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Abstract— Utilizing data mining tasks such as classification on
spatial data is more complex than those on non-spatial data. It is
because spatial data mining algorithms have to consider not only
objects of interest itself but also neighbours of the objects in
order to extract useful and interesting patterns. One of
classification algorithms namely the ID3 algorithm which
originally designed for a non-spatial dataset has been improved
by other researchers in the previous work to construct a spatial
decision tree from a spatial dataset containing polygon features
only. The objective of this paper is to propose a new spatial
decision tree algorithm based on the ID3 algorithm for discrete
features represented in points, lines and polygons. As in the ID3
algorithm that use information gain in the attribute selection, the
proposed algorithm uses the spatial information gain to choose
the best splitting layer from a set of explanatory layers. The new
formula for spatial information gain is proposed using spatial
measures for point, line and polygon features. Empirical result
demonstrates that the propesed algorithm can be used to join
two spatial objects in constructing spatial decision trees on small
spatial dataset. The proposed algorithm has been applied to the
real spatial dataset consisting of point and polygon features. The
result is a spatial decision tree with 138 leaves and the accuracy
is 74.72%.

Keywords— 1D3 algorithm, spatial decision tree, spatial
information gain, spatial relation, spatial measure

1. INTRODUCTION

Utilizing data mining tasks on a spatial dataset differs with
the tasks on a non-spatial dataset. Spatial data describe
locations of features. In a non-spatial dataset especially for
classification, data are arranged in a single relation consisting
of some columns for attributes and rows representing tuples
that have values for each attributes. In a spatial dataset, data
are organized in a set of layers representing continue or
discrete features. Discrete features include points (e.g. village
centres), lines (e.g. rivers) and polygons (e.g. land cover
types). One layer relates to other layers to create objects in a
spatial dataset by applying spatial relations such as topological
relations and metric relation. In spatial data mining tasks we
should consider not only objects itself but also their
neighbours that could belong to other layers. In addition, types
of attributes in a non-spatial dataset include numerical and
categorical meanwhile features in layers are represented by
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geometric types (polygons, lines or points) that have
quantitative measurements such as area and distance.

This paper proposes a spatial decision tree algorithm to
construct a classification model from a spatial dataset. The
dataset contains only discrete features: points, lines and
polygons. The algorithm is an extension of ID3 algorithm [1]
for a non-spatial dataset. As in the ID3 algorithm, the
proposed algorithm uses information gain for spatial data,
namely spatial information gain, to choose a layer as a
splitting layer. Instead of using number of tuples in a partition,
spatial information gain is calculated using spatial measures.
We adopt the formula for spatial information gain proposed in
[2]. We extend the spatial measure definition for the
geometry type points, lines and polygons rather than only for
polygons as in [2].

The paper is organized as follows: introduction is in section
I. Related works in developing spatial decision tree
algorithms are briefly explained in section 2. Section 3
discusses spatial relationships. We explain a proposed spatial
decision tree algorithm in section 4. Finally we summarize
the conclusion in section 5.

II. RELATED WORKS

The works in developing spatial data mining algorithms
including spatial classification and spatial association rules
continue growing in recent years. The discovery processes
such as classification and association rules mining for spatial
data are more complex than those for non-spatial data,
because spatial data mining algorithms have to consider the
neighbours of objects in order to extract useful knowledge [3].
In the spatial data mining system, the attributes of the
neighbours of an object may have a significant influence on
the object itself,

Spatial decision trees refer to a model expressing
classification rules induced from spatial data. The training
and testing records for this task consist of not only object of
interest itself but also neighbours of objects. Spatial decision
trees differ from conventional decision trees by taking account
implicit spatial relationships in addition to other object
attributes [4]. Reference [3] introduced an algorithm that was
designed for spatial databases based on the ID3 algorithm [1].
The algorithm considers not only attributes of the object to be



