International Congress
th on Engineering and Food

Food Process Engineering in a Changing World

iCEF]

Congress Proceedings
Volume I

Athens, Greece 2011

2011

CONTENTS-VOLUME I

PLENARY LECTURES

Food process engineering research and innovation in a changing world H. Schubert, H.P. Schuchmann	1
Food process engineering and product innovation in a changing world - The	3
industry perspective	
J.P. Clark	

FOOD MATERIALS SCIENCE

Micro- and nano- sciences and technology	
Advances in nanotechnology as applied to food systems J.L. Kokini	5
Molecular encapsulation of citral or d-limonene flavor by spray drying H. Yoshii, C. Yamamoto, T. Furuta, T. Loon Neoh	7
Modelling of plant tissue microstructure for finite element method P. Mariusz Pieczywek, A. Zduneka, M. Umeda	9
Preparation of protein particles for high protein foods using two-step emulsification D. Sağlam, P. Venema, R. de Vries, L.M.C. Sagis, E. van der Linden	11
Casein micelles on silicon micro-sieves studied by atomic force microscopy and light scattering R. Gebhardt, W. Holzmüller, Q. Zhong, P. Müller-Buschbaum, U. Kulozik	13
Tracing changes of garlic bulbs stored at low temperature by MRI N. Ishida, E. Niwata, H. Yamazaki	15
Developing nano-sized vehicles based on tailored polysaccharides produced by enzymatic synthesis D. Semyonov, Eyal Shimoni	17
Encapsulation of beta-carotene in solid lipid microparticles of stearic acid: evaluation of stability and microstructural aspects G.V.L. Gomes, T.R. Borrin, I.A.S.Simplício, J.C.G. Tedesco, L.P. Cardoso, S.C. Pinho	19
Challenges in the identification of engineered nanomaterials in foods R. Greiner, V. Graef, E. Walz, D. Behsnilian	21
Production and evaluation of solid lipid microcapsules of <i>Lactobacillus acidophilus</i> produced by spray chilling C.S. Favaro-Trindade, D.L. Pedroso, M. Dogenski, M. Thomazini, R.J.B. Heinemann	23

Implementation of a novel tool to quantify dough microstructure M. Jekle, T. Becker	25
Characterization of spray-dried phospholipid particles for the production of beta- carotene-loaded liposomes C.R. Silva, M. Moraes, J.M.P. Carvalho, S.C. Pinho	27
Multilayer microcapsules based on supramolecular structures produced from bovine serum albumin and high methoxy pectin Y. Arsianti, Z. Hui, L. Sagis	29
Metal-based nanocomposites as antimicrobials in food packaging applications A. Fernandez, E. Lloret, A. Llorens, P. Picouet	31
Food polymers	
Molecular origin of physical state and functionality of soluble cereal fibers C.G. Biliaderis	33
Effect of sugars on the phase behaviour, flow and interfacial properties of protein- polysaccharide aqueous two phase systems A. Portsch, F. Spyropoulos, I. Norton	35
Properties of film-forming solutions and their films made by spreading: effect of gelatine concentration P.J. do Amaral Sobral, M.F. Coronado Jorge, F.M. Vanin, R. Aparecida de Carvalho, I. Cristina, F. Moraes, A. Quinta, B. Bittante	37
Thermomechanical properties of vegetable tissue at 30-90°C J. Blahovec	39
Application of chitosan-sunflower oil edible films to pork meat hamburgers M. Vargas, A. Albors, A. Chiralt	41
Effect of thermal processing and storage on digestibility of starch in whole grains A.A. Alsaffar	43
Locating proteins by using quantum dot nanocrystals in flat bread N. Sozer and J. Kokini	45
Food structure and modeling	
Aroma encapsulation in powder by spray drying, and fluid bed agglomeration and coating E. Dumoulin, C. Turchiuli, M.E. Cuvelier, P. Giampaoli	47
The effect of electrical processing on mass transfer and mechanical properties of food materials P. Fryer, G. Porras-Parral, T. Miri, S. Bakalis	49
Stokes shape factor for lactose crystals K. Shaffer, C.E. Davies, A.H.J. Paterson, G.A. Hebbink	51
Multi-scale mechanics and structure of semi-hard cheese T.J. Faber, P.J.Schreurs, J.M.J.G. Luyten, H.E.H. Meijer	53

