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Abstract- Ulilizing data mining tasks such as classification on 
spatial data is more complex than those on non-spatial data. It is 
because spatial data mining algorithms have to consider not only 
objects or interest Itself but also neighbours of the objects in 
order to extract useful and Interesting patterns. One or 
classilication algorithms namely the 103 algorithm which 
originally designed for a non-spatial dataset bas been Improved 
by other researchers in the previous work to construe! a spatial 
decision tree from a spatial dataset containing polygon features 
only. The objective of this paper is to propose a new spatial 
decision tree algorithm based on the ID3 algorithm for djscrete 
features represented in points, lines nod polygons. As in the ID3 
algorithm that use information gain in the attribute seleclion, the 
proposed algorithm uses the spatial information gain to choose 
the best splitting layer from a set of explanatory layers. The new 
formula for spatial information gain is propost.'Cl using spatial 
measures for point, line and polygon features. Empirical result 
demonslratcs that the proposed algorithm can be used to join 
hvo spatial objects in constructing spatial decision trees on small 
spatiaJ dataset. The proposed aJgorithm has been applied to the 
real spatial dataset consisting of point and polygon features. The 
result is a spatial decision tree with 138 leaves and the accuracy 
is 74.72%. 

Keywords- ID3 algorithm, spatial decision tree, spatiaJ 
information gain, spatial relation, spatial measure 

l. lNTRODUCTION 

Utilizing data mining tasks oo a spatial dataset differs with 
the tasks on 11 non-spntial dataset. Spatial dnta describe 
locations of features. ln a non-spatial dataset especially for 
classification, data arc arranged in a single relation consisting 
of some columns for attributes and rows representing tuples 
that have values for each anributes. In a spatiaJ dataset, data 
are organized in a set of layers representing continue or 
discrete features. Discrete features include points (e.g. village 
centres), lines (e.g. rivers) and polygons (e.g. land cover 
types). One layer relates to other layers to create objects in a 
spatial dataset by applying spatial relarions such as topological 
relations and metric relation. Jn spatial data mining tasks we 
should consider not only objects itself but also their 
neighbours Lhat could belong to other layers. ln addition, types 
of attributes in a non-spatial dataset include numerical and 
categorical meanwhile features in layers are represented by 
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geometric types (polygons, lines or points) that have 
quantitative measurements such as area and distance. 

This paper proposes a spatial decision tree algorithm 10 

construct a classification model from a spatial dataset. The 
dataset contains only discrete features: points, lines and 
polygons. The algorithm is an extension of ID3 algorithm [I) 
for a non-spatial dataset. As in rhe ID3 algorithm, the 
proposed algorithm uses information gain for spatial data, 
namely spatial infonnation gain, to choose a layer as a 
splitting layer. Instead of using nwnber of tuples in a partition, 
spatial information gain is calculated using spatial measures. 
We adopt the fomiula for spatial infonnation gain proposed in 
[2). We extend the spatial measure definition for the 
geometry type points, lines and polygons rather than only for 
polygons as in [2]. 

The paper is organized as follows: introduction is in section 
1 . Related works in developing spatial decision tree 
algorithms are briefly explained in section 2. Section 3 
discusses spatia.1 relationships. We explain a proposed spatial 
decision tree algorithm in section 4. Finally we summarize 
the conclusion in section 5. 

ll. RELATED WORKS 

The works in developing spatial data mining algorithms 
including spatial classification and spatial association rules 
continue growing in recent years. The discovery processes 
such as classification and association rules mining for spatial 
data are more complex than those for non-spatial data, 
because spatial data mining algorithms have to consider the 
neighbours of objects in order to extract useful knowledge (3). 
In tbe spatial data mining system, the attributes of the 
neighbours of an object may have a significant influence on 
the object itself. 