classified but to consider also attributes of neighbouring
* objects. The algorithm does not make distinction between
thematic layers and it takes into account only onc spatial
relationship [4]. The decision tree from spatial data was also
proposed as in [5]. The approach for spatial classification
used in [5] is based on both (1) non-spatial properties of the
classified objects and (2) attributes, predicates and functions
describing spatial relation between classified objects and other
features located in the spatial proximity of the classified
objects. Reference [6] discusses another spatial decision tree
algorithm npamely SCART (Spatial Classification and
Regression Trees) as an extension of the CART method. The
CART (Classification and Regression Trees) is one of most
commonly used systems for induction of decision trees for
classification proposed by Brieman et. al. in 1984. The
SCART considers the geographical data organized in thematic
layers, and their spatial relationships. To calculate the spatial
relationship between the locations of two collections of spatial
objects, SCART has the Spatial Join Index (SJI) table [7] as
one of input parameters. The study [2] extended the ID3
algorithi [1] such that the new algorithm can create a spatial
decision tree from the spatial dataset taking into account not
only spatial objects itself but also their relationship to its
neighbour objects. The algorithm generates a tree by selecting
the best layer to separate a dataset into smaller partitions as
pure as possible meaning that all tuples in partitions belong to
the same class. As in the 1D3 algorithm, the algorithm uses the
information gain for spatial data, namely spatial information
gain, to choose a layer as a splitting layer. Instead of using
number of tuples in a partition, spatial information gain is
calculated using spatial measures namely area [2].

I, SPATIAL RELATIONSHIP

Determining spatial relationships between two features is a
major function of a Geographical Information Systems (GISs).
Spatial relationships include topological [8] such as overlap,
touch, and intersect and metric such as distance. For example,
two different polygon features can overlap, touch, or intersect
cach other. Spatial relationships make spatial data mining
algorithms differ from non-spatial data mining algorithms.
Spatial relationships are materialized by an extension of the
well-known join indices [7]. The concept of join index
between two relations was proposed in [9]. The result of join
index between two relations is a new relation consisting of
indices pairs each referencing a tuple of each relation. The
pairs of indices refer to objects that meet the join criterion.
Reference (7] introduced the structure Spatial Join Index (SJ1)
as an extended the join indices [9] in the relational database
framework. Join indices can be handled in the same way than
other tables and manipulated using the powerful and the
standardized SQL query language [7]. It pre-computes the
exact spatial relationships between objects from thematic
layers [7]. In addition, a spatial join index has a third column
that contains spatial relationship, SpatRel, between two layers.

Our study adopts the concept of SJI as in [7] to store the
relations between two different layers in spatial database.
Instead of spatial relationship that can be numerical or

Boolean value, the quantitative values in the third column of
SJI are spatial measure of features as results from spatial
relationships between two layers.

We consider an input for the algorithm a spatial database as
a set of layers L. Each layer in L is a collection of
geographical objects and has only one geometric type that can
be polygons, or lines or points. Assume that each object of a
layer is uniquely identified. Let L is a set of layers, L; and L;
are two distinct layers in L. A spatial relationship applied to L;
and L, is denoted SpatRel(L,, L;) that can be topological
relation or metric relation. For the case of topological relation,
SpatRel(L;, L;) is a relation according to the dimension
extended method proposed by [10]. While for the case of
metric relation, SpatRel(o;, 0)) is a distance relation proposed
by [11], where o; is a spatial object in L; and o; is a spatial
object in L;.

Relations between two layers in a spatial database can
result quantitative values such as distance between two points
or intersection area of two polygons in cach layer. We denote
these values as spatial measures as in [2] that will be used in
calculating spatial information gain in the proposed algorithm.
For the case of topological relation, the spatial measure of a
feature is defined as follows. Let L, and L in a set of layers L,
Li # L;, for each feature r; in R = SpatRel(L;, L)), a spatial
measure of r; denoted by SpatMes(r;) is defined as

. Areaofr,if <L, in, L; > or <L overlap, L, > hold for

all features in L; and L; represented in polygon

2. Count of r, if < L, in, L; > holds for all features in L,

represented in point and all features in L represented
in polygon.
For the case of metric relation, we define a distance function
from p to q as dis«(p, q), distance from a point (or line) p in L;
to a point (or line) q in L;.
Spatial measure of R is denoted by SpatMer(R) and defined as
SpatMes(R) = f(SpatMes(r;), SpatMes(r;), ..., SpatMes(r,))
(1
forr;inR,i=1,2, ..., n and n number of features in R. fis an
aggregate function that can be sum, min, max or average.

