ISBN 978-979-95093-9-0

12

PROCEEDINGS

INTERNATIONAL SEMINAR ON SCIENCES 2013

"Perspectives on Innovative Sciences"

FACULTY OF MATHEMATICS AND NATURAL SCIENCES, BOGOR AGRICULTURAL UNIVERSITY IPB International Convention Center 15 - 17th November 2013

Published By

Bogor Agricultural University

Faculty of Mathematics and Natural Sciences ISBN: 978-979-95093-9-0

PROCEEDINGS

ISS 2013

International Seminar on Sciences 2013 "Perspectives on Innovative Sciences"

Bogor 15-17 November 2013 IPB International Convention Center

Published by

Faculty of Mathematics and Natural Sciences Bogor Agricultural University

Copyright© 2014

Faculty of Mathematics and Natural Sciences, Bogor Agricultural University

Proceedings of International Seminar on Sciences 2013 "Perspectives on Innovative Sciences" Bogor 15-17 November 2013.

Published by: FMIPA-IPB, Jalan Meranti Kampus IPB Dramaga, Bogor 16680 Telp/Fax: 0251-8625481/8625708

http://fmipa.ipb.ac.id

ix + 395 pages

ISBN: 978-979-95093-9-0

Board of Editors

PROCEEDINGS INTERNATIONAL SEMINAR ON SCIENCES 2013

Chief Editor: Endar H. Nugrahani

Managing Editor: Indahwati Nisa Rachmania

Managing Team: Wisnu Ananta Kusuma Ali Kusnanto

International Scientific Committee:

Manabu D. Yamanaka (Kobe University, Japan) Kanaya (Nara Institute of Science and Technology, NAIST, Japan) Ken Tanaka (Toyama University, Japan) Daniel Oosgood (Columbia University, USA) Emmanuel Paradis (Institut de Recherche pour le Développement , IRD, France) Rizaldi Boer (Bogor Agricultural University, Indonesia) Antonius Suwanto (Bogor Agricultural University, Indonesia)

National Reviewer:

Kiagus Dahlan Tania June Sri Sugiarti Miftahudin Anja Meryandini Imas Sukaesih Sitanggang Farit Mochamad Afendi Paian Sianturi Husin Alatas Heru Sukoco Charlena Suryani

iii

FOREWORD

The International Seminar on Sciences 2013, which had the main theme "Perspectives on Innovative Sciences", was organized on November 15th -17th, 2013 by the Faculty of Mathematics and Natural Sciences, Bogor Agricultural University. This event aimed at sharing knowledge and expertise, as well as building network and collaborations among scientists from various institutions at national and international level.

Scientific presentations in this seminar consisted of a keynote speech, some invited speeches, and about 120 contributions of oral and poster presentations. Among the contributions, 66 full papers have been submitted and reviewed to be published in this proceeding. These papers were clustered in four groups according to our themes:

A. Sustainability and Science Based Agriculture

- **B.** Science of Complexity
- C. Mathematics, Statistics and Computer Science
- **D.** Biosciences and Bioresources

In this occasion, we would like to express our thanks and gratitude to our distinguished keynote and invited speakers: Minister of Science and Technology, Prof. Manabu D. Yamanaka (Kobe University, Japan), Prof. Kanaya (Nara Institute of Science and Technology, NAIST, Japan), Prof. Ken Tanaka (Toyama University, Japan), Emmanuel Paradis, PhD. (Institut de Recherche pour le Développement, IRD, France), Prof. Dr. Ir. Rizaldi Boer, MS (Bogor Agricultural University), and Prof. Dr. Ir. Antonius Suwanto, M.Sc. (Bogor Agricultural University).

We would like also to extend our thanks and appreciation to all participants and referees for the wonderful cooperation, the great coordination, and the fascinating efforts. Appreciation and special thanks are addressed to our colleagues and staffs who help in editing process. Finally, we acknowledge and express our thanks to all friends, colleagues, and staffs of the Faculty of Mathematics and Natural Sciences IPB for their help and support.

