disk / Visual</td>
<td>In situ</td>
</tr>
<tr>
<td>4</td>
<td>Salinity</td>
<td>psu</td>
<td>Refractometer</td>
<td>In situ</td>
</tr>
<tr>
<td>5</td>
<td>DO</td>
<td>mg/l</td>
<td>Winkler</td>
<td>In situ</td>
</tr>
<tr>
<td>6</td>
<td>Total Phosphate</td>
<td>mg/l</td>
<td>Spectrometry / Digestion</td>
<td>Ex situ</td>
</tr>
<tr>
<td>7</td>
<td>Nitrate (NO₃-N)</td>
<td>mg/l</td>
<td>Spectrometry / Brucine</td>
<td>Ex situ</td>
</tr>
<tr>
<td>8</td>
<td>Nitrite (NO₂-N)</td>
<td>mg/l</td>
<td>Spectrometry / Colorimetric</td>
<td>Ex situ</td>
</tr>
</tbody>
</table>

Proceedings of The Hokkaido Indonesian Student Association Scientific Meeting (HISAS) | Vol. XI | 8 February 2014
ISSN: 2355-4398
2. Water Quality Parameters

Based on the results of the analysis using the STORET Method was obtained amounting -29, so according value system of "US-EPA (Environmental Protection Agency)" to determine the status of water quality value ranged -11 s/d -30 was medium polluted categorized.

Table 3. Analysis STORET Method

<table>
<thead>
<tr>
<th>Quality Standards</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturé °C</td>
<td>25±3</td>
<td>30</td>
<td>32</td>
<td>31</td>
<td>-1</td>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>Transparency Cm</td>
<td>50</td>
<td>89,5</td>
<td>69,75</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salinity psu</td>
<td><34</td>
<td>30</td>
<td>36</td>
<td>33</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DO mg/L</td>
<td>>5</td>
<td>1,5</td>
<td>5,4</td>
<td>3,45</td>
<td>-2</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>Total Phosphate mg/L</td>
<td>0,015</td>
<td>0,03</td>
<td>0,2</td>
<td>0,115</td>
<td>-2</td>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>Nitrate (NO₃-N) mg/L</td>
<td>0,008</td>
<td>0,0023</td>
<td>0,0257</td>
<td>0,014</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>Nitrite (NO₂-N) mg/L</td>
<td>0,0005</td>
<td>0,0058</td>
<td>0,00315</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ammonia (NH₃-N) mg/L</td>
<td>0,3</td>
<td>0,0071</td>
<td>0,2429</td>
<td>0,125</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total -29

3. Biology Parameters

Plankton

The four stations provided a total of 28 species. Table 2 shows the highest total abundance is at sampling station 4 (766 ind/l) and the lowest total abundance is at sampling station 1 (79 ind/l). The dominant species of the study was *Rhizosolenia*, distributed in sampling station 2, 3 and 4. The largest number of *Rhizosolenia* is at sampling station 4 (601 ind/l of 766 ind/l), although this species is present in sampling station 2 and 3.

![Figure 2](image-url) Plankton abundance in each sampling station

Then, the second largest number of species is *Thalasiodiscus* that was founded at sampling station 2, 3, and 4. Abundance of *Thalasiodiscus* is higher than the other. Abundance of *Chaetoceros* were higher in sampling station 2 although this species was also present in sampling station 4. Abundance of *Coscinodiscus* were higher in sampling station 1 although this species was also present in sampling station 4. But, *Gunardia* are only present in sampling station 4.

Table 4. Index of plankton

<table>
<thead>
<tr>
<th>Mean ±SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species Number</td>
<td>8±5,35</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>0,63±0,18</td>
</tr>
<tr>
<td>Evenness Index</td>
<td>0,44±0,12</td>
</tr>
<tr>
<td>Dominancy Index</td>
<td>0,36±0,18</td>
</tr>
</tbody>
</table>

Figure 3. The most exist species of plankton in each sampling station

167
Benthos

The four stations provided a total of 24 species. Table 3 shows the highest total abundance is at sampling station 1 (1000 ind/m²) and the lowest total abundance is at sampling station 3 (250 ind/m²) which consist of dominant species, *Terebralia palustris*. But dominancy index in sampling station 1, 2, and 4 were low. The highest diversity index and evenness index were at sampling station 1. Segara Menyan has low diversity, low stable community, medium similarity and high dominance of benthos.