Spatial decision trees refer co a model expressing 
classification rules induced from spatial data. The training 
and testing records for this task consist of not only object of 
interest itself but also neighbours of objects. Spatial decision 
trees differ from conventional decision trees by taking account 
implicit spatial relationships in addition to other object 
attributes [4). Reference [3) introduced an algorithm that was 
designed for spatial databases based on the ID3 algorithm [I). 
The algorithm considers not only attributes of the object to be 



classified but to consider also attributes of neighbouring 
objects. The algorithm docs not make distinction between 
thematic layers and it takes into account only one spatial 
relationship [4]. The decision tree from spatial data was also 
proposed as in [5]. The approach for spatial classification 
used in (5) is based on both (I) non-spatial properties of the 
classified objects and (2) attributes, predicates and functions 
describing spatial relation between classified objects and other 
features located in the spatial proximity of the classified 
objects. Reference [ 6) discusses another spatial decision tree 
algorithm namely SCART (Spatial Classification and 
Regression Trees) as an extension of Lhe CART method. The 
CART (Clnssification and Regression Trees) is one of most 
commonly used systems for induction of decision trees for 
classification proposed by Briemnn et. al. in 1984. The 
SCART considers the geographical data organized in thematic 
layers, and their spatial relationships. To calculate the spatial 
relationship between the locations of two collections of spatial 
objects, SCART has the Spatial Join Lndex (SJI) table [7] as 
one of input parameters. The study [2] extended the 103 
algori thm [I] such that the new algorithm can create a spatial 
decision rree from the spatial dataset talcing into account not 
only spatial objects itself but also their relationship to its 
neighbour objects. The algorithm generates a tree by selecting 
the best layer to separate a dataset into smaller panitions as 
pure as possible meanmg that all tuples in panitions belong to 
the same class. As in the lD3 algorithm, the algorithm uses the 
information gain for spatial data, namely spatial information 
gain, to choose a layer as a splitting layer. Instead of using 
number of tuples in a panition, spatial information gain is 
calculated using spatial measures namely area [2]. 

lll. SPATIAL RELATIONSlllP 

Determining spatial relationships between two features is a 
major function of a Geographical Information Systems (GISs). 
Spatial relationships include topologicaJ [8] such as overlap, 
touch, and imersect and metric such as distance. For example, 
two different polygon features can overlap, touch, or intersect 
each other. Spatial relationships make spatial data mining 
algorithms differ from non-spatial data mining algorithms. 
Spatial relationships are materialized by an extension of the 
well-known join indices [7]. The concept of join index 
between two relations was proposed in [9). The result of join 
mdex between two relations is a new relation consisting of 
indices pairs each referencing a tuple of each relation. The 
pairs of indices refer to objects that meet the join criterion. 
Reference f7] introduced the structure Spatial Join Index (SJI) 
as an extended the join indices (9] in the relational database 
framework. Join indices can be bandied in the same way than 
other tables and manipulated using the powerful and the 
standardized SQL query language (7). It pre-computes the 
exact spatial relationships between objects from thematic 
layers [7). Ln addition, a spatial join index has a third column 
that contains spatial relationship, SpatRel, between two layers. 

Our study adopts the concept of SJI as in [7] to store the 
relarions between rwo different layers in spatial database. 
Instead of spatial relationship that can be numerical or 

Boolean value, the quantjtative values in the third column of 
SJI are spatial measure of features as results from spatial 
relationships between two layers. 

We consider an input for the algorithm a spatial database as 
a set of layers L. Each layer in L is a collection of 
geographical objects and has only one geometric type that can 
be polygons, or lines or points. Assume that each object of a 
layer is uniquely identified. Let L is a set of layers, L1 and Lj 
are two distinct layers io L. A spatial relationship applied to L1 
and L, is denoted SpatRel(Lu L1) that can be topological 
relation or metric relat100. For the case of topological relation, 
SpatRol{L1, Lj) is a relation according to the dimension 
extended method proposed by [I 0). While for the case of 
metric relation, SpatRel(oi. o,) is a distance relation proposed 
by [ 11 ], where o; is a spatial object in L, and o, is a spatial 
object in L,. 

