
INTERNATIONAL CONFERENCE ON APPLIED LIFE SCIENCES (ICALS2012)

Konya, Turkey, September 10-12, 2012

ISALS

This book copy is provided to the 2012 International Conference on Applied Life Sciences by InTech, the premier Open Access publisher. InTech is proud to have been chosen by ISALS as its publishing partner for the Conference.

INTECH
open science | open minds

free online editions of InTech publications can be found at
www.intechopen.com

Conference Proceedings

International Conference on Applied Life Sciences (ICALS2012)
Konya, Turkey, September 10-12, 2012

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2012 InTech
All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source.

Notice
Statements and opinions expressed in the works contributed are those of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published works. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book.

Typesetting InTech DTP Team
Cover InTech Design Team

First published September 2012
Printed in Croatia

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechopen.com

Edited by: **Dr. Farhad Nejadkoorki**
International Conference on Applied Life Sciences (ICALS2012)
ISBN 978-953-51-0725-5

Scientific Committee

Editor

Dr. Farhad Nejadkoorki, Department of Environmental Engineering, Yazd University

Editorial Board

Prof. Mithat Direk, Selcuk University, Turkey
Prof. Muhammad Arshad Javed, University Technology Malaysia, Malaysia
Prof. Kafia Surchi, Salahaddin University, Iraq
Prof. Sukru Dursun, Selcuk University, Turkey
Dr. Saeid Baroutian, SCION, New Zealand
Prof. Swati Kotwal, Nagpur University, India
Prof. Hasan Arman, UAE University, UAE
Dr. Tawanda Mugadza, Midlands State University, Zimbabwe
Dr. Mahmood-UR-Rahman Ansari, Government College University, Pakistan
Dr. Sapto P. Putro, Diponegoro University, Indonesia
Dr. Ahmed Abdelkaway, Menoufia University, Egypt
Dr. Sima Fakheran, Isfahan University of Technology, Iran
Dr. Vrushal Ghoble, University of Mumbai, India
Dr. Piyush Malaviya, University of Jammu, India
Dr. Bennama Rabha, University of Mostaganem, Algeria
Dr. Saji Baby, Geo Environmental, Kuwait

Contents

Preface 17

Paper 1 **Effect of Environmental and Socioeconomically Change on Agricultural Production in Konya Region 19**
Sukru Dursun, Serpil Onder, Ramazan Acar,
Mithat Direk, Osman Mucehver

Paper 2 **MTA Genel Müdürlüğü, 2006b. Araştırma Alanının Topografik Haritası, Konya. Feasibility of Ecotourism Absorption in Desert Zones 37**
H. Zarei Mahmoodabady, M. Yazdi

Paper 3 **Global Energy Consumption Paradigm: Future Trends and Trajectory 45**
Vrushal T. Ghoble

Paper 4 **An Analysis of Iran's Cities Distributions in Related to Earthquake Hazard 51**
Safar Ghaedrahmati, Mohammad Reza Rezaei

Paper 5 **2 Rangeland Dynamics Monitoring using Remotely-sensed Data, in Dehdez Area, Iran 59**
Ali A Torahi

Paper 6 **A Simple Method for Purification of low Levels of Beluga (*Huso huso*) Vitellogenin 65**
Mahdi Paktnat, Mahvash Khodabandeh
Bagher Mojazi Amiri, Hamid Farahmand

Paper 7 **Evaluation of the Effects of Climate Change on Temperature, Precipitation and Evapotranspiration in Iran 73**
M.T. Dastorani and S. Poormohammadi

Paper 8 **Artificial Neural Networks: A Non-linear Tool for Air Quality Modeling and Monitoring 81**
Amirsasha Bnanankhah, Farhad Nejadkoorki

Paper 9 **The Study of the Urban Environment in Old and Modern Forms (Case Study of Yazd, Iran) 87**
Elham Yousefi, Farhad Nejadkoorki

Paper 10 **Biodegradation of Hydrocarbons (Oil Fuels) by *Pseudomonas aeruginosa*, *Candida* sp and *Aspergillus terreus* by Isolated from the Coast Line of Arzew – Oran-Algeria** 93
Kheira Hammadi, Mahjouba Aznouz, Miloud Halbouche

Paper 11 **Economic Impact of Lake Edku Pollution** 99
El-Tatawy Nashwa

Paper 12 **Nitrate Removal from Water Using Synthesis Nanoscale Zero-Valent Iron (NZVI)** 105
Shima Ziajahromi, Ali Daryabeigi Zand and Meysam Khanizadeh

Paper 13 **To Review Climate Change Effects on Basic Resources (A Case Study of These Effects on Zagros Forests)** 111
Majid Loghmanpour, Zhirair Vardanian, Hadi Kiadaliri, Mohsen Elahi

Paper 14 **Rangeland Degradation and Its Impacts on Water Quality in Zayandehroud River Basin** 117
Fateme Bateni, Sima Fakheran + and Alireza Soffianian

