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Abstract

The use of interior-point  methods to solve linear optimization
problems has become a great attention to the researchers. The most
important thing is that the interior-point methods have the best
complexity compared 1o other methods and also efficient in practice.
The worst upper bound for the iteration complexity of this method
is polynomial. Roos, Terlaky and Vial presented an interior-point
method using primal-dual full-Newton step algorithm thar requires the
best known upper bound for the iteration complexity of an interior-

point method. In this paper, we present their method with a slightly
better iteration bound.

I. Introeduction

Recently, the use of interior-point methods (IPMs) for solving linear
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"optimization (LO) problems has become a major concern of the optimization
researchers. This happens mainly due to the fact that interior-point methods
have polynomial complexity, which is the best compared to other methods
and these methods are also efficient in practice.

Interior-point method first appeared in 1984, when Karmarkar [4]
proposed a polynomial-time method for LO problems. In the worst-case, for
a problem with » inequalities and L bits of input data, Karmarkar’s algorithm

requires o’ ‘SL) arithmetic operations on numbers with O(L) bits.

In [8], Renegar improved the number of iterations to‘ O(J;L) iterations.
Other variants of IPMs, called porential reduction methods, require also only
O(VnL) iterations. This was shown by Ye [13], Freund [1], Todd and Ye
[12] and Kojima et al. [5].

Sonnevend [11] and Meggido [6] introduced a class of IPMs which uses
the so-called central path as a guide line to the set of optimal solutions. These

methods are called path-following methods. A variant of path-following
methods was presented by Gonzaga [3], Monteiro and Adler [7] and Roos

and Vial [10]. Their methods require O(vnL) iterations, which is the best

known upper bound for the iteration complexity of an IPM. Roos et al. in
their book [9] obtained the same upper bound by using an algorithm which is
a so-called primal-dual full-Newton step algorithm. Their upper bound for
the number of iterations is

0
{Jz_nln%]. (1.1)

where € is the absolute accuracy of the objective function and po >0

denotes the initial value of the so-called barrier parameter.

In this paper, by careful analysis, we reduce the upper bound by a factor
V2. The iteration upper bound that we obtained is

l’«f; log g.l
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2. Primal-dual IPM with Full-Newton Steps

The standard form of an LO problem is as follows:
min{c’x : Ax = b, x > 0}, (P)

where ¢, xeR", beR™ and A4 e R™" Any LO problem can be
transformed into standard form, by introducing additional variables [2]. The
problem (P) is often called the primal problem. Associated with any LO
problem is another LO problem called the dual problem, which consists of

the same data (4, b, ¢) arranged in a different way. The dual of (P)is

max{b” y : AT_v +s5s=c,520}, (D)

where s € R” and y € R™; (D) is called the dual problem.

The feasible regions of (P) and (D) are denoted by P and D,

respectively. The (relative) interiors of P and D are denoted by P? and D°.

Finding an optimal solution of (P) and (D) is equivalent to solving the
following system [9]:

Ax=b, x 20,

ATy+3=r, 520

*5=4) (2.1)

where xs is the component-wise (or Hadamard) product of the vectors x and s
and 0 denotes the zero vector. The first line in (2.1) 1s simply the feasibility
constraint for the primal problem (P) and the second line represents the

feasibility constraint for the dual problem (D). The last equation is the so-
called complementarity condition.

By using path-following IPM, the complementarity condition in (2.1)
is replaced by xs = pe, where p is any positive number and e is the all-one

vector. This new constraint is referred to as the centering condition with
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respect to p. The resulting system is
Ax=b, x20,

Ary+s=c, 520,
xs = pe. 2.2)

If system (2.2) has a solution for some p > 0, then a solution exists for
every p > 0 [9]. This happens if and only if interior point condition (IPC) is
satisfied. The solutions are denoted as x(u), ¥(u) and s(n). We call x(p)
the p-center of (P) and (y(n), s(n)) the p-center of (D).