Ice crystals nucleation, growth and breakage modelling in a scraped surface heat exchanger H. Benkhelifa, M. Arellano, G. Alvarez, D. Flick	55
Food dispersions and emulsions	
Texture and morphology of milk foams produced by steam injection A. Sher, JC. Gumy, C. Jimenez-Junca, K. Niranjan	57
Starch particles for food based Pickering emulsions M. Rayner, A. Timgren, M. Sjöö,P. Dejmek	59
Microstructural design to reduce lipid oxidation in oil-in-water emulsions M. Kargar, F. Spyropoulos, I.T. Norton	61
Characterization of spray-dried layer-by-layer emulsions Y. Serfert, J. Schröder, A. Mescher, J. Laackmann, S. Drusch, K. Schwarz	63
Production of uniform O/W emulsions through a porous medium of micron-sized glass beads A. Nazir, K. Schroën, R. Boom	65
Physicochemical characterization of hydroxypropyl methylcellulose based oil-in- water emulsions for edible film formation R.N. Zúñiga, F. Osorio, J.M. Aguilera, F. Pedreschi	67
The effect of different stabilizers on the production of sub-micron o/w emulsions by using ultrasound techniques O. Kaltsa, C. Michon, S. Yanniotis, I. Mandala	69
Physical stability of beverage emulsions as influences of orange oil, tragacanth and arabic gums concentrations E. Rezvani, A.R. Taherian, G. Schleining	71
Large microchannel emulsification device for producing monodisperse fine droplets I. Kobayashi, M.A. Neves, Y. Wada, K. Uemura, M. Nakajima	73
Water and water related phenomena in foods	
Water relations in food: Paradigm shifts to supplant "Cook and Look" T.P. Labuza	75
Water-Macromolecule interactions in food dehydration and the effects of pore structures on such interactions A.I. Liapis, JC. Wang	77
Quantification in starch microstructure as a function of baking time M. Schirmer, M. Jekle, T. Becker	79
Mass transfer during osmotic dehydration of apple using sucrose, fructose and maltodextrin solution M.A. Khan, R.N. Shukla, S. Zaidi	81
Effect of maltodextrins on water adsorption and glass transition of spray dried soy sauce powders W. Wang ,W. Zhou	83

xvii

 ${\it 11th International Congress on Engineering \ and \ Food-Athens, Greece, 2011}$

Water absorption as an evaluation method of cooking quality for yam (Discount alata) and cassava (Manihot esculenta crantz) Kouadio Kouadio Olivier, Nindjin Charlemagne, Bonfoh Bassirou, N'dri Denis, Aman N'guessan Georges	
Moisture penetration and crystallization in sugar glasses R. Bund, R. Hartel	87
Osmo-Dehydration of fruits: a thermodynamic approach via Knudsen thermogravimetry D. Fessas, M. Signorelli, A. Schiraldi	855
Effects of different drying conditions on pasta quality L. Zhang, T. Nishizu, S. Hayakawa, K. Goto	
Food packaging and materials interaction	
Dynamic accumulation method for measuring oxygen transmission rate of food packaging materials using florescence oxygen detection B. Welt, A. Abdellatief	93
Modelling of aroma compounds diffusion in polymeric films using artificial neural networks B. Bolouri, S.M.A. Ebrahimzadeh Mousavi	95
Mathematical modelling and computational analysis of mass transport in perforation-mediated modified atmosphere packaging for strawberries G. Xanthopoulos, E.D. Koronaki, A.G.Boudouvis	97
Assessment of sustainable antimicrobial polymers with regard to their applicability in the food chain Y. Ilg, M. Kreyenschmidt, R. Lorenz, J. Zerbe, J. Kreyenschmidt	99
Biopolymer-based films as carriers of antimicrobial agents K.G. Zinoviadou, K.P. Koutsoumanis, C.G. Biliaderis	101
Biodegradable fish gelatin/chitosan composite films: homogeneous and bi-layer structures V.D. Alves, A. Fernandes, C. Cordeiro, I. Sousa	103
Controlled release of nisin from biopolymer films J. Chacko, M. Lalpuria, J. Floros, R. Anantheswaran	105
Antimicrobial packaging films with a sorbic acid based coating C. Hauser, J. Wunderlich	107
Ultrasonic sealing of packaging films - influencing material properties K. Thürling, S. Bach	109
Mechanical properties of cassava starch-based nano-biocomposites C.C. Tadini, O. Teixeira Carvalho, L. Avérous	111
Effects of mechanism of gelation on physical, mechanical and antibacterial properties of alginate films with oregano essential oil incorporated R. Villalobos-Carvajal, S. Benavides, J.E. Reyes	113