Paper 15 **Application of SWOT Analysis in Strategic Environmental Planning: A Case Study of Isfahan/ Iran** 123
Hakimeh Khalifipour, Alireza Soffianian, Sima Fakheran

Paper 16 **Flood Disaster Management in South Africa: Legislative Framework and Current Challenges** 127
Bongumusa M. Zuma, Catherine D. Luyt, Tatenda Chirenda, Roman Tandlich

Paper 17 **A probabilistic Model of Rainfall-Induced Shallow Landslides** 133
Ali Talebi

Paper 18 **Environmental Benefits of Organic Farming** 139
Farhad Nejadkoorki

Paper 19 **The Role of Trees in Improving the Urban Landscape, (Case Study Vli Åsr Street of Tehran City)** 143
Fardad Edalatkhan, Mahdi Shafaghati, Akram Norouzi, Somaye Motaghi, Maryam Mirbahaei

Paper 20 **Analysis of Landscape Pattern Changes in Isfahan City During the Last Two Decades** 149
Neda Bihamta Toosi, Sima Fakheran and Alireza Soffianian

Paper 21 **Monitoring Land Use/Cover Changes Using Different Change Detection Techniques (Case Study: Falavarjan Area, Isfahan, Iran)** 155
Maliheh Alsadat Madanian, Alireza Soffianian and Sima Fakheran

Paper 22 **Demand for Gasoline in United Arab Emirates** 161
Meena Al-Mansoori, Aydin Basarir and Sherin Sherif

Paper 23 **Selective Catalytic Reduction of NO with Ammonia over Nanostructure H-ZSM-5 Supported Transition Metal Oxide Catalysts** 167
A. Niaezi, D. Salari, P. Nakhostin Panahi, S. M. Mousavi

Paper 24 **Sustainability Impact Assessment of Watershed Programs** 175
Korous Khoshbakht, Hadi Veisi and Mohammad Ebrahim Rezai

Paper 25 **Ecotourism Planning of Murat Mountain (Usak, Kütahya/Turkey)** 183
Abdurrahman Dinc, Nurhan Kocan

Paper 26 **A GIS Based Digital Land Resources Framework for Optimal Soil Management in Barda and Awaje Basin, Syria** 191
Said Sawy, Ali Abdel-Hameed and Kais A. Sultan

Paper 27 **Efficacy of Different Plant Extracts Against Diamondback Moth, *Plutella xylostella* (L.) on Cauliflower** 199
Jan M Mari

Paper 28 **Toxic Effect of Fertilizers on Inferior Plants Resed as Biological Models** 205
Fadila Khaldi, Houria Berrebbah and Med. Réda Djebbar

Paper 29 **Rare Plant Species of the Protected Area of Kalmand-Bahadoran, Yazd Province, Iran** 211
Ali Akbar Karimian

Paper 30 **The Alkaline Phosphatase Levels in the Seminal Plasma and Sperms of Sub-Fertile Patients and Normospermic Men** 217
Faris N. A. Alhady Alibawi, Sahib Y. Al-Morshidy, Ali G. Alhuweizi

Paper 31 **Influence of Lactose and Sucrose on Growth and Acetaldehyde Production by Three Strains of *Streptococcus thermophilus*** 223
Rabha Bennama, Victor Ladero, Miguel A Alvarez, María Fernández and Ahmed Bensoltane

Paper 32 **Characterization of Quercus Species Distributed in Jordan Using Molecular Markers** 229
Mohammad S. Jawarneh, Mohammad H. Brake, Riad Muhidat, Hussein M. Migdadi, Jamil N. Lahham, Ahmad Ali El-Oqlah

Paper 33 **Honey Bee Venom Modulates Hyperglycemia in Response to Hyperandrogenism in Polycystic Ovarian Syndrome-Induced Wistar Rats** 235
M Nabiuni, S Nasri, F Poyanmanesh, L Karimzadeh, Z Nazari

Paper 34 **Effects of Heavy Metals on the Snails *Helix Aspersa* Bioindicators of the Environment Pollution for Human Health** 241
Nedjoud Grara, Amira Atailia, Mounir Boucenna, Fadila Khaldi, Houria Berrebbah and Mohamed Reda Djebbar

Paper 35 **Honey Bee Venom Will Differentiate Mesenchymal Stem Cells in to the Osteocyte** 247
Mohammad Nabiuni, Elham Azimi, Abdolhosein Shiravi, Zahra Nazari

Paper 36 **Homocysteine and Trace Elements Levels in Patient with Ischemic Heart Disease and some Associated Diseases** 251
Saad Merza Al-Araji, Ala H. Abbase, Zainab F. Hassan

Paper 37 **Total Phenolic Content, Antioxidant, Antimicrobial and Anticancer Activities of *Lespedeza Bicolor* Turcz (Papilionaceae)** 259
Samiullah, Asghari Bano, Sisay Girmay and Ghee Tan

Paper 38 **Rattus Rattus Parasites of El-Kala National Park (Algeria)** 265
Farida Becir, Idir Bitam, Hadjira Hannachi, M'Barek Chetoui and Zihad Bouslama

