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1 Introduction

Let Fnq denote the vector space of ordered n-tuples over field Fq. A linear code of length n over
Fq is just a subspace C ⊂ Fnq . If C has dimension k and minimum distance d, it is called an
[n, k, d]q-code. A central problem in algebraic coding theory is to optimize one of the parameters
n, k, and d for given values of the other two. Although it is unlikely that this optimization
problem will ever be solved in its full generality, many specific results have been obtained so
far. The state of the art is listed in Brouwer’s tables [2]. It is immediately clear from these
tables that the amount of available information quickly diminishes with growing field size q. The
present paper is devoted to the quaternary case, which is less well studied than the binary and
ternary ones. Some of the significant results can be found in the papers [3] by Daskalov and [5]
by Greenough and Hill.
Any set of parameters for which no code exists gives bounds for optimal codes. The most

successful method so far of proving the nonexistence of codes has been linear programming. Let
us describe in short this fundamental idea of Delsarte [4]. The dual C⊥ of an [n, k, d]q-code C
is its orthogonal with respect to the standard inner product in Fnq . Let Ai(C) and Bi(C) be the
number of words of weight i in C and in C⊥, respectively. (These numbers are said to constitute
the weight distributions of C and C⊥ respectively.) Obviously, A0(C) = B0(C) = 1. The remaining
numbers satisfy the following set of linear constraints:

Ai ≥ 0 (1 ≤ i ≤ n),
Bi ≥ 0 (1 ≤ i ≤ n),
Ai = 0 (1 ≤ i ≤ d− 1),

qkBi =
∑n
j=1Ki(j)Aj +

(
n
i

)
(1 ≤ i ≤ n).

(1)

The last equations are the celebrated MacWilliams identities, cf [8]. Now the basic idea is that
the code C cannot exist if the linear program (1) is infeasible. Of course, adding new constraints
makes for sharper bounds.
The second section describes the standard ways to strengthen (1). Section three shows that

certain weight sums in C are weights in Reed-Muller codes of low order. Theorems of Hill and
Lizak and of the second author are exploited in Section four. The next section sharpens the Reed-
Muller tool for even weight quaternary codes. The paper ends with a list of all new nonexistence
results.

2 Standard tools

In this section we present the standard ways to add constraints to the linear program (1). A
good reference is Greenough and Hill [5].
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Definition 1 Let C be an [n, k, d]4-code with generator matrix G, and let c ∈ C be a word of
weight w. Then the residual code Res(C; c) of C with respect to c, is the code generated by the
restriction of G to the columns where c has a zero entry. We will denote it by Res(C;w) if only
the weight w of c matters.

Proposition 2 Let C be an [n, k, d]4-code and let d > 3w
4 . Then Res(C;w) has the parameters

[n− w, k − 1,≥ (d−
⌊
3w
4

⌋
)]4.

Hence if we know —for instance from Brouwer’s tables [2] — that no code with parameters
[n− w, k − 1,≥ (d−

⌊
3w
4

⌋
)]4 exists, we infer that Aw(C) = 0.

Proposition 3 The existence of an [n, k, d]4-code with dual distance d⊥implies the existence of
an [n− d⊥, k − d⊥ + 1, d]4-code.

So if no codes exist with parameters [n− i, k− i+1, d]4, i = 1, 2, . . . , α, then the dual distance
of any [n, k, d]4-code C is at least α+ 1, i.e. B1(C) = B2(C) = · · · = Bα(C) = 0.
The next proposition tells us that there cannot be too many words of high weight.

Proposition 4 Let C be an [n, k, d]4-code. Then C satisfies the following conditions:

1. Ai(C) = 0 or 3 for i > (4n− 3d)/2,

2. If Ai(C) > 0, then Aj(C) = 0 for j > 4n− 3d− i and i 6= j.

Example 5 There is no [94, 6, 68]4-code.

Proof. Suppose C is a code with parameters [94, 6, 68]4. The residual code argument and
Brouwer’s table [2] imply that the non-zero weights of C are in the set

{0, 68, 70, 71, 72, 80, 83, 84, 88, 91, 92, 93, 94}.