Table 5. The Variation of Benthic Community in Every Station

<table>
<thead>
<tr>
<th>Station</th>
<th>H'</th>
<th>E</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.41</td>
<td>0.90</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>2.60</td>
<td>0.82</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>0.44</td>
<td>0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>0.39</td>
<td>0.12</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Figure 4. Benthos abundance in each sampling station

Nekton

At Station 1 nekton dominated by milkfish (*Chanos chanos*), at Station 2 is dominated by Baelama anchovy (*Thryssa baelsana*), at Station 3 is dominated by fish Japanese flathead (*Platycophus Bataviensis*) and at Station 4 was found a few species such as Prickly croaker (*Aspericorvina jubata*), Belanger's croaker (*Johnius belangerii*), Scalloped perchlet (*Ambasis naula*), and Amoy croaker (*Argyrosumus amoyensis*).

Tabel 6. Species of Nekton in Segara Menyan

<table>
<thead>
<tr>
<th>species</th>
<th>Maturity stage</th>
<th>male (ind)</th>
<th>female (ind)</th>
<th>total (ind)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chanos chanos</td>
<td>2-4</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Thryssa baelsana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Platycophus bataviensis</td>
<td>1-4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Johnius belangerii</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aspericorvina jubata</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Ambasis naula</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Argyrosumus amoyensis</td>
<td>2-4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

IV. DISCUSSION

The Segara Menyan is a semi-enclosed estuarine lagoon located within the Java Sea. Many fish species utilize estuary lagoon as feeding, nursery, and refuge area. Water temperature at station 1 Segara Menyan ranged 30 to 31 °C, while the temperature of the class crustacean zooplankton organisms are generally still able to survive. Tropics temperatures range is relatively stable than the equator of the polar region because more sunlight.

Segara Menyan waters are in between that range. The temperature changes affect of the water suitability as aquatic organisms habitat, because it's every aquatic organisms have a maximum and minimum range limit (Effendi 2003). Temperature directly affects the rate of photosynthesis and the physiology of animals (degrees metabolism and circulation reproduction) which in turn affects the way of eating and growth (Hayes and Laevastu 1982).

Salinity of the sea ranged 34-35 psu (Nontji 1993). Surface water salinity is affected by the balance between evaporation and precipitation (Meadow and Campbell 1988). Observation and analysis showed that chlorophyll-a in the Segara Menyan is dependent on sun rays. If the sun emitted more in specific level, so the chlorophyll concentration also will increase. It can be proved at Station 1 which has a moderate level of radiation.

Chlorophyll concentration at Stasion 1 amounted to 0.0085 mg/m³. Station 2 has a low level of radiation, because it is surrounded by mangrove plants. Chlorophyll concentration at Station 2 amounted to 0.0032 mg/m³. Whereas, Station 3 and Station 4 have high levels of radiation because it is nearing the open sea. Chlorophyll concentrations at stations 3 and 4, respectively by 0.0104 mg/m³ and 0.0122 mg/m³.

Based on biota observations in Segara Menyan, plankton abundance was highest at Station 1 *Coecinodiscus* species, whereas at Station 2-4 is *Rhizosolenia*. A station 1 is the highest temperature than other. It means that *Coecinodiscus* species can tolerate high temperature about 34°C. According Nontji (1993), *Rhizosolenia* is the type found in all tropical waters (circum tropical) that have adapted to warmer
temperatures. Phytoplankton is the most important primary producer in marine, because phytoplankton can photosynthesize. Distribution and growth of phytoplankton as primary producers in the food chain in the waters influenced by upwelling that occurs in the waters.