Bogor, March 2014

The Organizing Committee

International Seminar on Sciences 2013

Table of Content

			Page
	Board of Editors		iii
	Foreword		iv
	Table of Content		v
A	. Sustainability and Science Based Agriculture		1
1	resources (biomass, solar and wind)	Didin Suwardin, Afrizal Vachlepi, Mili Pubaya, Sherly Hanifarianty	3
2	Characterization of HDTMABr-modified Natural Zeolite and its Application in Cr(VI) Adsorption	Budi Riza Putra, Latifah K Darusman, Eti Rohaeti	7
3	Potency of Andrographis paniculata, Tinospora crispa, and Combination Extract as a-Glucosidase Inhibitor and Chromatographic Fingerprint Profile of the Extracts	Wulan Tri Wahyuni, Latifah K Darusman, Rona Jutama	17
4	Utilization of Frond Palm Oil as Second Generation Bioethanol Production using Alkaline Pretreatment and Separated Hydrolysis and Fermentation Method	Deliana Dahnum, Dyah Styarini, Sudiyarmanto, Muryanto, Haznan Abimanyu	21
5	Pretreatment of Grass Biomass with Biological Process for Efficient Hydrolysis	Desy Kurniawati, Muhamad Natsir, Rahmi Febrialis and Prima Endang Susilowati	27
6	Alkaloid Compounds from Oil-Free Mahogany Seed (Swietenia macrophylla, King) and Hypoglycemia Effect of Mahogany Seed on The Rat (Rattus novergicus)	Sri Mursiti, Sabirin Matsjeh, Jumina, and Mustofa	31
7	Utilization Of Vetiver Roots Waste Product as Strong, Low Density, and Eco Friendly Material Pot	Galuh Suprobo, Tatang Gunawan, Cynthia Andriani, Rio Candra Islami	43
8	Green Products from Wastewater of Tempe Industry	Susanti Pudji Hastuti, Yofi Bramantya Adi, Bary Fratama, Samuel Arunglabi, Dewi KAK Hastuti, and Santoso Sastrodiharjo	47
9	Saccharification of Oil Palm Empty Fruit Bunch After Alkaline Pretreatment Followed by Electron Beam Irradiation for Ethanol Production	Muryanto, Eka Triwahyuni, Yanni Sudiyani	55
10	Isolation and Screening of Endophytic Bacteria from Bark of Rar Plant (Tarrietia ribiginosa) and Their Potential for Bioetahnol Production	u Wasinton Simanjuntak, Heri Satria, and Nurul Utami	61

v

11	The Effect of Hypertension Herbs Formula to The Kidney Functions	Agus Triyono, Saryanto	67
12	The Use of Activated Carbon from Bintaro Fruit-Shell (Cerbera manghas) as an Adsorbent to Increase Water Quality	Armi Wulanawati, Kamella Gustina and Djeni Hendra	71
13	Analysis of Active Compounds from Mangosteen Rind (Garcinia mangostana L.) by Binding Affinity to The Androgen Receptor as Anti-Prostate Cancer Drug Candidates	Fachrurrazie, Harry Noviardi	77
14	Antioxidant Activity from Formula of Jati Belanda (Guazuma ulmifolia Lamk.), Jambu Biji (Psidium guajava Linn.), and Salam (Eugenia polyantha Wight.) Leaves Extract	Syaefudin, Sulistiyani, Edy Djauhari Purwakusumah	81
15	Diversity of Bacterial Mercury Reductase Resistance (merA) from Bombana Gold Mine	Prima Endang Susilowati, Sapto Raharjo, Rachmawati Rusdin, Muzuni	87
16	Brake Fern (Pteris vittata) as a Prospective Heavy Metal Accumulator: Utilization Potentials of Harvested Biomass and Heavy Metal	Mochamad Taufiq Ridwan, Rike Tri Kumala Dewi and Agung Hasan Lukman	91
17	Protein Content Enhancement of Spirulina platensis by Phosphorus Limitation and Nitrogen Addition in Beef Cattle Wastewater Medium	Irving Noor Arifin, Iin Supartinah Noer and Asri Peni Wulandari	99
18	Development immobilized enzyme of white-rot fungus for decolorization of RBBR	Ajeng Arum Sari and Sanro Tachibana	103
19	Simple and Rapid Screening Method for Early Identification of Salt Tolerant Foxtail Millet (Setaria italica L. Beauv)	Sintho Wahyuning Ardie, Nurul Khumaida, and Amin Nur	109
20	Synthesis of Silver Nanoparticles by Using Extracellular Metabolites of Lactobacillus delbrueckii subsp. bulgaricus	Suryani, Ridho Pratama, Dimas Andrianto	113
Ē	B. Science of Complexity		119
21	Regional Heat Capacity Changes due to Changes of Land Cover Composition Using Landsat-5 TM Data	Winda Aryani, Idung Risdiyanto	121
22	Microbial Cellulolytic Isolation and Identification from Durian Leather Waste	Hapsoh, Gusmawartati dan Ujang Al Husnah	129
23	Predicting Water Surplus and Water Deficit in the Paddy Rice Production Center in North Sulawesi Using the Water Balance Model	Johanis H. Panelewen, Johannes E. X. Rogi and Wiske Rotinsulu3	135
24	Prediction of Dustfall Generation in Ambient Air over an Inceptisol Soil Area	Arief Sabdo Yuwono, Lia Amaliah	143