Food structure, microstructure and nanostructure	
Where is the 'nano' in foods? J.M. Aguilera	115
Enhancing genistein bioavailability by amylose complexes R. Cohen, E. Shimoni	117
Nanostructures and polymorphisms in protein stabilised lipid nanoparticles, as food bioactive carriers: contribution of particle size and adsorbed materials R. Shukat, C. Bourgaux, F. Meneau, P. Relkin	119
Technological and nutritional aspects of solid lipid nanoparticles added to o/w emulsions R. Greiner, K. Oehlke, E. Walz, V. Graef	121
Microstructural analysis of deep-fat fried formulated products by confocal laser scanning microscopy (CLSM) and fluorescent labelling M.C. Moreno, P. Bouchon	123
Gas bubbles in structured foods: technical advances to monitor their growth and impact on process understanding and modeling T. Lucas, D. Grenier, Y. Laridon, S. Challois, C. Doursat, D. Flick	125
Effect of pore structure and starch retrogradation on physical properties of breadcrumb M. Tashiro, T. Nishizu, K. Hashizume, H. Sako, K. Goto	127
Chitin nanocrystal o/w stabilized emulsions M.V. Tzoumaki, T. Moschakis, V. Kiosseoglou, C.G. Biliaderis	129
Food rheology	
Rheological and structural characteristics of nanometer-scale food protein fibril dispersions and gels M.A. Rao, S.M. Loveday, H. Singh	131
Influence of wheat bran on wheat dough rheology and subsequent texture of bread K. Katina, H. Chiron, AL. Requerre, L. Chanier, K. Poutanen, G. Del Valle	133
Rheological modelling of polymeric systems for foods: Experiments and simulations	135
P.H.S. Santos, M.A. Carignano, O.H. Campanella	127
Viscoelastic characterization of fluid and gel like food emulsions stabilized with hydrocolloids N.E. Zaritzky, G. Lorenzo, A.N. Califano	137
Non-destructive characterization of food microstructure and composition by spatially-resolved spectroscopy N. Nguyen Do Trong, M. Tsuta, E. Herremans, R. Watté, C. Erkinbaev, E. Verhoelst, P. Verboven, B. M. Nicolaï, W. Saeys	139
Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings E. Oserio, P. Moline, S. Mariacevich, I. Enrione, O. Skurtys	141