Paper 39 **Assessment of Phylogenetic Inter-Relationships in Mud Crab *Genus Scylla* (Portunidae) Based on Mitochondrial DNA Sequence** 269
Darlina Md. Naim, Hjurul Adila-Aida Mohamad Rosly and Siti Azizah Mohd. Nor

Paper 40 **Comparison of the MAKLER & HINRICHES (1993) Technique Versus Application of Hepes Lysis Solvent in Determining the Activities of *Plasmodium Lactate Dehydrogenase (pLDH)* in *Plasmodium berghei*- Infected Erythrocytes** 277
Shafariatul A.I, Hasidah M. Sidek, Salmijah Surif

Paper 41 **Detection of Rifampin- and Isoniazid-Resistant Genes in *Mycobacterium Tuberculosis* Clinical Isolates** 283
Noraziah Mohamad Zin, Nor Farha Hussain, Rahizan Isa, Mohamed Kamel A Ghani, Nik Marzuki Sidik

Paper 42 **Contribution to the Study of the Impact of Phosphate Fertilizer on Biochemical Parameters of *Triticum Durum*** 289
Sabrina Bouchelaghem, Djebbar M.R

Paper 43 **Frost Occurrence Risk Management for Pistachio Industry in Rafsanjan** 293
Alireza Hosseini, Mohammad-Saber Fallah Nezhad, Yahya Zare Mehrjardi, Reza Hosseini

Paper 44 **Study on Pollen Germination and Pollen Tube Growth of Five Iranian Apricot Cultivars on In Vitro Condition** 299
Reza Kamrani

Paper 45 **Influence of Congruent- Incongruent Teaching and Learning Style on Agricultural and Natural Resources Student Performance** 303
Farzad Eskandari

Paper 46 ***Tagetes Erectus* – A Tool for the Management of *Alternaria Alternata* Strains of Tomato** 309
Sobiya Shafique, Shazia Shafique

Paper 47 **Biological Control Potential of *Parthenium Hysterophorus* Against *Fusarium Solani* – A Cause of Fusarium Wilt in Potato** 315
Shazia Shafique, Sobiya Shafique

Paper 48 **Antifungal Activity of Essential Oils Extracted from Clove, Cumin and Cinnamon Against Blue Mold Disease on Citrus Fruit** 321
Tehmina Anjum and Nosheen Akhtar

Paper 49 **Clinical, Serological, Hormonal, Bacteriological and Molecular Detection of Brucellosis in Aborted Cows and Buffalos** 327
Jabbar A.A. AL-Sa'aidi, Mohsen A. Al-Rodh, Ali Anok Najum

Paper 50 **Greenhouse Experiments of Symbiotic Effectiveness of Acid-Aluminium Tolerance *Bradyrhizobium Japonicum* Strains on Soybean Plant** 337
Nisa Rachmania Mubarik, Hanum Habibah and Aris Tri Wahyudi

Paper 51 **A Gravity Model Analysis of Egypt's Trade and some Economic Blocks** 343
El-sayed M. A.

Paper 52 **Competitive Interaction of Common Lambsquarters (*Chenopodium album L.*) and Maize (*Zea mays L.*) at Different Time of Emergence and Density** 351
Vahid Sarabi, Mehdi Nassiri Mahallati, Ahmad Nezami and Mohammad Hasan Rashed Mohassel

Paper 53 **Environmental and Economic Evaluation for the Breeding of Grass Carp in Egypt's Water Channels** 357
Ahmed Mohammed Ahmed, Abdelbaky Mousa Abdelbaky Elshaib, Abdelmagid Hassan Abdelmagid

Paper 54 **Effect of Priming on Dormancy Breaking and Seedling Establishment of Caper (*Capparis spinosa L.*)** 365
Saeed Khaninejad, Iman Hessam Arefi, Mohammad Kafi

Paper 55 **Factors Influencing Consumers' Willingness to Pay for Agricultural Organic Products (AOP)** 371
Mahtab Pouratashi

Paper 56 **Effect of Fungal Growth Inhibition from Pomegranate Flower and Peel Extracts** 377
Mahsa Shafighi, Leila Amjad, Mahboubeh Madani

Paper 57 **Investigating Importance and Effects of Climate Changes in Agriculture in South Khorasan Province and Recognizing Appropriate Extension Education Activities in Confronting Rhem** 381
Farhood Golmohammadi, Mohsen Arazmjoo, Seyed Hamid Razavi

Paper 58 **Allelopathy an Environmentally Friendly Method for Weed Control** 387
Hamid Sodaeizadeh, Zahra Hosseini

Paper 59 **Improving Bread Wheat Productivity and Reduce Use of Mineral Nitrogen by Inoculation with Azotobacter and Azospirillum Under Arid Environment in Upper Egypt** 393
Abd El-Lattief, E.A.