vi

25	Carboxymethylation of Microfibrillated Cellulose to Improve	Fitri Adilla, Lisman	149
20	Thermal and Mechanical Properties of Polylactic Acid Composites	Suryanegara, Suminar S. Achmadi	
26	Anhydrides to Improve Thermal and Mechanical Properties of	Ajeng Mawangi, Lisman Suryanegara, Suminar S. Achmadi	155
27	Thermal and Mechanical Properties Improvement of Polylactic Acid-Nanocellulose Composites by Acetylation	Resty Dwi Andinie, Lisman Suryanegara, Suminar S. Achmadi	161
C	C. Mathematics, Statistics and Computer Science	1	167
28	The comparison spatial distribution observed, estimatated using Neyman-Scott Rectangular Pulse Method (NSRP), and simulation for mean of one-hour rain and probability of 24-hour rain	Rado Yendra, Ari Pani Desvina, Abdul Aziz Jemain	169
29	Optimal VAR Injection Based on Neural Network Current State Estimator for 20kV Surabaya Electrical Distribution System	Dimas Fajar Uman P, Ontoseno Penangsang, Adi Soeprijanto	175
30	Fire-Fighting Robot Navigation System Using Wall Following Algorithm and Fuzzy Logic	Karlisa Priandana, Erwin M Y Chriswantoro, Mushthofa	181
31	Analysis and Solving of Outliers in Longitudinal Data	Viarti Eminita, Indahwati, Anang Kurnia	187
32	Implementation of Flowers and Ornamental Plants Landscape Information System using Cloud Computing Technology	Meuthia Rachmaniah and Iswarawati	193
33	Cluster Information of Non-sampled Area in Small Area Estimation with Non-normally Distributed Area Random Effects and Auxiliary Variables	Rahma Anisa, Anang Kurnia, Indahwati	199
34	Study of Overdispersion for Poisson and Zero-Inflated Poisson Regression on Some Characteristics of the Data	Lili Puspita Rahayu, Kusman Sadik, Indahwati	203
35	The Effect of Two-Way and Three-Way Interaction of Perceived Rewards on the Relationship Quality	Enny Kristiani, Ujang Sumarwan, Lilik Noor Yulianti & Asep Saefuddin	209
36	Implementation of Inverse Kinematics for the Coordination Control of Six Legged Robot	Wulandari, Karlisa Priandana, Agus Buono	213
37	Detection of C Code Plagiarism by Using K-Means	Ahmad Ridha, Abi Panca Gumilang	219
38	Temporal Entity Tagging for Indonesian Documents	Ahmad Ridha, Agus Simamora	223
39	Multidimensional Poverty Measurement Using Counting Approach and Dual Cutoff Method in District of Banyumas	Indah Soraya, Irwan Susanto, Mania-Roswitha	229