A spatial relationship applied to L; and L; in L results a new
layer R. We define a spatial join relation (SJR) for all features
pinL;and qin L; as follows:

SIR = {(p, SpatMes(r), q | r is a feature in R associated to p
and q}. )

IV. EXTENDED ID3 ALGORITHM FOR SPATIAL DATA

A spatial database is composed of a set of layers in which
all features in a layer have the same geometry type. This
study considers only discrete features include points, lines and
polygons. For mining purpose using classification algorithms,
a set of layers that divided into two groups: explanatory layers
and one target layer (or reference layer) where spatial
relationships are applied 1o construct set of tuples. The target
layer has some attributes including a target attribute that store
target classes. Each explanatory layer has several attributes.
One of the attributes is a predictive attribute that will classify
tuples in the dataset to target classes. In this study the target
attribute and predictive attributes are categorical. Features



(polygons, lines or points) in the target layer are related to
" features in explanatory layers to create a set of tuples in which
each value in a tuple corresponds to value of these layers.
Two distinct layers are associated to produce a new layer
using a spatial relationship. Relation between two layers
produces a spatial measure (1) for the new layer. Spatial
measure then will be used in the formula for spatial
information gain.

Building a spatial decision trec follows the basic leamning
process in the algorithm ID3 [1]. The ID3 calculates
information gain to define the best splitting layer for the
dataset. In spatial decision tree algorithm we define the spatial
information gain to select an explanatory layer L that gives
best splitting the spatial dataset according to values of
predictive attribute in the layer L. For this purpose, we adopt
the formula for spatial information gain as in [2] and apply the
spatial measure (1) to the formula.

Let a dataset D be a training set of class-labelled tuples. In
the non-spatial decision tree algorithm we calculate
probability that an arbitrary tuples in D belong to class C; and
it is estimated by |C;p|/[D| where |D| is number of tuples in D
and |Cip| is number of tuples of class C; in D [12]. In this
study, a dataset contains some layers including a target layer
that store class labels. Number of tuples in the dataset is the
same as number of objects in the target layer because each
tuple will be created by relating features in the target layer to
features in explanatory layers. One feature in the target layer
will exactly associate with one tuple in the dataset. For
simplicity we will use number of objects in the target layer
instead of using number of tuples in the spatial dataset.
Furthermore in a non-spatial dataset, target classes are
discrete-valued and unordered (categorical) and explanatory
attributes are categorical or numerical. In spatial dataset,
features in layers are represented by geometric type (polygons,
lines or points) that have quantitative measurements such as
area and distance. For that we calculate spatial measures of
layers (1) to replace number of tuples in a non-spatial data
partition,

A. Entropy

Let a target attribute C in a target layer S has / distinct
classes (ie. ¢;, ¢, ..., ¢), entropy for S represents the
expected information needed to determine the class of tuples
in the dataset and defined as

H(S) = _Z SpatMes(S,, ) SparMes( Se,)
SparMes(S) SpalMes(S)

SpatMes{S) represents the spatial measure of layer S as
defined in (1).

Let an explanatory attribute V in an explanatory (non-target)
layer L has q distinct values (i.e. vy, v, ..., vq). We partition
the objects in target layer S according to the layer L then we
have a set of layers L(v;, S) for each possible value v; in L. In
our work, we assume that the layer L covers all areas in the
layer S. The expected entropy value for splitting is given by:

_ SpatMes(L(v ;,S
H(S|L)= patMes(L(v;,S)) @
= SpatMes(S)

(3)

H(L(v;,5))

H(SIL) represents the amount of information nceded (after the
partitioning) in order to arrive at an exact classification.

B. Spatial Information Gain

The spatial information gain for the layer L is given by:

Gain(L) = H(S) - H(S|L) (5)
Gain(L) denotes how much information would be gained by
branching on the layer L. The layer L with the highest
information gain, (Gain(L)), is chosen as the splitting layer at
a node N. This is equivalent to say that we want to partition
objects according to layer L that would do the “best
classification”, such that the amount of information still
required to complete classifying the objects is minimal (i.e.,
minimum H(S|L)).

C. Spatial Decision Tree Algorithm

Fig. 1 shows our proposed algorithm to gencrate spatial
decision tree (SDT). Input of the algorithm is divided into two
groups: 1) a set of layers containing some explanatory layers
and one target layer that hold class labels for tuples in the
dataset, and 2) spatial join relations (SJRs) storing spatial
measures for features resulted from spatial relations between
two layers. The algorithm generates a tree by selecting the
best layer to separate dataset into smaller partitions as pure as
possible meaning that all tuples in partitions belong to the
same class.

To illustrate how the algorithm works, consider an active
fire dataset containing three explanatory layers: land cover
(Liand_cover), population density (Loopustion density) and river
(Lyiver), and one target layer (L) (Fig. 2).