Paper 60 **Information Technology and E-Commerce Reflexes on Total and Agricultural Trade in Egypt** 399
Mahmoud M. Fawaz, Abdelbaky M. Elshaib, Roshdy Sh. El Adwy

Paper 61 **Effect of Heat on Egg White Proteins** 407
Zoubida Akkouche, Lyes Aissat, Khodir Madani

Paper 62 **Assessment of Environmental Quality of Coastal Fishpond Areas Using Macrofaunal Structure: Multivariate and Graphical Approaches** 415
Sapto Purnomo Putro, Riche Hariyati

Paper 63 **Dietary Manipulations for Enhancing Cardio-Protective Fatty Acids in the Milk of Dairy Cows** 423
Muhammad Subhan Qureshi, Tawheed Ali Azeemi

Paper 64 **The Issue of Food Subsidies in Egypt Following the Revolution of January 25** 431
Dr. Roshdy Sh. El Adwy

Paper 65 **The Effect of Hydro-Alcoholic Extract of Fenugreek Seeds on Female Reproductive Hormones in Mice** 437
Mehrdad Modaresi, Behnaz Mahdian, Alireza Jalalizand

Paper 66 **Determining Morphological Traits and Genetic Diversity of Rose Aphids Using RAPD and RFLP-PCR Molecular Markers** 445
Ali Reza Jalalizand, Azadeh Karimi, Mehrdad Modaresi, Esmaeil Mahmoodi

Paper 67 **Synthesis and Characterization of Arylazopyrazolopyrimidines Dyes and Studying their Antibacterial Activity** 453
K. A. Ahmed, M. A. Elkashouti, S. T. Tawfeek and Sh. S. Mohamed

Paper 68 **Synthesis of Partially Carboxymethyl Cellulose Derived from Rice Straw and Its Utilization as Dye Adsorbent** 459
S. Tawfik, S. H. Abd Elsalam, H. M. El-Hennawi, I. Abd El-Thalouth, E. Adel

Preface

The organizing committee warmly welcomes our distinguished delegates and guests to the 2012 International Conference on Applied Life Sciences (ICALS 2012) held on September, 10-12, 2012 in Konya, Turkey. ICALS 2012 is organized by International Society for Applied Life Sciences (ISALS), and supported by ISALS Members and scholars from universities and institutes all around the world. The conference Program Committee is truly international, with membership from the Americas, Europe, Asia, Africa and Oceania. The main conference themes and tracks are Environment, Biology and Agriculture. The major goal of this event is to provide international scientific forums for exchange of new ideas in life sciences through discussions with international peers. This proceeding records the fully refereed papers presented at the conference.

The conference has gathered technical research submissions related to all aspects of main conference themes. All the submitted papers in the proceeding have been peer reviewed by the reviewers drawn from the scientific committee, external reviewers and editorial board depending on the subject matter of the paper. After the careful peer-review process, the submitted papers were selected on the basis of novelty, importance, and transparency for the purpose of the conference. The selected papers and additional late-breaking contributions to be presented as lectures will make an exciting technical program. The conference will therefore be a unique event, where attendees will be able to appreciate the latest results in their field of expertise, and to attain additional knowledge in other fields. We hope that all participants and other interested readers benefit scientifically from the proceedings and also find it motivating in the process.

With the best regards,

The Organizing Committee

September 10-12, 2012

- [11] OIE Manual of diagnostic tests and vaccines for terrestrial animals, 5th edition, (2009) part 2, section 2.3, chapter 2.3.1.
- [12] Alton, G.G.; Jones, L.M.; Angus, R.D. and Verger, J.M. (1988). Techniques for the brucellosis laboratory. 1st ed. INRA Paris. Ch.2 p. 114.
- [13] Quinn, P.J.; Carter, M.E.; Markey, B. and Carter, G.R. (2006). Clinical veterinary microbiology. 6th ed. Mosby an imp. Wolf, London. P: 261-267.
- [14] Carvalho Neta, A.V., Steynen, A.P.R., Paixmo, T.A., Miranda, K.L., Silva, F.L., Roux, C.M., Tsolis, R.M., Everts, R.E., Lewin, H.A., Adams, L.G., Carvalho, O.A.F., Lage, A.P., Santos, R.L., (2008). Modulation of bovine trophoblastic innate immune response by *Brucella abortus*. *Infection and Immunity* 76, 1897-1907.
- [15] Krishnan, L.; Guibert, L.; Russell, A.S.; Wegmann, T.G. and Belosevic, M. (1996). Pregnancy impaire resistance C57Bl/6 mice to *Lishmania* major infection and cause decrease antigenic specific IFN-gamma response and increased production of T helper 2 cytokines. *J.Immunol.* 156:644-651.
- [16] Nicoletti, P. (1984). Diagnosis and Vaccination for the control of brucellosis in the Near East. FAO, Ani. Prod. and Hlth paper. Series No. 38, Rome.
- [17] Young, E. J. (1995). An overview of human brucellosis. *Clin. Infect. Dis.* 21: 283-290.
- [18] Enright, F.M., Walker, J.V., Jeffers, G., Deyoe, B.L., (1984). Cellular and humoral responses of *Brucella abortus*-infected bovine fetuses. *American. Journal of Veterinary Research* 45, 424-430.
- [19] Enright, F.M., Samartino, L., (1994). Mechanisms of abortion in *Brucella abortus* infected cattle. In: *Proceedings of the 98 Annual Meeting of the United States Animal Health Association*. USDA, Richmon, Virginia, pp. 88-95.
- [20] Anderson, T.D., Meador, V.P., Cheville, N.F., (1986b). Pathogenesis of placentitis in the goat inoculated with *Brucella abortus*. II. Ultrastructural studies. *Veterinary Pathology* 23, 227-239.
- [21] Gorvel, J.P., Moreno, E., (2002). *Brucella* intracellular life: from invasion to intracellular replication. *Veterinary Microbiology* 90, 281-297.
- [22] Samartino, L.E., Traux, R.E., Enright, F., (1994). Invasion and replication of *Brucella abortus* in three different trophoblastic cell lines. *Zentralblatt fur Veterinarmedizin B* 41, 229-236.
- [23] Pizarro-Cerda, J., Moreno, E., Gorvel, J.P., (2000). Invasion and intracellular trafficking of *Brucella abortus* in non phagocytic cells. *Review Microbes and Infection* 2, 829-835.
- [24] Fekete, A., Bantle, J.A., Halling, S.M. (1990). Detection of *Brucella* by polymerase chain reaction in bovine fetal and maternal tissues. *J. Vet. Diagnostic Invest.* 4: 79-83.