1	Willing	D. Chaerani, A. Anisah, N. Anggriani, Firdaniza	235
1	Expert System for Plant Growth using Hormones and Exogenous Factors based on Fuzzy Approach	Yaasiinta Cariens, Karlina Nisa	241
2	The Effect of Divergent Branches on GPU-Based Parallel Program Performance	Hendra Rahmawan, Yudi Satria Gondokaryono	247
3	Ensemble of Extreme Estimates Based on Modified Champernowne and Generalized Pareto Distributions	Aji Hamim Wigena, Anik Djuraidah, Muhammad Hafid	253
4	Genetic Algorithms Application for Case Study of Multi-Criteria Decision Analysis (MCDA) on the Data Contained Missing Value	Septian Rahardiantoro, Bagus Sartono, Totong Martono	259
5	An Implementation of Parallel AES Algorithm for Data Encryption with GPU	Aditya Erlangga, Endang Purnama Giri, Karlisa Priandana	265
6	Constructing Orthogonal Fractional Factorial Split-Plot Designs by Selecting a Subdesign Dependently to Another Subdesign	Bagus Sartono, Yenni Angraini, Indahwati	269
17	Spatial Clustering of Hotspots using DBSCAN and ST-DBSCAN	Utsri Yustina Purwanto, Baba Barus,and Hari Agung Adrianto	275
18	Gap between the Lower and Upper Bounds for the Iteration Complexity of Interior-Point Methods	Bib Paruhum Silalahi	281
19	Black Approximation To Determine Value Of Call Option On Stock In Indonesian Stock Exchange	Jacob Stevy Seleky, Endar H. Nugrahani, I Gusti Putu Purnaba	287
50	Analysis of Portfolio Optimization With and Without Shortselling Basd on Diagonal Model: Evidence from Indonesian Stock Marke		291
51	Community Network Framework as a Support of Successful Agricultural Community	Rina Trisminingsih, Christine Suryadi, Husni S. Sastramihardja	299
52	THE TRANSMISSION MODEL OF DENGUE FEVER DISEASE: A COMPUTER SIMULATION MODEL	Paian Sianturi, Ali Kusnanto, Fahren Bukhari	305
53	Improving the Independence of the Components of a Decomposition in Time Series Data	Hari Wijayanto, Bagus Sartono, Casia Nursyifa	311
54	Modeling and Empirical Mapping of Vehicular Traffic System: Case Study of Jabodetabek Region	Endar H. Nugrahani, Hadi Sumarno, Ali Kusnanto	322

3

viii

Ľ). Biosciences and Bioresources		323
 55	Residues in Indonesian Green Coffee Beans Using Liquid	Harmoko, Rahmana Emran Kartasasmita, and Astika Tresnawati	325
56	Image Processing	Mohamad Agung Prawira Negara, Satryo Budi Utomo, Sumardi	·333
57	Genetic Variation of DGAT1 Eael Gene of Holstein Friesian in National Dairy Cattle Stations	Santiananda A. Asmarasari	339
58	The Potency of Dahlia Tubers as Prebiotic for Functional Food	Ainia Herminiati, Sri Pudjiraharti, Budi Setiawan	345
59	DNA identification using Markov Chain as feature extraction and Probabilistic Neural Network as classifier	Toto Haryanto, Habib Rijzaani, Muhammad Luthfi Fajar	351
60	Multiple Sequence Alignment with Star Method in Graphical Processing Unit using CUDA	Muhammad Adi Puspo Sujiwo, Wisnu Ananta Kusuma	359
61	Abalone (Haliotis asinina) Wound Detection System Using Histogram and Morphology	Noer Fitria Putra Setyono, Aziz Kustiyo, Dwi Eny Djoko Setyono	365
62	Local Alignment of DNA Sequence Using Smith-Waterman Algorithm	Fariz Ashar Himawan, Wisnu Ananta Kusuma	371
63	Agronomic performance and yield potential of 18 corn varieties in Indonesia	Anggi Nindita, Willy Bayuardi Suwarno, Surjono Hadi Sutjahjo, Perdinan	377
64	Characteristic and Phisychochemical Properties of Sweet Potatoes (Ipomoea batatas L)	Ai Mahmudatussa'adah	381
65	Determination of Harvesting Time of Three Peanut Varieties Based on Heat Unit Accumulation	Heni Purnamawati, Yoga Setiawan Santoso, Yudiwanti Wahyu	387
66	Respon of Celery (Apium graveolens) Leaves Yield to Plant Population and Seed Number Per Planting Hole	Karo, B, Marpaung, A. E., Tarigan, R., Barus, S. and Khaririyatun, N.	391
67	Bioethanol Production from Sugarcane Bagasses by Acid Hydrolysis and Fermentation with <i>Candida tropicalis</i>	Inda Setyawati, Laksmi Ambarsari, Waras Nurcholis, Popi Asri Kurniatin, Puspa Julistia Puspita	397
68	Toxic Compounds of Dichloromethane Extract of Makasar Fruits (Brucea javanica) based on Artemia salina Leach Analysis	Gustini Syahbirin, Rina Fazilatur Rahıni, Purwantiningsih Sugita	401

ix

SYNTHESIS OF SILVER NANOPARTICLES BY USING EXTRACELLULAR METABOLITES OF Lactobacillus delbrueckii subsp. bulgaricus

Suryani¹, Ridho Pratama², Dimas Andrianto³

 ^{1,2,3)} Department of Biochemistry, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Indonesia
 Jl. Agatis, Kampus IPB Darmaga 16680, Bogor E-mail : ani3110@yahoo.com