When p runs through (0, =), then x(u) runs through a curve in P°
which is called the central path of (P). Similarly, the set {(y(n), s(n)):
p € (0, =)} is called the cenrra(parh of (D). If p — 0, then x(p), y(1) and
s(u) converge to a solution of (2.1), which means that the central path

converges to the set of optimal solutions of () and (D). On the other hand, if
n — o, then x(u) and (y(p), s(u)) converge to the so-called analytic center

of (P) and (D), respectively.

Next, it will describe how Newton's method can be used to obtain an
approximate solution of system (2.2), for fixed p. Given a primal-dual
feasible pair (x, (v, 5)), we want to define search direction Ax, Ay and As

such that (x + Ax, y + Ay, s + As) satisfy (2.2).

Since Ax=bh and A’ y+s=c, system (2.2) is equivalent to the
following system:
AAx =0,
AT Ay + As =0,

sAx + xAs + AxAs = pe — xs.
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The third equation is nonlinear, due to the quadratic term AxAs. By
neglecting this quadratic term, according to Newton’s method for solving
nonlinear equations, we obtain the linear system

AAx = 0,
ATAy + As = 0,
SAx + xAs = pe - xs. (2.3)

The resulting directions of (2.3) are known as the primal-dual Newton
directions. By taking a step along these directions, one finds new iterates

(x*, (»*, s")) such that x* and s* are positive. The new iterates are given
by
x* = x + Ax, y+ =y + Ay, st =5+ As.

In the process of following the central path to the optimal solution,
by using Newton steps, we generate a sequence of points within the
neighborhood of central path. We need a quantity to measure the proximity
of (x, (v, 5)) to the u-center.

Before defining this proximity measure, we reformulate the linear system
(2.3), by scaling Ax, Ay and As to d,, d, and d; as follows:

dtzrﬁ. dysz‘ dszﬂ‘
i .r Tu =
where
xs
v=_|—.
M

If we define D = diag(y/x/s), then system (2.3) is equivalent to
ADd,, = 0,

(4D)"d, +d, =0,

d, +d; = vy (2.4)
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The first two equations of system (2.4) show that the vectors d, and d
5

l;chlong to the null space and the row space of the matrix AD, respectively.
ese two spaces are orthogonal, therefore, d, and d; are orthogonal. The

orthogonality of d, and d, implies
Ide I? +1ds P =) dy +d |

=ﬂ"“l—v|2. H

Note that 4,, d, (and also dy) are zero if and only if v - v.= 0, which
happens only if v =e, and then x, y and s coincide with the respective
p-centers. Therefore, to measure the ‘distance’ of (x, (v, s5)) to the p-center

we use the quantity 8(x, s; p) defined by

o Ay
8(x, 5 p) = 8(v) = 5| v - v . (2.5)

For any 1 2 0, the t-neighborhood of the p-center is given by the set

{(x, y,5s): xe P, (y,s)e D, &x, s; p) < 1.

After a full-Newton step, the duality gap at the new iterates always
assumes the same value as at the p-centers, i.e., (x*) st =mp (cf [9

Theorem 11.47]). An IPM wi
Figure 1. | with full-Newton steps can be described as in

Primal-dual IPM with full-Newton steps

Input:
an accuracy parameter £ > 0;
a proximity parameter t, 0 < t < [;
strictly feasible (x”, 0, 5%) with (x%)" s = mu® and 8(x%, 5% n%) < v,

a barrier update parameter 0, 0 < 0 < 1.
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begin
x:=x°;s.--s°;y=y°;u.=u°;

while npu = € do

poe=(1-0)w
x =X+ &x;
yi=y+ 4y
s=5+As;
endwhile

end

Figure 1. Primal-dual IPM with full-Newton steps.

3. Analysis of the Primal-dual IPM with Full-Newton Steps

-Newton step on the proximity
) is small enough then
stated in

We first deal with the effect of a full

measure. The next lemma implies that when 8(x, s; p

the primal-dual Newton step is quadratically convergent, as

Corollary 3.1.
Lemma 3.1 (cf. [9, Theorem 11.50)). If &= 8(x, s p) <1, then the

primal-dual Newton step is feasible, i.e., x* and s* are nonnegative.

