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Abstract— This research proposed a new model to
differentiate leaf venation topology patterns using
Multiscale Fractal Dimension. ldentification of
medicinal plants is important considering wide
range of biodiversity in Indonesia and significant
role of medicinal plants in Indonesia. Plants
identification can be performed with shape analysis
using plant leaf venation as a feature. Multiscale
Fractal Dimension is a shape analysis method that
analyze shapes through its complexity. In this
research three Indonesian medicinal plants species
has their leaf venation topologies modelled with
Multiscale Fractal Dimension. The result shows that
while the difference is not remarkably clear, there
are irregularities that can be made more evident
with multiscale analysis. Future works can include
Multiscale Fractal Dimension as one technique to
identify plants.

Index Terms— medicinal plant. leaf venation topology.
multiscale fractal dimension

I. INTRODUCTION

NDONESIA has a wide range of biodiversity. To

date. there are approximately 38.000 recognized
plant species in Indonesia [1]. of which there are more
than 2.000 herbal plants among them [2] and of which
almost 80% of them hasn't been cultivated and have to
be retrieved directly from wilderness [3]. Herbal
medicines have a significant role in Indonesia as 1t 1s
widely used by people to cure diseases and maintain
health because of its inexpensiveness and little to none
negative side effects [4]). The significance of herbal
medicine combined with the fact that the majority of it
is still out there in the wilderness makes 1dentification
and classification of herbal plants 1s paramount.

One of the most common plant organ used for
identification is leaf. because 1t has simple shape.
always available, and could be picked without harming
the plant. However most information on the leaf like
morphological. physiological and genetic properties are
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contained in leaf venation [5]. Leaf venation topology
is one of the most easily identifiable properties of leaf
venation. There are two main variation of leaf venation
topology, pinnate with one primary vein and palmate
with more than one primary vein. Palmate topology 1s
divided into five more variations. They are
parallelodromous, campylodromous, acrodromous,
actinodromous. and palinactinodromous [6]. These
variations can be distinguished from one another by
their distinct shapes.

There are many methods to analyze the shape of an
object, one of them is through its complexity [7].
Complexity of a shape is related to the irregularity
pattern presented by the shape. One way to estimate
shape complexity is by calculating its fractal dimension
[8]. There are several definitions of fractal dimension.
Bouligand-Minkowski dimension i1s one of the most
widely used definition for shape analysis because it has
the most accurate and consistent result [7].

As with all real world objects, leaf venation 1s not a
fractal, albeit 1t has self-similarity on limited scale [11].
In this case, fractal dimension could be estimated. The
simplest estimation method commonly used is linear
regression which produce a numeric dimension value.
Another more complex method is by applying
derivative to track the change of irregularities on
different  scales, thus produce more detailed
information. This method 1s known as multiscale
analysis [12].

This paper propose the modelling of leaf venations
with Bouligand-Minkowski fractal dimension using
multiscale analysis. Result of this experiment s
presented with plot analysis.

I1. RESEARCH METHOD
A Proposed Techniques
The research methodology can be seen in Figare 1.

The method consist of data acquisition, preprocessing,
fractal modelling and analysis.
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In this experiment, nine leaves from three different
species were used. The three species were Jatropha
curcas Lin., Smilax china, and Ficus deloidea L. which
represents different venation topology, which are
actinodromous, acrodromous, and palinactinodromous.
respectively. The images used in this experiment is
acquired from Herdiyeni et al. [13]. The images were
captured in Biopharmacy Garden of IPB and in the
greenhouse of Medicinal Plants of Tropical Forest Ex-
situ Conservation Center, Forestry Faculty IPB.

(a) (b) (¢)

Fig. 2 Leaf species used in the experiment (a) Jatropha curcas
Lin.. (b) Smulax china. and (c) Ficus deloidea 1

C. Preprocessing

Every digital images of the leaves was uniformly
resized to ensure that the size factor will not interfere
with the result. The color of each images was also
converted to greyscale since the color of the leaf 1s
irrelevant in this experiment. Afterwards. the region of
interest in each images. the leaf venation topology.
were segmented.

The method 1n this

segmentation L‘\PL‘TiIHCHl
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involves edge detection, Gaussian blur, and thresh
holding. Edge detection marked every edge in the
image by detecting contrast changes of greyscale
intensity in the image. Edge detection was applied
twice. (1) primary veins segment and (i1) the outline,
which will be useful in noise removal later. Gaussian
blur was applied to thicken the region of interest and
erase the small edges and noises. This results in only
primary veins edges remains. Thresh holding is done by
converting the image to black and white. thus sharpen
the veins already blurred by Gaussian.