Greenhouse Experiments of Symbiotic Effectiveness of Acid-Aluminium Tolerance *Bradyrhizobium japonicum* Strains on Soybean Plant

Nisa Rachmania Mubarik^{1,*}, Hanum Habibah² and Aris Tri Wahyudi¹

¹ Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University,

Jalan Agatis, IPB Dermaga, Bogor, Indonesia

² Postgraduate School of Bogor Agricultural University, Bogor, Indonesia

* Corresponding author, Tel/ fax: +62-251-8622833

Email: nrachmania@ipb.ac.id; mubariknisa@yahoo.com

Abstract

The aim of the research was to study the symbiotic effectiveness of seven strains of acid-aluminium tolerance *Bradyrhizobium japonicum* on soybean plant cultivar Slamet. The research conducted in the greenhouse and used complete randomized design with seven inoculation treatments, two controls and one reference strain which used the nutrient solution at pH 4.5. Each treatment had three replications. The all of parameters were measured at 37 days after planting (DAP). Result of the experiments showed that mutant Bj 11 (19) inoculated to soybean plant had the highest symbiotic effectiveness. The treatment of Bj 11 (19) could increase the dry weight of t upper crop (64,88%), N-uptake (190,88%), and symbiotic effectiveness (65,87%) better than treatments with and without nitrate control and the reference strain, USDA 110.

Keywords: soybean, acid-aluminium tolerance, *Bradyrhizobium japonicum*, symbiotic effectiveness.

1. Introduction

Availability of sufficient nitrogen is one of the keys to increase the productivity of soybean plants. Soybean plants generally take nitrogen from the air by root-nodule bacteria and then the bacteria convert nitrogen into ammonia that is needed for plant growth. *Bradyrhizobium japonicum* is one species of slow-growing nodule bacteria which is very important to uptake atmospheric nitrogen in soybean plant [1].

Acid soils usually cause problems in soybean production, such as consist of low phosphorus and high aluminium [2] that strongly inhibit the growth of symbiotic nitrogen fixation bacteria on soybean plants [3]. The failure of nodulation under acid soil conditions is common, especially in soils of pH less than 5.0 [4]. *B. japonicum* is more tolerant at low pH, around pH 4.0-4.5 than

the fast growing nodule bacteria, such as *Rhizobium* [5]. Previous research by Endarini et al. [6] had managed to get acid aluminium tolerant *B. japonicum* from several locations in Indonesia [6]. The results showed that Bj 11 isolate has the highest tolerance on acid and had a good ability to grow on pH 4.5 media. Some of the strains showed more competitive than reference strain, USDA 110, in testing of the effectiveness symbiotic at greenhouse. Furthermore, Wahyudi et al. [7] had constructed several strains of acid-aluminium tolerance *B. japonicum* with increased symbiotic effectiveness through transposon TN5 mutagenesis, such as Bj 11 (20) and KDR 15 (37). Some mutants showed the ability to form root nodules more than the wild-type strains viz. Bj 11 (5), Bj 11 (19), Bj 11 (20), and KDR 15 (37).

The efforts to obtain potential strains are still wide open in agricultural research. The purpose of the research was aimed to study the symbiotic effectiveness of seven strains of acid-aluminium tolerance *Bradyrhizobium japonicum* on soybean plant cultivar Slamet.