Water depth at Segara Menyan ranged 59-161 cm. The shallow location will be easier to basic mixing happen as the result of the influence of waves, it caused water depths more than 3 m (Andriyono 2010). Plankton abundance was highest at Station 4 which has a depth ranging from 119 to 124 cm. Plankton abundance in the waters affected by the depth and dissolved oxygen. Water surface layer rich in dissolved oxygen tends decreases with increasing depth (Henderson-Sellers and Markland (1987). Station 4 is the coastal area with high DO value (5.3846 mg/l) and high plankton abundance (766 Ind/m3). Daily fluctuations of oxygen can affect other chemical parameters, especially when the absence of oxygen, which can result in changes in the solubility properties of some chemical elements in water (Effendi 2003).

Dissolved oxygen at Station 4 higher when compared to Station 1 Station 4 is caused due to an open area. This area can get DO source from photosynthetic process and atmospheric diffusion, different with covered area. According Effendi (2003) levels of 0.3-1.0 affects on aquatic organisms, especially fish that can lead to fish kills.

Segara Menyan is waters with moderate to fertility high levels. Station 1 phosphate levels are very high and the next station phosphate levels are relatively moderate. The fertility rate resulted in an abundance of fish, plankton and macrozoobenthos. According to Effendi (2003) waters with high fertility has a total phosphate concentration 0.051 to 0.1 mg/l. The total phosphate levels describe there are a lot of algae and aquatic plants. According to Davis and Cornwell (1991) in Effendi (2003) there is a positive correlation between the levels of total phosphate with chlorophyll-a because phosphorus are essential elements for aquatic plants and algae. In addition, the large number of fish and benthic are the result of the total phosphate with high content.

The distribution of macrozoobenthos in the waters will overflow if the oxygen contents for the process of respiration is enough. Oxygen is essential for life aquatic macro- and micro-organisms as required for the process of respiration. Daily fluctuations of oxygen can affect other chemical parameters, especially when the absence of oxygen, which can result in changes in the solubility properties of some chemical elements in water (Effendi 2003).

Nekton distribution at Station 1, 2, 3, and 4 are dominated by different species of fish. At Station 1 nekton dominated by mulletfish (Chanos Chanos), at Station 2 is dominated by Baelama anchovy (Thryssa ba'elama), at Station 3 is dominated by fish Japanese flathead (Platyccephalus Bataviensis) and at Station 4 was found a few species such as Prickly croaker (Aspercorina jubata), Belanger's croaker (Johnius belangerii), Scallopseed perchlet (Ambasis nalu), and Amoy croaker (Argyrosomus amoyensis). Nekton diversity is high in Segara Menyan. The depth at Stations 1, 3 and 4 are shallow and Station 2 is deep. The increasing depth causing the level of diversity of organisms is reduced, but the dominance of a few species increased. Baelama anchovy (Thryssa ba'elama) is carnivorous, one of them prey on small crustaceans and other macrozoobenthos. Macrozoobentos at Station 1 (the river mouth area) has a higher diversity index than the other stations, amounting to 3.41 with high evenness index is 0.9. A benthic habitats is muddy substrate with a low depth for classified into suspended feeder benthic.

Segara Menyan was fertility waters with medium polluted in water quality. It has low diversity, low stable community, medium similarity and high dominance of biota aquatic. Caused by pressure in the form of ecological pollutants originating from human activity and the management indiscretion.

V. CONCLUSION

Based on the STORET Method analysis obtained, Segara Menyan was fertility waters with medium polluted in water quality. It has low diversity, low stable community, medium similarity and high dominance of biota aquatic. Caused by pressure in the form of ecological pollutants originating from human activity and the management indiscretion.

ACKNOWLEDGEMENT

This study was made possible by family of Aquatic Resources Management (MSP), Faculty of Fisheries and Marine (FPK), Center for Coastal and Mariner Resources Studies of Bogor Agricultural University (PKSPL, IPB), Center for Environmental Research of Bogor Agricultural University (PPLH-LPPM, IPB).

REFERENCES