Abstract

The silver nanoparticles were used for many applications such as antifungal, anti bacterial, nanosensors, and food wrappers. Synthesis of silver nanoparticles using microbes as well as metabolites have been developed with consideration of the hazardous waste free environment. The aim of this research was to synthesize silver nanoparticles by using extracellular metabolites of L. delbrueckii subsp. bulgaricus. The synthesis silver nanoparticles was carried out by reacting the extracellular metabolites of L. delbrueckii subsp. bulgaricus with silver nitrate ($AgNO_3$) solution. Reduction of Ag^+ ions occurred by interaction of the extracellular enzyme that produced by L. delbrueckii subsp. bulgaricus. The silver nanoparticles was detected by UV-Vis spectrophotometer based on specific absorption spectrum at the 400 nm wavelength. The result of Fourier Transform Infrared (FTIR) analysis showed that organic component played an important role in the silver nanoparticles formation. The enzyme was estimated as the organic component in the extracellular metabolites of L. delbrueckii subsp. bulgaricus and had a role in the formation of silver nanoparticles. Furthermore, particles size analysis conformed that average size of formed silver nanoparticles was 2.7 nm and considered as silver nanoparticles.

Keywords: AgNO₃, extracellular metabolites, Lactobacillus delbrueckii subsp. bulgaricus, synthesis of silver nanoparticle

I. INTRODUCTION

Silver nanoparticles have been used in various fields such as antifungal (Vivek *et al* 2011), antibacterial (Prasad *et al* 2011), nanosensor, pesticides, cleaners for water and soil, food wrappers (Bouwmeester, 2007), also can reduce infections after surgery (Kalishwaralal *et al* 2009).

Silver nanoparticles can be synthesized by physically, chemically, and biologically (Kumar 2011). Synthesis of silver nanoparticles by physically and chemically have disadvantages for its stability and aggregation (Kaliswaralal et al 2010) and pollute the environment. Synthesis of silver nanoparticles biologically is one of the alternative to produce silver nanoparticles that more safe to the environment. Silver nanoparticles can be obtained from reduction of silver ions by microorganisms such as bacteria, yeast, or fungi (Tolaymat et al 2010). Synthesis of nanoparticles using microorganisms are less expensive, non-toxic, high productivity, and easily adapted to the ambient temperature and pressure (Reyes 2009). Therefore, silver nanoparticles have great potential to be developed in the future.

Synthesis of silver nanoparticles using the fungus has also been reported by Sadowski *et al* (2008) from *Aspergillus niger* as an agent biosynthesis. Kumar & Mamidyala (2011) states that the metabolites of *Pseudomonas aeruginosa* can be used for extracellular biosynthesis of silver nanoparticles. *L. delbrueckii* is a Gram positive, facultative anaerobic, homofermentative, rod-shaped, not sporulating, Synthesis of nanoparticles of this bacterium needs to be studied.

This aim of this research was to synthesis of silver nanoparticles by using extracellular metabolites of L. *delbrueckii* subsp.*bulgaricus*. The result of this research can provide scientific information on the biosynthesis of silver nanoparticles by reaction of extracellular metabolites that safe for the environment and can be applied in the field of medical and industries.

II. Methodology

a. Determination of Growth Curve

Lactobacillus delbrueckii subsp. bulgaricus was refreshed on MRS medium and incubated at 42°C for 16 hours at shaker incubator (120 rpm). The growth curve was determined by calculating the optical density (OD) of Lactobacillus delbrueckii subsp. bulgaricus after incubated at 0, 4, 8, 16, 32, and 64 hours and measured the absorbance at 620 nm wavelength.

b. Synthesis of Silver Nanoparticles (Saravanan et al 2011)

The bacteria were incubated at 42 ° C with agitation speed 150 rpm for 24 hours. Cells biomass and medium were separated by centrifugation (16000 g, 10 min). The 100 mL of supernatant culture were mixed with 0.017 grams AgNO₃ and incubated in dark chamber at room temperature. Mixture was allowed to stand for 30 minutes until the color changed from clear to brown as an indicator of the reaction between the supernatant and AgNO₃

c. Analysis of Silver Nanoparticles With UV-Vis

Supernatant (reacted with AgNO₃) was taken 2 mL for analysis by UV-Vis spectrophotometer and scanning at 200-800 nm wavelength. The formed peak will be analyzed for indication of silver nanoparticles.

d. FTIR Analysis for Silver Nanoparticles (Kumar & Mamidyala, 2011)

Potassium bromide/KBr powder (200 mg) was made into tablets. The supernatant was dripped into potassium bromide tablet and then measured at wavelength 400-4000 cm⁻¹. The results of frequency spectrum measurement will further analyzed using correlation to determine the chemical bonds in organic compounds contained in the sample.

e. Analysis of of Silver nanoparticles Size by Particles Size Analysis/PSA (Kim *et al.* 2006)

The refractive index and viscosity of solution that contained silver nanoparticles were analyzed first and then PSA. The average size of the silver nanoparticles were known by compared with size distribution of silver nanoparticles.