Table [2] tells us also that no linear codes with parameters [93, 6, 68]4, [92, 5, 68]4, or [91, 4, 68]4
exist. By Proposition 3, we conclude that the dual distance of C is at least 4. With these
additional constraints and those from Proposition 4, the linear program (1) turns out to be
infeasible.
In each of the examples in the sequel we shall use the linear program (1) together with the

constraints from Proposition 2, Proposition 3 and Proposition 4. We shall call the complete set
of constraints the enhanced linear program.

3 Constraints from gaps in the weight distribution of Reed-
Muller codes

The ideas that underlie this section have been described in [10] and [6]. They find their origin
in Brouwer’s paper [1].
Consider the functions ϕ1, ϕ2 : Fn4 → F4 defined by

ϕ1(x) :=

n∑
i=1

x3i , ϕ2(x) :=
∑

1≤i<j≤n
x3ix

3
j .
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First of all we note that these functions only take the value 0 or 1 and that this value only
depends on the weight. In fact, if wt(x) = w, then

ϕ1(x) = wmod2 and ϕ2(x) =
(
w

2

)
mod2.

In the sequel we view Fn4 as a binary 2n-dimensional vector space. The binary degree of ϕ1, ϕ2
is the degree of their polynomial representation with respect to any binary coordinate system.
We claim that degϕ1 = 2 and degϕ2 = 4. Indeed, the function

F4 → F4, x 7→ x2,

is F2-linear, and x3 = x · x2 is the product of two F2-linear functions.
Now let C be a quaternary linear code of length n and (quaternary) dimension k. So C is a

2k-dimensional binary subspace of Fn4 . Consider the restrictions

ψ1 := ϕ1|C , ψ2 := ϕ2|C .

Since
degψ1 ≤ degϕ1 = 2, degψ2 ≤ degϕ2 = 4,

the support of ψ1 is a word in the binary Reed-Muller code R(2, C) = R(2, 2k) of order 2 and
the support of ψ2 is a word in the binary Reed-Muller code R(4, C) = R(4, 2k) of order 4.
The weight distribution of Reed-Muller codes contains gaps, and these gaps are bigger if the

order is smaller. We summarize some known facts in the following proposition. Proofs can be
found in the standard reference [9].

Proposition 6 Let R2(r,m) be the rth order binary Reed-Muller code of length 2m, where r ≥ 1,
and let w be a non-zero weight in R2(r,m). Then

1. w is divisible by 2b
m−1
r c,

2. w ≥ 2m−r,

3. if 2m−r ≤ w < 2m−r+1, then, for appropriate t,

w = 2m−r+1 − 2m−r+1−t,

4. if r = 2, then
w = 2m−1 or w = 2m−1 ± 2m−1−j (0 ≤ j ≤ m

2
).

Now we look at the sizes of the supports of ψ1, ψ2 and ψ1+ψ2. These are expressions in the
weight distribution of C. In fact, we have

| suppψ1| = A(1,3),

| suppψ2| = A(2,3),

| supp(ψ2 + ψ1)| = A(1,2),

where A(a,b) is short for
∑
i≡a or b(4)Ai. So Proposition 6 yields constraints for the weight distri-

bution of C.
These can be improved by the trivial observation that A(1,3), A(2,3) and A(1,2) are divisible by

3. The complementary sums A(0,2), A(0,1) and A(0,3) are congruent to 1 modulo 3. We summarize
the results of this section in Theorem 7 and Theorem 9.
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Theorem 7 If C is a quaternary linear code of dimension k, then the integer A(1,3) =
∑
i odd

Ai(C)

is a weight in the Reed-Muller code R2(2, 2k) which is divisible by 3. Hence∑
i≡1 or 3(4)

Ai(C) ∈

{22k−1 + 22k−2j (1 ≤ j ≤ dk
2
e), 22k−1 − 22k−1−2j (0 ≤ j ≤ bk

2
c)}

Example 8 There is no [57, 8, 38]4-code.

Proof. Suppose C is a code with parameters [57, 8, 38]4. The dual distance of C is at
least 6. Optimize A(1,3) with respect to the enhanced constraints (cf. p. 735). We find that
6651 ≤ A(1,3) ≤ 20231, which contradicts the preceding theorem.