Land cover layer represents polygon features for land cover
types. It has a predictive attribute that contains land cover
types in the study area. They are dryland forest, paddy field,
mix garden, shrubs, and paddy field (Fig. 2a).
Population layer contains polygon features for population
density. The layer has a predictive attribute population class
representing classes for population density (Fig. 2b). Classes
for population density are as follows:

* Low: population_density <= 50

*  Medium; 50 < population_density <= 150

* High: population_density > 150
River layer has only two attributes: the identifier of objects
and geometry representation for lines.
Target layer represents point features for true and false alarm.
True alarms (T) are active fires (hotspots) and false alarms (F)
are random points generated near true alarms.

The algorithm requires spatial measures in the spatial join
relation (SJR) between the target layer and an explanatory
layer.



Algorithm: Generate SDT (Spatial Decision Tree)
Input:
a. Spatial dataset D, which is a set of training
tuples and their associated class labels. These
tuples are constructed from a set of layers, P,
using spatial relations.
A target layer S € P with a target attribute C.
A non empty set of explanatory layers L ¢ P
and L € L has a predictive attribute V.P=8§ u
L.
d. Spatial Join Relation (SJR) on the set of layers
P, SJR(P), as defined in (2).
Output: A Spatial Decision Tree

Method:

| Create a node N;

2 If only one explanatory layer in L then

3 return N as a leaf node labeled with the
majority class in D;  // majority voting

4  endif

5 If objects in D are all of the same class ¢ then

6 return N as a leaf node labeled with the
class c;

7 endif

8 Apply layer_selection_method(D, L, SIR(P))
to find the “best” splitting layer, L*;

Label node N with L*;

10 Split D according to the best splitting layer L* in
{D(vy), ..., D(vy)}. D(v,) is outcome i of
splitting layer L* and v, ...,vy, are possible
values of predictive attribute V in L*;

11 L=L-{L*};

12 for each D(v),i=1,2,...,m,do

13 let N, = Generate_SDT(D(v)), L, SIR(P));

14 Attach node N; to N and label the edge with

a selected value of predictive attribute V in
LY.
15 endfor.

Fig. | Extended ID3 decision tree algorithm

Table I provides spatial relationships and spatial measures we
use to create SIRs.

TABLE|
SPATIAL RELATION AND SPATIAL MEASURE
Target Spatial Explanatory Spatial
layer Relationship Layer Measure
| target in land cover count
| target in population_density | count
| target distance river distance

The spatial relationship in and the aggregate function sum
are applied to extract all objects in the target layer which are
located inside land cover types (Fig. 3a) and population
density classes (Fig. 3b).

The spatial relation disrance and aggregate function min are
applied to calculate distance from target objects to nearest
river. Distance from target objects to nearest river is
represented in numerical value.,
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Fig. 2 A sct of layers: (a) land cover, (b) population density, (c) river,
(d) hotspot occurrences
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Fig. 3 Target layer overlaid with (a) land cover and (b) population density

We transform minimum distance from numerical to
categorical attribute because the algorithm requires categorical
value for target and predictive attributes. For that, minimum
distance is classified into three classes based on the following
criteria:
¢  Low: minimum distance (km) <= 1.5
o Medium: 1.5 < minimum distance (km) <=3
« High: minimum distance (km) > 3
Following the spatial decision tree algorithm, we start
building a tree by selecting a root node for the tree. The root
node is selected from the explanatory layers based on the
value of spatial information gain for each layers (i.c. land
cover, population density and distance to nearest river). For
instance, we calculate spatial information gain for land cover
layer (Liand_cover)- The same procedure can be applied to other
explanatory layers. The entropy of land cover layer for each
type of land cover is given, respectively:
H(L}w*m"{dry!aﬂd_foresl. C})
-

3.3 7 |
e i b e OB 2900
10 8270 10 B2 7p

H( Ly cover (mix _garden,C))

5 9. Y
32 log. 2 =08112781
12 12 B3

= "E,'fﬂﬂz
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_ 6. 6 0 0
- ——logz———log1

=0
6 6
H(Ligng _cover (Shrubs, C))
g 2 2
= —-1 ——=log,— =0
0g, 2 2 082

From (4) we calculate the expected entropy value for splitting:
H(S | Ly mm,)
12

=19, 08812909+ 12 x0.8112781+ 2 x0+ 2 x0
30 30 030

=0.618274883
Entropy for the target layer S:

2. 12 18, 18
i) = =25 2 log, = = 0.970950594
(8)= =35'082 35~ 3918235

From (5) we calculate the information gain for land cover

layer:

Gain(Liand_cover) = H(S) = H(S|Ligag cover) = 0.352675712
The spatial information gain for other layers is as follows

Gain(Lpoputation_density) = 0.18538127
Gain(L,;,,) = 0,097717695

Lisnd_caver has the highest spatial information gain compared to
two other layers. Therefore Ligg cover is selected as the root of
the tree. There are four possible values for land cover types:
dryland forest, mix garden, paddy field, and shrubs that will
be assigned as label of edges connecting the root node to
internal nodes.