2. Materials and Methods

2.1. Materials

Acid tolerant isolates *B. japonicum* were used in the study viz. Bj 11 (wt), KDR 15 (wt), Bj 13 (wt), Bj 11 (5), Bj 11 (19), Bj 11(20), KDR 15 (37), and USDA 110. All bacteria were collected at IPB Culture Collection, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University. Soybean seeds cultivar Slamet were obtained from Research Institute for Food Crops and Genetic Resources, Bogor, Indonesia.

2.2. Methods

Experimental Design. All the data collected in greenhouse were analyzed using complete randomized block design using Statistical Analysis System (SAS) and the means at $p < 0.05$ level of significance. The experiment was arranged into seven inoculation treatments, two controls and one standard strain which used the nutrient solution at pH 4.5. Each treatments were made in three replications. Growth parameters such as height of plant, dry-weight of upper crop, dry-weight of nodules, number of nodules, N uptake of plants, nitrogenase activity of root nodule, and symbiotic effectiveness were determined.

Medium and Inoculants Preparation. *Bradyrhizobium japonicum* isolates were grown on Yeast Mannitol Agar (YMA) for 7-8 days at room temperature. The YMA media consist of mannitol (10 g/L), K_2HPO_4 (0.5 g/L), $MgSO_4 \cdot 7H_2O$ (0.2 g/L), NaCl (0.2 g/L), yeast extract (0.5 g/L), added with 0.0025% congo red and rifampicin (50 μ g/ml). The isolates were resistant to rifampicin [7] & [8]. Then they were subcultured into Yeast Mannitol Broth (YMB) and incubated for seven days with 125 rpm at room temperature.

Soybean Seed Inoculation. Soybean seeds were selected based on size and healthiness (able to shoot). Seed surface were sterilized using 95% alcohol for 10 seconds and 5% H_2O_2 for five minutes then rinsed seven times using sterilized water. The seeds are germinated in a petri dish at room temperature without light. Two days old sprouts grown in Leonard jar, pots filled with sand [7] which filled with N-free nutrient solution of pH 4.5 [9]. Each sprout was inoculated with

10^8 cell. ml^{-1} of *B. japonicum*. N-free nutrient solution and nutrient solution contained KNO_3 as control was added every second day. All treatment plants were maintained until 37 DAP.

Plant Maintenance at Greenhouse. During soybean plants growing in the greenhouse regularly added with sterile nutrient solution into the bottom of Leonard bottle. Since 10 days after planting (DAP), plants sprayed with fungicide (1g/L) once a week. Harvesting plants were done by cutting plants at the cotyledon to the former boundary separating the top and plant roots. The roots are removed from the bottle and carefully cleaned of sand and charcoal then washed.

Test of Nitrogenase Activity. Nitrogenase activity was measured by acetylene reduction using gas chromatography. Each of root and nodule soybean plant put into incubation bottle and then sealed with a rubber cover. The next stage was to capture gas from the bottle as much as 2 ml and replaced it with the injection of 2 ml acetylene gas. The bottles were incubated for 30 minutes and then 0.1 ml was taken for gas injected into the gas chromatography Shimadzu 17A. There are three triplicates for each treatment. Ethylene gas produced was calculated based on peak areas on paper chromatograms. Nitrogenase activity was defined as the total amount of ethylene formed per number of plants per hour in units of μ mol [8].

Symbiotic Effectiveness Test. Symbiotic effectiveness values (SE) was obtained by formula of Gibson [10] SEN (Symbiotic Effectiveness N) = percentage of dry weight of plants inoculated test strain to dry weight of plants treated with KNO_3 and SER (Symbiotic Effectiveness R) = percentage of dry weight of plants inoculated test strain to dry weight of plants treated with reference strain, USDA 110.

Test of N Total Plant. N Total number of plant referred to the N total number of the canopy. Amount of N content was determined by Kjeldahl method [8].

3. Results and Discussion

3.1. Results

Bacterial Isolate Growth. Isolates were able to grow on YMA which were added with 0.0025% congo red and 50 μ g/ml rifampicin after 7 days incubated on room temperature. Morphology of *B. japonicum* colonies were mucoid, not quite able to absorb congo red, and curve elevated (Fig.1)

Fig 1. The growth of *Bradyrhizobium japonicum* Bj 11 (19) on YMA media + 0.0025% congo red + 50 μ g/ml rifampicin ten days after inoculation.

Number and Dry-Weight of Nodules. Inoculation of various strains of *B. japonicum* on soybean cultivar Slamet showed variation number of nodule between 9-21 nodule per plant. The highest number of nodule was found in the plant inoculated with mutant strain, Bj 11 (wt) (Table 1). Most of nodules were located on the secondary roots. The range of nodule dry-weight was 0.0089-0.0440 g per plant. The highest nodule dry-weight presented in soybean plant inoculated by BJ 11 (5) (Table 1).

Height of Plant and Dry-weight of Upper Crop. All treatments were inoculated with *B. japonicum* strains showed height plant higher than control N without inoculation, except Bj 11 (20) and KDR 15 (37). In general, the dry-weight of upper crop showed significantly different with control without inoculation and without added with 0.05% KNO₃.