Theorem 9 Let ω denote weight sum A(1,2), A(2,3), A(0,3) or A(0,1). Then in the first two cases
ω is divisible by 3 and in the last two cases it is congruent to 1 modulo 2. Furthermore, ω is
divisible by 2b

2k−1
4 c. Finally,

1. if ω < 22k−3, then ω = 22k−3 − 22k−3−t, and

2. if ω > 22k − 22k−3, then ω = 22k − 22k−3 + 22k−3−t

for suitable t.

Example 10 There is no [78, 9, 53]4-code.

Proof. Suppose C is a code of parameters [78, 9, 53]4. Optimizing A(1,3) with respect to
the enhanced constraints yields 77263 ≤ A(1,3) ≤ 129839, which is improved by Theorem 7 to
98304 ≤ A(1,3) ≤ 129024. Add this constraint and then optimize A(2,3). We obtain 6331 ≤
A(2,3) ≤ 22598. which contradicts Theorem 9.

4 Adding a parity check bit

In 1995, Hill and Lizak found an amusing and useful result.

Theorem 11 ([7]) Let C be a linear [n, k, d]-code over Fq with gcd(d, q) = 1 and with all weights
congruent to 0 or d (modulo q). Then C can be extended to an [n+1, k, d+1]-code whose weights
are congruent to 0 or d+ 1 (modulo q).

Their proof was based on the following lemma.

Lemma 12 Let C ⊆ Fnq be an [n, k, d]q-code, and let s be an integer which is relatively prime to
q and such that all weights in C are congruent to 0 or s modulo q. Then {c ∈ C | wt(c) ≡ 0(q)}
is a linear subcode of C of dimension ≥ k − 1.

Here is an example of how this lemma can be used.

Example 13 No code of parameters [54, 8, 36]4 exists.
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Proof. Suppose C is a code of parameters [54, 8, 36]4. Optimizing A(1,3) with respect to the
usual enhanced constraints yields 18672 ≤ A(1,3) ≤ 47882. Theorem 7 then implies that

A(1,3) ∈ {24576, 30720, 32256, 32640, 33024, 33792, 36864}. (2)

Use this to optimize A(2,3). The result is 23982 ≤ A(2,3) ≤ 42255. Now Theorem 9 improves
this to 24000 ≤ A(2,3) ≤ 42240. Next we switch to A(1,2). Enhanced linear programming with
the additional constraints and Theorem 9 imply that A(1,2) = 0 or 6144. If A(1,2) = 6144, the
optimization of A(1,3) would give 34110 ≤ A(1,3) ≤ 35615, in conflict with Theorem 7. Hence
A(1,2) = 0. That means that all weights in C are congruent to 0 or 3 modulo 4. Now apply Lemma
12. The size of {c ∈ C | wt(c) ≡ 0(4)} is equal to 47 or 48. Hence A(1,3) = 48 − 47 = 49152 or
A(1,3) = 0. This contradicts (2).
Recently, an improvement of Theorem 11 was found.

Theorem 14 [11]Let C be a linear [n, k, d]-code over a field Fq of characteristic p. If d 6≡ 0 mod
p and ∑

i6≡u(p)

Ai(C) = qk−1,

for some u ∈ {1, 2, . . . , p− 1}, then C can be extended to an [n+ 1, k, d+ 1]-code.

The next example demonstrates how this result can be used in nonexistence proofs.

Example 15 There is no [86, 5, 63]4-code.

Proof. Suppose C is a code of parameters [86, 5, 63]4. The enhanced linear program and
Theorem 7 imply that

A(1,3) ∈ {480, 528, 576, 768}.
Suppose 480 ≤ A(1,3) ≤ 576. Then these extra constraints would yield 0 ≤ A(1,2) ≤ 68, and
Theorem 9 would reduce this to A(1,2) = 0. Then C would satisfy the conditions of Theorem
11. But Brouwer’s table [2] tells us that there is no [87, 5, 64]4-code. We infer that A(1,3) =
768 = 45 − 45−1. Now Theorem 14 applies. Again, a code of parameters [87, 5, 64]4 must exist,
a contradiction.

5 Even weight quaternary linear codes

In Section 3, we have seen that the restriction of the function

ϕ2(x) :=
∑

1≤i<j≤n
x3ix

3
j

to a quaternary linear code C has degree ≤ 4. We claim that we can do better if all weights in C
are even.