Relations between two layers in a spatial database can 
result quantitative values such as distance between two points 
or intersection area of two polygons in each layer. We denote 
these values as spatial measures as in [2] that will be used in 
calculating spatiaJ infonnation gain in the proposed algorithm. 
For the case of topological relation, the spatial measure of a 
feature is defined as follows. Let L1 and L, in a set of layers L, 
L, -f. L,, for each feature r; in R = SpntRel(L,, L,), a spatial 
measure of r, denoted by SpatMes(r,) is defined as 

I. Arca of r11 if< L., in, LJ >or< L,, overlap, L1 >hold for 
all features in L1 and L, represented in polygon 

2. Count of r., if < L., in, L, > bolds for all features m L, 
represented in point and all features in L, represented 
in polygon. 

For the case of metric relation, we define a distance function 
from p to q as dist(p, q), distance from a point (or line) pin L, 
to a point (or line) q in Lt 
Spatial measure of R is denoted by SpatMcr(R) and defined as 

SpatMcs(R)"" f(SpatMes(r1) , SpatMes(r2), .. • , SpatMes(rn)) 
(1) 

for r, in R, i = I, 2, ... , n and n number of features in R. f is an 
aggregate function that can be sum, min, max or average. 

A spatial relationship applied to Li and Lj in L results a new 
layer R. We define a spatial join relation (SJR) for aJJ features 
p in L, and q in L, as follows: 

SJR = {(p, SpatMcs(r), q Ir is a feature in R associated top 
and q}. (2) 

IV. EXTENDED lD3 ALGORITHM FOR SPATIAL DATA 

A spatial database is composed of a set of layers in which 
all features in a layer have the same geometry type. This 
study considers only discrete features include points, lines and 
polygons. For mining purpose using classification algorithms, 
a set of layers that divided into rwo groups: explanatory layers 
and one target layer (or reference layer) where spatial 
relationships arc applied to construct set of tuples. The target 
layer bas some attributes including a target attribute that store 
target classes. Each explanatory layer has several attributes. 
One of the attributes is a predictive attribute that will classify 
tuples in the dataset to target classes. In this study the target 
attribute and predictive auributes are categorical. Features 



(polygons, lines or points) in the target layer are related to 
features in explanatory layers to create a set of tuples in which 
each value in a tuple corresponds to value of these layers. 
Two distinct layers are associated to produce a new layer 
using a spatial relationship. Relation between two layers 
produces a spalial measure (l) for the new layer. Spatial 
measure then will be used in the formuJa for spatial 
infonnation gain. 

Building a spatial decision tree follows the basic leaming 
process in the algorithm ID3 [I). The ID3 calcuJates 
information gain to define the best splitting layer for the 
dataset. ln spatial decision tree algorithm we define the spatial 
infonnation gain to select an explanatory layer L that gives 
best splitting the spatial dataset according to values of 
predictive attribute in the layer L. For this purpose, we adopt 
the fonnula for spatial infonnation gain as in [2) and apply the 
spatial measure ( 1) to the formula. 

Let a dataset D be a training set of class-labelled tuples. lo 
the non-spatial decision tree algorithm we calculate 
probability that an arbitrary tuples in D belong to class Ci and 
it is estimated by ICi.01/IDI where IDI is number of tuples in D 
and IC;,ol is number of tuples of class Ci in D [ 12]. lo this 
study, a dataset contains some layers including a target layer 
that store class labels. Number of tuples in the dataset is the 
same as number of objects in the target layer because each 
tuple will be created by relating features in the target layer to 
features in explanatory layers. One feature in the target layer 
will exactly associate with one tuple in the dataset. For 
simplicity we will use number of objects in the target layer 
instead of using number of tuples in the spatial dataset. 
Furthennore in a non-spatial dataset, target classes arc 
discrete-valued and unordered (categoric:il) and explanatory 
attributes are categorical or numerical. Jn spatial dataset, 
features in layers are represented by geometric type (polygons, 
lines or points) that have quantitative measurements such as 
area and distance. For that we calculate spatial measures of 
Layers (I) to replace number of tuples in a non-spatial data 
partition. 

A. Entropy 

Let a target attribute C in a target layer S has I distinct 
classes (i.e. Ci. c2, ... , c1), entropy for S represents the 
expected infonnation needed to determine the class of tup.les 
in the dataset and defined as 

~ SpatMes(Se) SpatMes(Sc ) 
H(S) = - £...,, ' log2 ' (3) 

;,.1 SpatMes(S) SpatMes(S) 

SpatMes(S) represents the spatial measure of layer S as 
defined in (I). 