Nitrogenase Activity. Inoculation of various strains of *B. japonicum* on soybean cultivar Slamet were significantly influence on the activity of nitrogenase. Mutant strain Bj 11 (5) had a higher nitrogenase activity (12,79 μ mol 2 plant⁻¹) and significantly different than the other strains except Bj 11 (wt) and reference strain, USDA 110 (Table 1).

Symbiotic Effectiveness. The highest symbiotic effectiveness was found in the plant inoculated with mutant strain Bj 11 (19) of 165,87% compared to control N effectiveness and 156,78% compared to USDA 110. While strain KDR 15 (37) showed the lowest symbiotic effectiveness only 97,30% (Table 1).

N Uptake. In general, N uptake in plants inoculated with *B. japonicum* strains were significantly different with control treatments, except strain KDR15 (37). Maximum N uptake of the plant was noticed with the strain Bj 11 (19) up to 20,10 mg N plant⁻¹ and significantly different with control treatments (Table 1).

3.2. Discussion

The symbiotic interaction between soybean and root nodule bacteria played an important role in increasing the plant growth of soybean plant. Effectivity of a root nodule bacteria in fixing nitrogen were affected by the compatibility between bacteria and the soybean plant [11]. Data on the effect of inoculation acid-aluminium tolerance *B. japonicum* on nodulation and vegetative growth of soybean plant (Table 1) showed that inoculation of root nodule bacteria could increase height of could increase plant, and dry weight of upper-crop up to 37 DAP. Increasing in nodule dry weight could increase N fixation and the plant growth [12]. The nodule dry weight was positively correlated with the ability of plants to fix N and dry weight of the shoot. In the study, three strains viz. Bj 11 (wt), Bj 11 (5), and Bj (19) showed the best on height of plants, dry weight of upper crop, and dry weight of nodule. The highest symbiotic effectiveness, dry-weight of upper crop, and N uptake was found in the soybean plant inoculated with Bj 11 (19) compared to plant inoculated with other strains and the reference strain, USDA 110. Bj 11 (19) was proposed to be useful isolate for soybean plant on acid soil pH 4.5. The success or failure of inoculation depends on the competitive nodulation ability against indigenous bradyrhizobia under natural conditions [4].

Treatment	Number of nodule (nodule plant ⁻¹)	Dry-weight of nodule (g plant ⁻¹)	Height of plant (cm)	Nitrogenase activity (μ mol 2 plant ⁻¹ hour ⁻¹)	Dry-weight of upper crop (g plant ⁻¹)	N uptake (mg N plant ⁻¹)	SEN(%)	SER (%)
Bj 11 (20)	17	abc	0,0338	54,4	d	10,44	b	0,7407
Bj 11 (19)	16	abc	0,0377	ab	69,3	10,17	b	0,9083
Bj 11 (5)	10	c	0,0440	a	67,8	12,79	a	0,8317
Bj 11 (wt)	17	abc	0,0397	a	71,4	12,54	a	0,8447
Bj 13 (wt)	21	a	0,0262	bc	60,7	c	9,79	b
KDR 15(37)	9	c	0,0089	d	48,8	d	9,38	b
KDR 15(wt)	20	ab	0,0373	ab	63,6	ab	10,23	b
USDA 110	12	bc	0,0241	c	63,0	b	12,21	a
Control N	0	d	0	d	46,0	d	0	c
Control NO	0	d	0	d	37,3	e	0	c

Table 1. Effect of inoculation of *B. japonicum* on soybean cultivar Slamet at 37 DAP using N-free solution at pH 4.5 + A150 μ M

Numbers on the same column followed by the same letter were not significantly different based on Duncan Multiple Range Test ($\alpha = 0.05$). 0 = no detection, N: without inoculation consist of KNO₃ 0,05%, NO: without inoculation and without KNO₃ 0,05%, Symbiotic Effectiveness (SE) against N/R

4. Conclusions

Inoculation of acid-aluminium tolerant *Bradyrhizobium japonicum* lead to good nodulation, vegetative growth, and symbiotic effectiveness of soybean cultivar Slamet at pH 4.5. Mutant of *Bradyrhizobium japonicum* strain Bj 11 (19) could increase the dry weight of the upper crop (64,88%), the

N-uptake (190.88%), symbiotic effectiveness (65.87%) better than treatments with and without nitrate and the standard strain, USDA 110.

5. Acknowledgements

This research was funded by Incentive Programs for Applied Research the Ministry of Research and Technology, Republic of Indonesia to NRM. Previous research was supported by competitive grants, DGHE, Ministry of Education, Republic of Indonesia to ATW.