Theorem 16 If all weights in a quaternary linear code C are even, then the restriction ψ of ϕ2
to C has degree ≤ 3. Hence

∑
i≡0(4)Ai(C) is a weight in a Reed-Muller code of order three.

Proof. Let C be a quaternary linear code without any words of odd length. Then the words
of weight divisible by 4 in C are the support of the restriction of ϕ2+1 to C. So the last statement
follows if we can prove that we have to prove that degψ = deg(ϕ2|C) ≤ 3. It is suffi cient to prove
that deg(ϕ2|D) ≤ 3 for all 4-dimensional binary linear subcodes D of C. Hence, it is suffi cient to
prove that the theorem is true for all quaternary linear codes of dimension ≤ 4. We shall do this
in the following three lemmas. Let α be a primitive element of F4. So F4 = {0, 1, α, α = α2}.
Note that ϕ2 is invariant under multiplication by α, i.e. ϕ2(αx) = ϕ2(x) for all x ∈ Fn4 .
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Lemma 17 16 is true for dim C = 2.

Proof. Since C is a binary vector space of dimension 4, we have to show that the support of
ψ is a word in the Reed-Muller code R2(4, 3), i.e. that the size of {c ∈ C | ψ(c) = 1} is even. We
may assume that C has a generator matrix of the form

row c1 1...1 1...1 1...1 1...1 0...0 0...0
row c2 1...1 α...α α...α 0...0 1...1 0...0

# columns a b c d e

.

The five codewords c1, c2, c3 := c1 + c2, c4 := c1 + αc2, and c5 := c1 + αc2 have even weight.
So

a+ b+ c+ d ≡ 0mod 2,

a+ b+ c+ e ≡ 0mod 2,

b+ c+ d+ e ≡ 0mod 2,

a+ c+ d+ e ≡ 0mod 2,

a+ b+ d+ e ≡ 0mod 2,

whence a, b, c, d and e have the same parity. The value of ψ in c1 is equal to

ab+ ac+ ad+ bc+ bd+ cd+

(
a

2

)
+

(
b

2

)
+

(
c

2

)
+

(
d

2

)
,

but the fist six terms add up to an even number. So we find

ψ(c1) ≡
(
a

2

)
+

(
b

2

)
+

(
c

2

)
+

(
d

2

)
mod2,

and, analogously,

ψ(c2) ≡
(
a

2

)
+

(
b

2

)
+

(
c

2

)
+

(
e

2

)
mod2,

ψ(c3) ≡
(
b

2

)
+

(
c

2

)
+

(
d

2

)
+

(
e

2

)
mod2,

ψ(c4) ≡
(
a

2

)
+

(
c

2

)
+

(
d

2

)
+

(
e

2

)
mod2,

ψ(c5) ≡
(
a

2

)
+

(
b

2

)
+

(
d

2

)
+

(
e

2

)
mod2.

Now it is straightforward to check that for all values of
(
a
2

)
,
(
b
2

)
, ...,

(
e
2

)
an even number of the

ψ(ci) takes the value 1. The size of the support of ψ is three times this number. So it is even as
well.

Lemma 18 Theorem 16 is true for dim C = 3.

Proof. We know that deg(ψ|D) ≤ 3 for all 2-dimensional quaternary subcodes of C and that
ψ(αx) = ψ(x) for all x ∈ C. Choose three independent quaternary coordinates x, y, and z on C.
We can write them as x = x0 +αx1, y = y0 +αy1, and z = z0 +αz1, where x0, x1, y0, y1, z0, z1
are 6 binary coordinates. Let ψ4 be the part of degree 4 of ψ(x0, x1, y0, y1, z0, z1). All nonzero
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monomials of ψ4 must have coordinates from x, y and z. If, for instance, ψ4 would contain the
monomial x0x1y0y1, then the restriction of ψ to {z = 0} would have degree 4, a contradiction to
the preceding lemma. Hence ψ4 is a linear combination of the twelve monomials

x0x1y0z0, x0x1y0z1, x0x1y1z0, x0x1y1z1, y0y1x0z0, y0y1x0z1
y0y1x1z0, y0y1x1z1, z0z1x0y0, z0z1x0y1, z0z1x1y0, z0z1x1y1.