The Generate SDT algorithm is then applied to a set of
layer containing new explanatory layers and the target layer to
construct a subtree attached to the root node. New explanatory
layers are created from existing explanatory layers, best layer
and the value v; of predictive attribute as a selection criterion
in a query to relate an explanatory layer and the best layer.
The tree will stop growing if it meets one of the following
termination criteria:

1. Only one explanatory layer in L. In this situation, the
algorithm returns a leaf node labeled with the majority
class in the SIR for the best layer and the explanatory
layer.

2. The SJR for best layer and explanatory layer contains the
same class c. Then the algorithm retums a leaf node
labeled with the class c.

The graphical depiction of spatial decision tree generated
from P = {Lisng covers Lpopulstion_desitys Liivers target (S)} is shown
in Fig. 4. The final spatial decision tree contains 8 leaves and
3 nodes with the first test attribute is land cover (Fig. 4).
Below are rules extracted from the tree:

1. IF land cover is dryland forest AND population density is
low THEN Hotspot Occurrence is True

2. IF land cover is dryland forest AND population density is
medium THEN Hotspot Occurrence is True

3. IF land cover is dryland forest AND population density is
high THEN Hotspot Occurrence is False

\

Low Medum |\ High Lo-/mn\um

e doe

Fig 4 Spatial decision tree

4. IF land cover is mix garden AND distance to nearest river
is low THEN Hotspot Occurrence is True

5. IF land cover is mix garden AND distance to nearest river
is medium THEN Hotspot Occurrence is True

6. IF land cover is mix garden AND distance to nearest river
is high THEN Hotspot Occurrence is False

7. IF land cover is paddy field THEN Hotspot Occurrence is
False

8. IF land cover is shrubs THEN Hotspot Occurrence is
True

The decision tree has the misclassification error of the
training set: 16.67% and the error of the testing set: 20%. The
accuracy of the tree on the testing set is 80%. The number of
target objects in the testing set is 30 and the number of
correctly classified objects is 24.

The proposed algorithm has been applied to the real active
fires dataset for the Rokan Hilir District, Riau Province
Indonesia with the total area is 896,142.93 ha. The dataset
contains five explanatory layers and one target layer, The
target layer consists of active fires (hotspots) as true alarm
data and non-hotspots as false alarm data randomly generated
near hotspots. Explanatory layers include distance from target
objects to nearest river (dist_river), distance from target
objects to nearest road (dist_road), land cover, income source
and population density for the village level in the Rokan Hilir
District. Tabel II summaries the number of features in the
dataset for each layer.

TABLE 11l
NUMBER OF FEATURES IN THE DATASET
Layer Number of features

dist_river 744 points
dist_road 744 points
land_cover 3107 polygons
income source 117 polygons
population 117 polygons
target 744 points
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The decision tree generated from the proposed spatial
decision tree algorithm contains 138 leaves with the first test
attribute is distance from target objects to nearest river
(dist_river). The accuracy of the tree on the training set is
74.72% in which 182 of 720 target objects are incorrectly
classified by the tree. Some preprocessing tasks will be
applied to the real spatial dataset such as smoothing to remove
noise from the data, discretization and ggeneralization in order
to obtain a spatial decision tree with the higher accuracy.

V. CONCLUSIONS

This paper presents an extended ID3 algorithm that can be
applied to a spatial database containing discrete features
(polygons, lines and points). Spatial data are organized in a
set of layers that can be grouped into two categories i.c.
explanatory layers and target layer. Two different layers in
the database are related using topological relationships or
metric relationship (distance). Quantitative measures such as
arca and distance from relations between two layers are then
used in calculating spatial information gain. The algorithm
will select an explanatory layer with the highest information
gain as the best splitting layer. This layer separates the dataset
into smaller partitions as pure as possible such that all tuples
in partitions belong to the same class.

Empirical result shows that the algorithm can be used to
join two spatial objects in constructing spatial decision trees
on small spatial dataset. Applying the proposed algorithm on
the real spatial dataset results a spatial decision tree containing
138 leaves and the accuracy of the tree on the training set is
74.72%.
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