6. References

- [1] R.M. Atlas, R. Bartha. *Microbial Ecology, Fundamentals and Application*. Ed ke-4. Menlo Park: Addison Wesley Longman, 1998.
- [2] H.H. Keyser, D.N. Munns. Tolerance of rhizobia to acidity, aluminium and phosphate. *Soil. Sci. Soc. Am. J.* 1979, 43:519-523.
- [3] A.E. Richardson, J.S. Richard, A.D. Michael, G.R. Barry. Expression of nodulation genes in *Rhizobium leguminosarum* biovar *trifolii* is affected by low pH and by Ca and Al ions. *Appl. Environ. Microbiol.* 1988, 10: 2541-2548.
- [4] C. Appunu, B. Dhar. Symbiotic effectiveness of acid-tolerant *Bradyrhizobium* strains with soybean in low pH soil. *Afr. J. Biotechnol.* 2006, 5:842-845.
- [5] R.P. Tiwari, W.G. Reeve, A.R. Glenn. Mutation conferring acid sensitivity in the acid-tolerant strains *Rhizobium meliloti* WSM419 and *Rhizobium leguminosarum* biovar *viciae* WSM710. *FEMS Microbiol. Lett.* 1992, 100:107-112.
- [6] T. Endarini, A.T. Wahyudi, Tedja-Imas. Selections of acid-alumunium *Bradyrhizobium japonicum* indigenous strains. (In Indonesia Languge) *Hayati* 1995, 2:74-79.
- [7] A.T. Wahyudi, A. Suwanto, Tedja-Imas, A. Tjahyoleksono. Screening of acid-aluminium tolerant *Bradyrhizobium japonicum* strain analysis of marker genes and competition in planta. *Aspac. J. Mol. Biol. Biotechnol.* 1998, 6:13-20.
- [8] P. Somasegaran, H.J. Hoben. *Handbook for Rhizobia. Methods in Legume-rhizobium Technology*. New York: Springer-Verlag, 1994.
- [9] A.K. Alva, D.G. Edwards, B.J. Carroll, C.J. Asher, P.M. Greehoff. Nodulation and early growth of soybean mutants with increased nodulation capacity under acid soil infertility factors. *Agron. J.* 1988, 80: 836-84.
- [10] A.H. Gibson. Methods for Legums in Glasshouses and Controlled Environment Cabinets. In: F.J. Bergensen (ed.). *Methods for Evaluating Biological Nitrogen Fixation*. New York: John Wiley & Sons. 1980, pp. 139-184.
- [11] M.T. Madigan, J.M. Martinko, J. Parker. *Biology of Microorganisms*. 9th Ed. New Jersey: Prentice Hall, 2000.
- [12] D.J. Mathews, P. Hayes. Effect of root zone temperature on early growth nodulating and nitrogen fixation in soybean. *J. Agric. Sci.* 1982, 96:371-376.

A Gravity Model Analysis of Egypt's Trade and Some Economic Blocks

El-Sayed M. A.

Department of Economic & Rural Development, Suez Canal University, El-Arish, Egypt

Abstract

This paper aims to study the economic effects of trade flows between Egypt and some economic blocs, where study confine to AFTA agreement particularly a Arab interface business and agreements of each bloc COMESA and EU generally because of strength opportunities for these blocs by using descriptive analysis and Gravity Model (GM). The major results confirmed the efficiency of the model in explaining Egyptian trade flow for the three previous blocs. Based on the above results, the study recommends continuing to increase the volume of foreign trade, in addition to reducing the constraints faced by Intra-Arab trade.

Keywords: Economic Effects of Trade Flows, Economic Blocks, Gravity model approach

1. Introduction

Trade among Arab countries (ACs) has been consistently weak in spite of several efforts to engage into different forms of regional economic integration. The most important attempts to achieve Arab economic integration were the agreement of 1953 on Transit Trade, the Common Market attempt of 1964, and the agreement of 1981 on the facilitation and development of trade, all signed under the auspices of the Arab League. These attempts, in addition to about 135 bilateral trade-related agreements, were not capable of stretching inter-trade beyond its peak of 10 percent of the total trade of ACs [1].

In 1994, the Intra-trade of ACs as percentage of their total exports was around 8.3 percent. This rate compares unfavorably with the corresponding rates of many regional groupings from both Developed and Developing countries. The latter ratios were 69.9 percent for APEC, 61.7 percent for EU, 47.6 percent for NAFTA, and 11.6 percent for EFTA. For regional groupings from the Developing countries these rates were 18.2 percent for MERCOSUR (Latin America), 12.0 percent for UEMOA (West Africa), and 21.2 percent for ASEAN (South-East Asia).⁽¹⁾

These rates are not strictly comparable across groupings. Difference in the degree of development, size, and weight in international trade of the different countries of the groupings, explain to a great extent the observed variation between these regional groups. This can be said, however, the extent of Intra-Arab trade is arguably weaker than what it should have been given the common historical, religious, social, cultural, and language characteristics shared by these countries.

Many factors were presented to explain the weakness of Intra-Arab trade and the obvious failure of previous Arab regional agreements to stimulate trade among Arab countries. These factors

1 (1) UNCTAD (1997): *Handbook of International Trade and Development Statistics*.