Let an explanatory attribute V in an explanatory (non-target) 
layer L bas q distinct values (i.e. v1, v2, ... , vq). We partition 
the objects in target layer S accordfag to the layer L then we 
have a set of layers L(v;, $)for each possible value v, in L. In 
our work, we asswne that the layer L covers all areas in the 
layer S. The expected entropy value for splitting is given by: 

~ SpatMes(L(v . S)) 
H(S IL)= L 1

' H(L(v .,S)) (4) 
j•I SpatMes(S) 1 

H(SJL) represents the amount of information needed (after the 
partitioning) in order to arrive at an exact classification. 

8. Spatial Information Gain 

The spatial information gain for the layer Lis given by: 
Gain(L) = H(S) - H(SIL) (5) 

Gain(L) denotes how much infomrntion would be gained by 
branching on the layer L. The layer L with the highest 
infonnation gain, (Gain(L)), is chosen as the splitting layer at 
a node N. This is equivalent to say that we want to partition 
objects according to layer L that would do the "best 
classification", such that the amount of information still 
required to complete classifying the objects is minimal (i.e., 
minimum H(SIL)). 

C. Spatial Decision Tree Algorithm 

fig. I shows our proposed algorithm to generate spatial 
decision tree (SOT). Input of the algorithm is divided into two 
groups: I) a set of layers containing some explanatory layers 
and one target layer that bold class labels for tuples in the 
dataset, and 2) spatial join relations (SJRs) storing spatial 
measures for features resulted from spatial relations bet\veen 
two layers. The algorithm generates a tree by selecting the 
best layer to separate dataset into smaUer partitions as pure as 
possible meaning that all tuples in partitions belong to the 
same class. 

To illustrate how the algorithm works, consider an active 
fire dataset containing three explanatory layers: land cover 
(Lrond_covcr), population density (Lpopul•uoo_dciiso1y) and river 
(Lmcr), and one target layer (Lt.arg<i) (Fig. 2). 
Land cover layer represents polygon features for land cover 
types. It has a predictive attribute that contains land cover 
types in the study area. They are dryland forest, paddy field, 
mix garden, shrubs, and paddy field (Fig. 2a). 
Population layer contains polygon features for population 
density. The layer bas a predictive attribute population class 
representing classes for population density (Fig. 2b). Classes 
for popuJatfon density are as follows: 

• Low: population_ density <= 50 
• Medium: 50 < population_ density <= 150 
• High: population_ density> 150 

River layer bas only two attribulcs: the identifier of objects 
and geometry representation for lines. 
Target layer represents point features for true and false alann. 
True alarms Cn arc active fires (hotspots) and false alarms (F) 
are random points generated near true alarms. 

The algorithm requires spatial measures in the spatial join 
relation (SJR) between lhe target layer and an explanatory 
layer. 



Algorithm: Generate_SDT (Spatial Decision Tree) 
Input: 

a. Spatial dataset D, which is a set of training 
tuples and their associated class labels. These 
tuples arc constructed from a set of layers, P, 
using spatial relations. 

b. A target layer S e P with a target attribute C. 
c. A non empty set of explanatory layers L ~ P 

and L e L has a predictive attribute V. P =Su 
L. 

d. Spatial Join Relation (SJR) on the set of layers 
P, SJR(P), as defined in (2). 

Output: A Spatial Decision Tree 
Method: 

I Create a node N; 
2 If only one explanatory laye1 in L then 
3 return N as a leaf node labeled with the 

majority class in D; II majority voting 
4 endif 
5 If objects in Dare all of the same class c then 
6 return N as a leaf node labeled with the 

class c; 
7 endif 
8 Apply layer_selection_mcthod(D, L, SJR(P)) 

to find the "best" splitting layer, L •; 
9 Label node N with L*; 
I 0 Split D according to the best splitting layer L • in 

{D{v1) •... , D(v ... )}. D(v,) is outcome i of 
splitting layer L• and v,, ... ,Vm are possible 
values of predictive aetributc V in L *; 

II L = L - {L*}; 
12 for each D(v,), i = 1, 2, ... , m, do 
13 let N1 ... Generate_SDT(D{v,), L, SJR(P)); 
14 Attach node N, to N and label the edge with 

a selected value of predictive attribute V in 
L* 

15 endfor. 