III. RESULTS AND DISCUSSIONS

Growth curves of Lactobacillus delbrueckii subsp. bulgaricus and AgNO₃ Treatment results

Biosynthesis of silver nanoparticles were started with rejuvenation of *Lactobacillus delbrueckii* subsp. *bulgaricus* in order to maintain the growth of bacteria under optimum conditions. *L. delbruecki* subsp. *bulgaricus* grown at 40-43°C as optimum temperature. The culture of *L. delbrueckii* subsp. *bulgaricus* were grown on MRS medium which indicated the changes of medium from clear to cloudy that caused by accumulation of biomass cell.

The aim of growth curves making is to determine optimum growth conditions of L. delbrueckii subsp. bulgaricus. Observation was done for 64 hours at the 2, 4, 8, 16, 32, 48, 64 hours after incubation (Figure 1). The L. delbrueckii subsp. bulgaricus was still clear after 2 hours incubation as considered lag phase i.e the phase of bacterial adaptation to the growth medium. Cell biomass increased only slightly during this phase that caused slightly changed culture density. The log phase (exponential) started after 8 hours up to 16 hours incubation which indicated the optical density or turbidity value increased and reached 1,754 (Figure 1). In this phase L. delbrueckii subsp. bulgaricus have been able to adapt to the medium and population growth increased exponentially (Black 2008). Furthermore. the stages of growth deceleration occurs after 16 hours incubation time. In this phase, changes of nutrition and environmental caused limitation of bacterial growth.

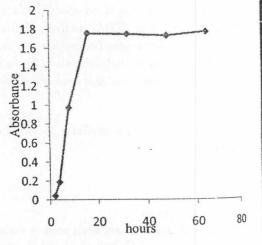


Figure 1. The turbidity growth curve of Lactobacillus delbrueckii subsp. bulgaricus

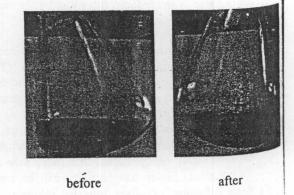


Figure 2. Reaction with AgNO₃ before addition of AgNO₃ and addition of AgNO₃ after 30 minutes incubation

Harvesting of L. delbrueckii subsp. bulgaricus for biosynthesis of silver nanoparticles were carried out after 24 hours incubation time when reached statisioner phase. At the statisioner phase L. delbrueckii subsp. bulgaricus produced organic compounds such as primary metabolites and secondary metabolites more than at the exponential phase (Kunaepah, 2008). The next stage was separation of cell biomass of L. delbrueckii subsp. bulgaricus with growth medium containing compounds the metabolites. Supernatant that containing metabolites of L. delbrueckii subsp. bulgaricus then added with AgNO3 (0.017 g/100 mL). There was color changes from clear to dark brown and became turbid after incubation for 30 minutes (Figure 2). Reaction of reduction directly observed by color changes of the solution (Kumar 2011). The color changes occurred due to the between organic compounds that reaction accumulate in the bacterial growth medium contained AgNO3 that indicated bioreduction. Then, UV - vis analysis was conducted to confirm whether the compound formed silver nanoparticles.

Biosynthesis of Silver Nanoparticles by Lactobacillus delbrueckii subsp. bulgaricus UV-Vis Spectrophotometer Analysis Result

The objectives for confirmation bioreduction of $AgNO_3$ compound into silver nanoparticles was to ensure that the color changes was biochemical reaction that indicates the formation of silver nanoparticles. Indication of nanoparticles formation was known from peak absorption at 370-500 nm wavelength (Solomon *et al.*, 2007). In this research, the formation of absorption peak was at 400 nm wavelength (Figure 3).