After the segmentation it i1s necessary to apply
additional noise filtering. It is done by removing
chunks of small regions. leaving only the primary veins
in the image. Another filtering is done by using the
outline edge from edge detection earlier. This is done
to remove the outline from the primary veins. Figure 2
illustrates preprocessing steps used in this experiment.

Because different cameras were used to capture
the leaves, it is difficult to find universal parameter for
segmentation process. Consequently. the segmentation
parameters were entered manually to achieve uniform
result.

) 4
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Fig. 3. Preprocessing steps
D. Fractal Dimension Modelling

Fractal dimension 1s a measure of how fragmented a
fractal object is [7]. It could identity how complex a
fractal 1s by comparing the changes of irregularity in a
shape as the scale changes. Fractal dimension 1s also
characterize self-similanty of the shape. An object 1s
said to be self-similar if 1t 1s approximately similar to
its parts. Self-similarity 1s an important feature of
fractal. as fractals have self-similarity inevery scale.

There are many defimtions of fractal dimension. one
of which 1s Bouhgand-Minkowsk: dimension. The
formula to model the fractal dimension according to
Bouligand-Minkowski can be defined as

DB = 2 — limM
r—ao log(r)

where Afr) can be defined as the number of counted

(1)

element and s the size of the counting window [ 14]

There two dimension

modelling. counting and estimation. The counting step

are major steps 1 fractal
1s done 1o produce a curve that descnibes different
measurements on difterent scales. The estimation step
15 done 1o get the actual fractal dimension from the
curve by estimating the limit. This estimation part 1s
important because self-similanty of real world objects

are only on limited scale
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(a) (b)

Fig. 4. Illustration of fractal counting with dilation (a) dilated
image (b) plot of dilation distance and dilation area

One of the techniques to count Bouligand-
Minkowski dimension is the dilation method. This
method computes the influence area by calculating the
area of a shape (A(r)) after being dilated by a disc of a
certain radius (r). Since this method, particularly the
dilating process, is considerably time-consuming,
another more efficient method is used in this
experniment. Euchdean Distance Transform (EDT) can
calculate the Euchdean distance between each
foreground pixels to the region of interest with good
performance {15]. From the distance map the area of
dilated shape (4¢rJ) can be calculated by summing up
all the pixels whose distance is r or less from the region
of interest. The result of this step can be presented as a
log-log curve of r-A(r) or dilation curve. For this
experiment, the distance were calculated to r = 100.
Figure 3(a) shows an illustration on dilation method
performed on an image and 3(b) shows the resulting
plot of shape area and its radius.

The curve produced from the counting method 1s an
empirical curve because 1t 1s consisted of data points.
To get the actual fractal dimension, the estimation of
the curve is necessary. The simplest way to estimate the
curve 1s by using linear regression. This method
calculate the curve by drawing a straight line that
approximate the curve. This straight line can then be
calculated for its gradient to obtain the fractal
dimension. As the gradient 1s a numeric value, so does
the fractal dimension. While this method is simple. the
result 1s often cannot describe the complex nature of
object shape. The similar shape may have the exact
same fractal dimension value. thus the small difference
of the shape may not be noticed.

Better information on image shape can be obtained
by calculating first derivative of the log-log curve. The
result will be a curve that binds fractal dimension
changes to the dilation radius changes. The curve 1s
called Multiscale Fractal Dimension (MFD). Tt was
defined as

du(t)
dt
where u(t) represent logrA(r)) and 1 represents log(r).

Unlike dilation curve that tracks the change of
measurement based on size, the multiscale curve tracks

MFD =2 — (2)

the rate of change of the measurement. This means
multiscale curve has richer information than dilation
curve. Dilation curve is always linear because A(r) will
always increase as r increases. Multiscale curve, on the
other hand, depends on how much A(r) increase as r
increases. This means that it is possible for multiscale
curve to have local maxima and minima values. These
values can represents the whole curve into a much
smaller number and still retain important information
of the curve such as the curve shape [9].

One of the main problem of multiscale curve is that
there are many redundant information contained
within. These redundant information could slow the
computational process and blurred the differences
among fractal dimensions of different images. This
problem can be solved by applying descriptor to the
curve. There are several descriptors that could be used
to remove redundant information from multiscale
curve, one of which is known for its short computing
time 1s Fourier descriptor. Fourier descriptor could also
produce data that is invariant to rotation, translation,
and scale, thus it is suitable for pattern recognition [11].