Fig 1 Extended ID3 decision 1rcc nlgorithm 

Table I provides spatial relationships and spatial measures we 
use to create SJRs. 

TABLEl 
SPATIAL RFLATION Al'OSPATIAL MEASURE 

Targec Sp1Ulal Explanatory Spatial 
layer Relationshio Layer Measure 

tar1?et in land cover count 
1araet m oooulation density count 
target distance ri\<er distance 

The spatial relationship in and the aggregate function sum 
are applied to extract all objects in the target layer which arc 
located inside land cover types (Fig. 3a) and population 
density classes (Fig. 3b). 

The spatial relntion tlfrumce and asgrcgatc function min arc 
applied to calculate distance from target objects to nearest 
river. Distance from target objects to nearest river is 
represented in numerical value. 

Fig. 2 /\ sec of layers: (o) land cover, (b) population dcrn;11y, (c) nver. 
(d) hotspot occurrences 

tancl_COYer 
• Oryland fonllt 

D "'~ 91tc1tn tat9't 
0 Paddy fltld ' F 
• strubs • T 

popjAOon_denslty 

• ~h taroel 
Dlow • F 
• medum • T 

Fig. 3 Targc1 layer overlaid with (a) lnnd cover nnd (b) population density 

We transfonn minimum distance from numerical to 
categorical attribute because the algonthm requires categoncal 
value for target and predictive attributes. For that, minimum 
distance is classified into three clas~cs based on the following 
criteria: 

• Low: minimum distance (km)<= 1.5 
• Medium: 1.5 < minimum distance (km) <= 3 
• High: minimum distance (km)> 3 

Following the spatial decision tree algorithm, we start 
building a tree by selecting a root node for the tree. The root 
node is selected from the explanatory layers based on the 
value of spatial infonnatioo gain for each layers (i.e. land 
cover, population density and distance to nearest river). For 
instance, we calculate spatial infonnation gain for land cover 
layer (L1anc1 co_). The same procedure can be applied to other 
explanatory layers. The entropy of land cover layer for each 
type of land cover is given, respectively: 
H(L1und_cov,.,.(dryland _foresr.C)) 

3 3 7 7 
•-iOlog2 i0-i0log2 iO = 0.8812909 

11 (llund mtr (mll: _garden, C)) 

3 3 9 9 
= -12log2 J2-J2log2 J2 = 0.8 112781 
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H(Lfand _co•~r(Paddy _jield,C)) 

6 6 0 0 
-= -6log2 6-6log2 6 = O 

H(l1unJ _coHr(Shrubs,C)) 

0 0 2 2 = -2log22-
2

1og2 2" =O 

From (4) we calculate the expected entropy value for splitting: 
H(S I L/unJ _com) 

=~x0.8812909+ 12 
x0.8 112781 +~xo+2-xo 

30 30 30 30 
= 0.618274883 

Entropy for the target layer S: 
12 12 18 18 

H(S) = -
30 

log2 
30 

-
30 

log2 
30 

= 0.970950594 

From (5) we calculate the information gain for land cover 
layer: 

Gain(Lland co•n) = H(S) - I l (SIL'-1 ..,,.,) = 0.352675712 
The spatial information gam for other layers is as follows 

Gain(L.,op..1Mion_c1nu.1y) = 0.18538127 
Gain(Lmn) = 0.097717695 

~ foroat , ,,.,.. Mix 
,. gardon 

/: 
LON Medun \~ 
GG 8 

4. 

5. 

Fig. 4 Spatial decision tree 

IF land cover is mix garden AND distance to nearest river 
is low THEN Hotspot Occurrence is True 
IF land cover is mix garden AND distance to nearest river 
is medium THEN Hotspot Occurrence is True L1and_cov~ has the highest spatial infonnation gain compared to 

two other layers. Therefore Lland covn is selected as the root of 6. 
the tree. There are four possible-values for land cover types: 
dryland forest, mix garden, paddy field, and shrubs that will 7. 