Since the restriction of ψ4 to {y = x}, i.e. to {y0 = x0, y1 = x1}, has degree 3, the coeffi cients
of z0z1x1y0 and z0z1x0y1 must be equal. We get analogous results with respect to the subcodes
{y = z} and {x = z}. Multiplication by α changes the list of polynomials

x0x1y0z0
x0x1y0z1 + x0x1y1z0

x0x1y1z1
y0y1x0z0

y0y1x0z1 + y0y1x1z0
y0y1x1z1
z0z1x0y0

z0z1x0y1 + z0z1x1y0
z0z1x1y1


to



x0x1y1z1
x0x1y0z1 + x0x1y1z0

x0x1y0z0 + x0x1y0z1 + x0x1y1z0 + x0x1y1z1
y0y1x1z1

y0y1x0z1 + y0y1x1z0
y0y1x0z0 + y0y1x0z1 + y0y1x1z0 + y0y1x1z1

z0z1x1y1
z0z1x0y1 + z0z1x1y0

z0z1x0y0 + z0z1x0y1 + z0z1x1y0 + z0z1x1y1


.

Since ψ is invariant under multiplication by α, we infer that the coeffi cients of

x0x1y0z0, x0x1y1z1, y0y1x0z0, y0y1x1z1, z0z1x0y0 and z0z1x1y1

must be zero. Finally by restricting ψ4 to {y = αx}, {z = αy} and {x = αz} we see that the
coeffi cients of the remaining monomials must be zero as well.

Lemma 19 Theorem 16 is true for dim C = 4.

Proof. We proceed in the same way as in the preceding lemma. We choose four independent
quaternary coordinates x, y, z, and u. We can write them as x = x0 + αx1, y = y0 + αy1,
z = z0 + αz1, and u = u0 + αu1, where x0, x1, y0, y1, z0, z1, u0, u1 are 8 binary coordinates.
Let ψ4 be the part of degree 4 of ψ(x0, x1, y0, y1, z0, z1, u0, u1). Since the restrictions of ψ to
the 3-dimensional subcodes like {x = 0} must have degree ≤ 3, we infer that only the sixteen
monomials

x0y0z0u0, x1y0z0u0, x0y1z0u0, x1y1z0u0,
x0y0z1u0, x1y0z1u0, x0y1z1u0, x1y1z1u0,
x0y0z0u1, x1y0z0u1, x0y1z0u1, x1y1z0u1,
x0y0z1u1, x1y0z1u1, x0y1z1u1, x1y1z1u1

are involved in ψ4. From the restrictions to the other 3-dimensional subcodes we learn that ψ4
must be a linear combination of the three polynomials

x0y0z0u0 + x0y1z1u1 + x1y0z1u1 + x1y1z0u1 + x1y1z1u0,
x1y1z1u1 + x1y0z0u0 + x0y1z0u0 + x0y0z1u0 + x0y0z0u1,

x1y1z0u0 + x1y0z1u0 + x1y0z0u1 + x0y1z1u0 + x0y1z0u1 + x0y0z1u1.

The invariance of ψ under multiplication by α then implies that ψ4 = 0.
If we combine the preceding theorem with Proposition 6, we obtain the following constraints

for the weight distribution of even quaternary codes.
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Theorem 20 Let C be a k-dimensional quaternary linear code in which all codewords have even
weight. Then the weight sum ω :=

∑
i≡2(4)

Ai(C) is divisible by 3 and by 2b
2k−1
3 c. Moreover,

1. if ω < 22k−2, then ω = 22k−2 − 22k−2−t, and

2. if ω > 22k − 22k−2, then $ = 22k − 22k−2 + 22k−2−t

for suitable t.

Example 21 There is no [77, 7, 54]4-code.

Proof. Suppose C is a code of parameters [77, 7, 54]4. We optimize A(1,3) with respect to the
usual enhanced constraints and then apply Theorem 7. As a result, we find that A(1,3) = 0, i.e.
that C is an even weight code. Now we optimize ω :=

∑
i≡2(4)Ai to find that 13402 ≤ ω ≤ 14056.

This contradicts Theorem 20.
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