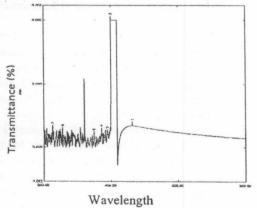


Figure 3. Absorption spectrum of silver nanoparticles by L. delbrueckii subsp. bulgaricus

The absorption peak at 400 nm wavelength indicated that there had been formation of silver nanoparticles using extracellular metabolites L. delbrueckii subsp. bulgaricus. According to Solomon et al. (2007), absorption of silver formed at range 370-500 nm wavelength. Analysis of UV - Vis spectrophotometer (Figure 3) provided information the amount of nanoparticles formed. The higher absorbance values can be assumed that the number of nanoparticles formed. Absorption peaks were very high that reached maximum absorbance value was 4 that indicated formation of silver nanoparticles in the solution.

Absorption spectrum was very important indicator to determine the formation of silver nanoparticles in the bioreduction of silver (Ag^{\dagger}) ions. Visual observation of the color changes was not enough to prove whether or not the silver nanoparticles formation.

FTIR Analysis Result for the detection of Functional Groups in Formation of Silver Nanoparticles

FTIR analysis results indicated that there were several strong absorption peaks, i.e at wavelengths of 3432, 1642.1401, 1124 cm⁻¹. The peak indicated the bond contained in organic compounds in solution of silver nanoparticles (Figure 4). Organic compounds released by L. delbrueckii subsp. bulgaricus had an important role in the bioreduction of silver nitrate compounds. Spectrum with a wavelength of 3432 cm⁻¹ showed the content of organic compounds with the N-H bond of amines and amides compounds with moderate intensity. Shaligram et al. (2009) stated that presence of amine group indicated presence of proteins in biosynthesis of silver nanoparticles, because this compound was a peptide bond that linked amino acids to form proteins. FTIR analysis results indicated that there was an organic compound that played an important role during formation of silver nanoparticles

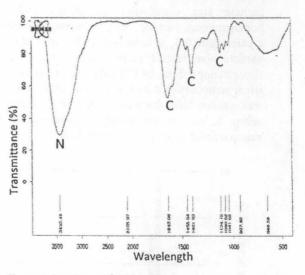


Figure 4. Spectrum of FTIR in silver nano particles solution

These compounds had role in reducing and wrap silver nanoparticles to form stable and homogen sizes of nanoparticles. Protein suspected as one of organic component that had role in the formation of silver nanoparticles. Further analysis is needed to determine specific protein or other organic

. .

compounds that play a role in formation of silver nanoparticles. Reactions that occurred in formation of silver nanoparticles are oxidation and reduction that there was electron transfer between oxidation and reduction agent. The silver (Ag^+) ions was positively charged ions if reacted with organic compounds that produced by metabolic processes of bacteria will release electrons. This condition will change silver (Ag^+) ions turn into Ag^0 . The enzyme binded to the nitrate compounds from silver nitrate $(AgNO_3)$ and using nitrate as substrate. The enzyme was nitrate reductase that played a role in the reduction of nitrate became nitrite.

The Size of Silver Nanoparticles by PSA

Analysis of the nanoparticles size was performed by using PSA (Particle Size Analysis). PSA was considered more accurate than Scanning Electron Microscope (SEM). Transmission Electron Microscope (TEM) and Scanning Force Microscope (SFM), especially for samples in the order of nanometer and submicron which usually have a high agglomeration tendency (Lidiniyah 2011). PSA measurement result in the form of distribution can be used to determine the overall particle size. Measurements were performed at 25°C using refractive index 1.3390 and viscosity samples were 2.1700 cp. Value of refractive index and viscosity will improve the accuracy of PSA measurement.

Based on the PSA analysis, it was known that average size of silver nanoparticles was 2.7 nm and PI (Polydispersity Index) was 0.351. PI value describes of the width of the size distribution of particles. If PI value less than 0.3, it indicated that particle size distribution is narrow and more homogeneous particle size, whereas PI values greater than 0.3, it indicated wide distribution and particle size tended more varied (Figure 5). The silver nanoparticles had PI value 0.351 that indicated silver nanoparticles had homogen particles size. It was proven that the metabolites of *L. delbrueckii* subsp. *bulgaricus* had ability to synthesis of silver nanoparticles when reacted with AgNO₃.