IF land cover is mix garden AND distance 10 nearest river 
is high THEN Hotspot Occurrence 1s False 
IF land cover is paddy field THEN Hotspot Occurrence is 
False be assigned as label of edges connecting the root node to 

internal nodes. 
The Gcnerate_SDT algorithm is then applied to a set of 

layer containing new explanatory layers and the target layer to 
construct a subtree attached to the root node. New explanatory 
layers arc created from existing explanatory layers, best layer 
and the value vj of predictive attribute as a selection criterion 
in a query to relate an explanatory layer and the best layer. 
The tree will stop growing if it meets one of the following 
termination criteria: 
l. Only one explanatory layer in L. In this situation, the 

algorithm returns a leaf node labeled with the majority 
class in the SJR for the best layer and the explanatory 
layer. 

2. The SJR for best layer and explanatory layer contains the 
same class c. Theo the algorithm returns a leaf node 
labeled with the closs c. 

The graphical depictjon of spatial decision tree generated 
from P = {L1anc1_co,a, lpop..1.1ion_~11y. Lmm target (S)} is shown 
in Fig. 4. The final spatial decision tree contains 8 leaves and 
3 nodes with the ftrst test attribute is land cover (Fig. 4). 
Below are rules extracted from the tree: 
I. IF land cover is dryland forest AND population density is 

low Tl IEN Hotspot Occurrence is True 
2. IF land cover is dryland forest AND population density is 

medium THEN Hotspot Occurrence is True 
3. IF land cover is dryland forest AND population density is 

high THEN Hotspot Occurrence is False 

8. IF land cover is shrubs THEN Hotspot Occurrence is 
True 

The decision tree has the misclassification error of the 
training set: 16.67% and the error of the testing set: 20%. The 
accuracy of the tree on the testing set is 80%. The number of 
target objects in the testing set is 30 and the number of 
correctly classified objects is 24. 

The proposed algorithm bas been applied to the real active 
fires dataset for the Rokan Hilir District. Riau Province 
Indonesia with the total area is 896, 142.93 ha. The dataset 
contains five explanatory layers and one target layer. The 
target layer consists of active fires (hotspots) as trne alarm 
data and non-hotspots as false alarm data randomly generated 
near hotspots. Explanatory layers include distance from target 
objects to nearest river {dist_river), distance from target 
objects to nearest road (dist_road), land cover, income source 
and population density for the village level in the Rokan Hilir 
District. Tabet II summaries the number of features in the 
dataset for each layer. 

TABLE Ill 
NU\1BER OF FEA TUR.ES IN TIIE DATASET 

La er 
dist river 
dist road 
land cover 



• 
The decision tree generated from the proposed spatial 

decision tree algorithm contains 138 leaves with the first test 
attribute is distance from target objects to nearest river 
(dist_ river). The accuracy of the tree on the training set is 
74.72% in which 182 of 720 target objects arc incorrectly 
classified by the tree. Some preprocessing tasks will be 
applied to the real spatial dataset such as smoothing to remove 
noise from the data, discretization and ggeneralization in order 
to obtain a spatial decision tree with the higher accuracy. 

V. CONCLUSIONS 

This paper presents an extended 103 algorithm that can be 
applied to a spatial database containing discrete features 
(polygons, lines and points). Spatial data are organized in a 
set of layers that can be grouped into two categories i.e. 
explanatory layers and target layer. Two different layers in 
the database are related using topological relationships or 
metric relationship (distance). Quantitative measures such as 
area and distance from relations between two layers are then 
used in calculating spatial information gain. The algorithm 
will select an explanatory layer with the highest information 
gain as the best splitting layer. This layer separates the dataset 
into smaller partitions as pure as possible such that all tuples 
in partitions belong to the same class. 

Empirical result shows that the algoritlun can be used to 
join two spatial objects in constructing spatial decision trees 
on small spatial dataset. Applying the proposed algorithm on 
the real spatial dataset results a spatial decision tree containing 
138 leaves and the accuracy of the tree on the training set is 
74.72%. 
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