The problem with derivation is that it has tendency
to enlarge high-frequency noise. This could affect the
result greatly because sometimes the shape under
analysis has unpredictable noises. This problem can be
solved by applying low-pass filter to the curve. One of
the commonly used low-pass filter is Gaussian filter.
Thus, the Fourier descriptor of the derivative is defined
as

du(t) .

e FTHF ()} {g.(0))G2rf)) )
where f as frequency. j as imaginary number V=1 and
g5(t) 1s Gaussian filter apphied to logfr) and defined as

1 —t? i
- exp (202) (4)

In the equation above & represents standard deviation
that could be adjusted. In this experiment, standard
deviationa = {1 ... 10} were used.

Itis necessary to provide a curve with good sampling
and uniform interval. Unfortunately the dilation curve
has inconsistent interval in its nature. There are two
ways to approach this. The first one is to remove the
initial points with very low sampling. The second one
1s by using linear interpolation to fill the space between
every two points of the sampled curve by 1ts average
point.

The discontinuity of the dilation curve can produce
either overshoot or undershoot near 1ts Fourier
approximation. This phenomenon 1s known as Gibbs
phenomenon [10]. The solution to this problem=s by
applying duplication and reflection to the curve. to
make the curve seems continuous. The Founer
approximation can later be cropped according to the
original curve limits.

go(t) =

355 [SBN : 97R-979-1421-225



ICACSIS 2014

III. RESULTS AND ANALYSIS

A. Preprocessing

Preprocessing in this experiment were performed
using Matlab and GIMP. Additional noise that unable
to be removed in Matlab were removed using GIMP.
Figure 5(a) shows some leaf images from each species
and Figure 5(b) shows the same images after being
preprocessed.

LTI

6381 png

(b)

Fig. 5. (a) Onginal leaf images (b) preprocessed venation images

B. Fractal Counting

Measurement of fractal dimension in this experiment
was performed using EDT method. Figure 6 shows the
log-log curve of the fractal counting result. The figure
shows that while dilation curves of Jathropa curcas Lin
(red) and Ficus deloidea L. (green) has formed
separated clusters, Smilax china (blue) dilation curves
are in mixed positions. This is mainly caused by lack of
uniqueness possessed by Smilax china leaf venations.
Unlike Jathropa curcas Lin and Ficus deloidea L. leaf
venations which possess distinctive branches of
primary veins, the leaf venations of Smilax china has
only three curved primary veins. These veins evidently
did not provide Smilax china with enough features to
separate it from other, more complex venations. The
blue curves in the plot are seen mixed mostly with
green curves. This is caused by the similarity between
the two venation topologies.

It is worth mentioning that the curve itself describes
increases in the area of the objects, not the shape of the
objects itself. It is from the different way the area
changes that the difference of shape can be deduced. On
smaller dilation radius the area of each leaf venation are
similar. This 1s because the scale of each leaf venation
was deliberately uniformed in preprocessing step. As
dilation radius became wider the difference between
areas of shapes became more evident. This 1s 1llustrated
by gradient of the curve. Higher gradient means bigger
area increase rates. Therefore dilation curves do not
associated with shapes directly. instead it describe the
uniqueness of shapes through area increase rates.

C. Fractal Estimation

Dilation curves that has been interpolated and
duplicated can then have 1ts fractal dimension
estimated by multiscale analysis. The result of
multiscale analvsis to each curve is presented in Figure

3506

7. It is clearly shown that unlike dilation curves, MFD
curves have local maxima and minima. These loca]
extrema can represents the curve without Omitting
important features of the curve.

From the trends of MFD curves at a glance it looks
similar. [t should be noted that red and green curves are
clustered like their counterparts in dilation curves whije
the blue curves are not. However unlike the condition
in dilation plot where the blue curves are mixed with
the green curves, in MFD plot the blue curves are
mostly above the green curves. This shows that while
Smilax china and Ficus deloidea L. leaf venation
topologies are similar in shape but there are some
different irregularities between them that is more
evident after multiscale analysis.

Fig. 7 MFD cunves

IV, CONCLUSION

This paper presents an experiment in modelling leaf
venation Bouligand-Minkowskr  multuscale
fractal dimension. The fractal counting is performed

using

using Fuclidean distance transform and the estimation
is performed using muluscale analysis. " Fourier
descriptor have been performed on muluscale fractal
from both
distance transform and muluscale analysis is presented
through plots. While 1t is not remarkably clear. there are
some 1rregularities that could be detected with dilation

dimension curve. The result Fuclidean
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but more evident after multiscale analysis.
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