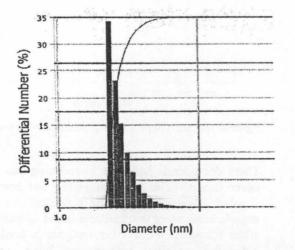


Figure 5. Distribution of silver nanoparticles size

IV. CONCLUSIONS

Metabolites of *Lactobacillus delbrueckii* subsp. *bulgaricus* had ability to synthesize of silver nanoparticles when reacted with AgNO₃. The absorption peak of silver nanoparticles occurred at 400 nm wavelength. The organic molecules had a role in formation of silver nanoparticles by reducing AgNO₃ into silver nanoparticles. The size of silver nanoparticles was 2.7 nm.

ACKNOWLEDGEMENT

We would like to thank for Directorate of General Higher Education Indonesia (DIKTI) that provided this funding research (in 2012).

REFERENCES

- [1].Black, JG. Microbiology: principles and exploration. 7th edition. Canada John Wiley & Sons. 2008
- [2].Bouwmeester H, Dekkers S, Noordam M, Hagens W, Bulder A, De Heer C, Ten VS, Sijnhoven S. Health impact of nanotechnologies in food production. RIKILT Institute of Food Safety. University of Wageningen. RIKILT /RIVM Report 2007.014
- [3].Kalishwaralal K, Banumathi E, Pandian SBRK, Deepak V, Muniyandi J, Eom SH. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. *Colloids. Surf.* 73:51–7. 2009
- [4].Kalishwaralal K. Deepak V, Pandian, KottisamyM, Barathmanikanth S, Kartikeyan B, Guranathan S. Biosynthesis of silver and gold nanoparticles using *Brevibacterium casei*. Colloids and Surfaces. 77 :257-262. 2010
- [5].Kim et al. Retinol-encapsulated low molecular water soluble chitosan nanoparticles.
 International Journal of Pharmaceutics 319: 130-138. 2006.
- [6].Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture supernatant of *Pseudomonas aeruginosa*. Coloid and Surface B Biointerfaces 84: 462-466. 2011.
- [7].Kunaepah U. Pengaruh lama fermentasi dan konsentrasi glukosa terhadap aktivitas
 / antibakteri, polifenol total, dan mutu kimia kefir susu kacang merah. Semarang: Magister Gizi Masyarakat. Universitas Diponegoro. 2008.
- [8].Lidiniyah. Peningkatan jumlah nanopartikel kitosan terisi ketoprofen berdasarkan ragam surfaktan dan kondisi ultrasonikasi [skripsi]. Bogor. Sekolah pascasarjana. Institut Pertanian Bogor. 2011.
- [9].Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Selvaraj K. Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. African Journal of Biotechnology. 10: 8122-8130. 2011.
- [10]. Reyes LR, Idalia G, Ma. TG. Biosynthesis of cadmium sulfide nanoparticles by the fungi

a an un

Fusarium sp. International Journal of Green Nanotechnology: Biomedicine. 1:B90-B95. 2009.

- [11].Sadowski Z, Maliszewska HI, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms, *Materials Science-Poland*, 26: 419-424. 2008.
- [12].Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from *Bacillus* megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. *Colloid Surf B Biointerfaces*. 1;88 (1): 325-31. 2011.
- [13].Saravanan M, Nandan A. Lactobacillus delbrueckii mediated synthesis of silver nanoparticle and their evaluation of antibacterial efficacy against MDR clinical pathogens.
- Proceeding of International Conference on Nanosscience, Engineering and Technology (ICONSET 2011). Tamilnadu, India, 28 – 30 November 2011. ISBN : 978-1-4673-0071-1.

semua pijes: 10: < 10thin 100% purchablin

- [14].Shaligram SN, Bule M, Bhambure R, Singhal SR, Singh K.S, Szakacs G, Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal. *Process Biochemistry*. 44: 939-943. 2009.
- [15].Solomon SD, Bahadory, Jeyarajasingam M, Rutkowsky, Boritz SA & Mulfinger L. Synthesis and study of silver nanoparticles. Journal of
- Chemical Education 84(2): 322-325. 2007. [16].Tolaymat T, El Badawy A, Genaidy A, Scheckel K, Luxton T, Suidan M. 2010. An evidence-based environmental perspective of
- manufactured silver nanoparticle in syntheses
 and applications: A systematic review and
 critical appraisal of peer-reviewed scientific
 papers. Sci. Tot. Environ. 5: 999-1006. 2010.
- [17].Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic Silver Nanoparticles by *Gelidiella acerosa* Extract and their Antifungal Effects. Karpagam <u>Avicenna J Med Biotechnol.</u> Jul;3(3):143-8. 2011