Moreover, if & <\, then x* and s* are positive and
52

6(x+,s+;p)£m.

Corollary 3.1. If & := &x, sip) < 7‘5 then 8(x*, s* i p) < 5

Initially, the duality gap is nug. In each iteration, it is reduced by the

factor | — 0. Using this, one easily proves the following lemma.
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Lemma 3.2 (cf. [9, Lemma 1L.17)). After at most

LI
[e log T]

iterations, the algorithm stops and we have nu < e

We have the following lemma that will be used in proving the next two
theorems.

Lemma 3.3 (cf. [9, Lemma 11.54)). Let (x, s) be a positive prima}-dua!
pair and y >0 such that x"s = ny. Moreover, let & = §(x, s; p) and let
= (1-0)u Then

2
&(x, s; u*) =(1- 8)8% + —u—
4(1-0)

The next theorems present iteration bound of the primal-dual IPM with
full-Newton steps. ‘

Theorem 3.1. If t1=1/v2 and 0=1/Jn+1, then the algorithm
requires at most

(dn + 1 log f-tﬁ.!

terations. The output is a primal-dual pair (x, s) such that x"s < ¢

Proof. Let us take t = 1/v2. By using Corollary 3.1, since we have
5(x, s; u) < 1/42, after the primal-dual Newton step we have 8(x*, s*: n)
S 1/2. Then, after the update of the barrier parameter to u* = (1 - 0)u with

¥=1/Jn +1, by using Lemma 3.3, we get the following upper bound of
i(xé-‘ S+; l-l+ )2:
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The last equality follows by substituting 0 = l/m . Hence, we obtain
8(x*, s*; u*) < 1/¥2 = 1. This means that the property
8(x, ssn) <t

is maintained after each iteration. Therefore, combining this with Lemma 3.2,
we obtain the theorem. O

Note that Theorem 3.1 holds for every » 2 1. In practice, n is much
larger. For such cases it is worth mentioning that slightly better iteration
bounds can be obtained, as the following theorem.

Theorem 3.2. If © < [0.6687, 0.6773] and © = 1/vn, then for n 2 47,

the algorithm requires at most
0
[JE log f%—.l

iterations.
Proof. Let us take 0 = 1/¥n. By using Lemma 3.1 and Lemma 3.3, we

can verify that if

(1= 1/n)t . 1 23
N-2) M-y o

then 8(x, 5; u) < t is maintained. The region in the (1, n)-space defined by
(3.1) is depicted in Figure 2, where the smallest value of » is around 46.6274
at v = 0.6731, Therefore, n = 47 is the smallest integer value of n which
satisfies (3.1). We can find out that for n 2 47, the inequality (3.1) holds for

t € [0.6687, 0.6773]. Then we have the theorem. m]
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(l-lNﬁ)ﬂ+ 1
1-7) Ty st

b= |
3

8 8
——————————

|
|
|

Figure 2. The region defined by (3.1).

The value of n in Theorem 3.2 can be improved to n > 6, as stated in the
following theorem. '

Theorem 3.3. If t € [0.7433, 0.8289] and 6 = 1/n, then for n> 6,
the algorithm requires at most

- 0
"Jﬁlog—:'-]

iterations.

Proof. We use [9, Theorem 11.52], a sharper quadratic convergence result

of a primal-dual Newton step. This theorem states that if § = &(x, s;

<k
then Y

2
8(x*, 5" p) < 8 :
V2i-5° )
Then, by using Lemma 3.3, we obtain that for 6 = 1/vn

the property
8(x, 5: ) < t is maintained if
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(1- 1/,{;)14 1 2 32)
20 (

Figure 3 depicts the region defined by (3.2). The smallest value of n is
around 5.1971 at t = 0.7968, and we can verify that for the smallest integer

value n = 6, the inequality (3.2) holds for t e [0.7433, 0.8289]. Thus, we

get the theorem. .
©
|
0t
= a-yymet . 1
B AT-7)  A1-1/vm)
5
ot

S < L - y
—" oee o7 ors os e
T

Figure 3. The region defined by (3.2).
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