Using particle tracking to probe the local dynamics of barley β -glucan solutions T. Moschakis, A. Lazaridou, C.G. Biliaderis	143
State and phase transitions of food materials-relation to quality	
Relaxations, glass transition and engineering properties of food solids Y.H. Roos	145
Modelling crystal polymorphisms in chocolate processing P.J. Fryer, S. Bakalis, B.J.D. Le Révérend, N.Z. Rois Anwar	147
The role of the glassy state in production and storage of freeze-dried starter cultures M. Aschenbrenner, U. Kulozik, P. Först	149
Maillard reaction markers in cornflake production. Influence of process conditions and formulation Abel Farroni, Gabriela Lagorio, Pilar Buera	151
Development of state diagram of bovine gelatine by measuring thermal characteristics using Differential Scanning Calorimetry (DSC) M. Shafiur Rahman, G. Al-Saidi, N. Guizani, A. Abdullah	153
Control of resistant starch content of cookie by pre-dehydration treatment (FMS33) K. Kawai, H. Kawai, Y. Hagura	155
Crystallization in amorphous lactose-maltodextrin mixtures N. Potes, Y.H. Roos	157
Nut processing and coffee roasting	
Batch coffee roasting; roasting energy use; reducing that use H. Schwartzberg	159
Predictive modelling of textural quality of almonds during commercial storage and distribution L.Z. Taitano, R.P.Singh	161
X-ray imaging for fungal necrotic spot detection in pistachio nuts S. Yanniotis, A. Proshlyakov, A. Revithi, M. Georgiadou , J. Blahovec	163
Nanoemulsions of grape marc extract as natural additives to improve hazelnut paste shelf-life G. Spigno, D. Amendola, Francesco Donsì, Mariarenata Sessa, Giovanna Ferrari, D.Marco De Faveri	165
Effect of the roasting process on glass transition and phase transition of Colombian Arabic coffee beans W. Rivera, X. Velasco, C. Galvez, C. Rincon, A. Rosales, P. Arango	1107
Determination of aflatoxin level in peanut paste using Fourier transform mid- infrared spectroscopy with attenuated total reflection H. Kaya-Celiker, P. Kumar Mallikarjunan, O. Dalay	
An artificial neural network modelling based optimisation method: a pistachio colour control during roasting process B. Lamrini, R. Yeganeh, G. Trystram	

FOOD PRODUCT & PROCESS APPLICATIONS

173 An overview of encapsulation technologies for food applications V. Nedovic, A. Kalusevic, V. Manojlovic, B. Bugarski 175 Formulation of banana aroma impact ester in water-based microemulsion nanodelivery system for flavoring applications using sucrose laurate surfactant A.E. Edris, C.R. Malone Applicability of monoglyceride-oil-water gel to produce low-saturated fat products 177 S. Calligaris, S. Da Pieve, B. Quarta, L. Manzocco, M. Anese, M.C. Nicoli pH reduction of vegetables by the application of the vacuum impregnation method 179 A. Derossi, T., De Pilli, M.P. La Penna, C. Severini 181 Nutritional effects of folic acid controlled release from mesoporous materials I. Barat, É. Pérez-Esteve, A. Bernardos, R. Martínez-Máñez Enzymatic formation of copolymers and block-copolymers based on derivatized 183 polysaccharides A. M. Moscovici, E. Shimoni Assessing the use of Dielectric Spectroscopy to analyse composition and 185 component mobility in a model cheese system J. Smith, A. Carr, M. Golding, D. Reid, L. Zhang

ENGINEERING PROPERTIES OF FOODS

Mechanical properties of foods

Developing novel 3D measurement techniques and prediction method for food 187 density determination S. Kelkar, S. Stella, C. Boushey, Martin Okos 189 A Composite model for wheat flour dough under large deformation M.A.P. Mohammed, E. Tarleton, M.N. Charalambides, J.G. Williams 191 Modelling deformation and fracture in confectionery wafers LK Mohammed, M.N. Charalambides, J.G. Williams, J. Rasburn Mechanical properties and microstructural changes during soaking of individual 193 corn and quinoa breakfast flakes W.T. Medina, A.A. de la Llera, J.L. Condori, J.M. Aguilera 195 Dimensional analysis of continuous foaming operation by whipping G. Mary, S. Mezdour, R. Lauhon, G. Cuvelier, F. Ducept Supplementation of extruded foams with wheat bran: Effect on textural properties 197 F. Robun, C. Dubois, H.P. Schuchmann, S. Palzer Impact of steaming conditions on the structure and on the properties of bread 199 crosset in the case of a crispy roll Le-Ball, R. Del Carmen Altamirano Fortoul, T. Dessev, C. Rosell, D. Leray, T. Lucas, S. Chevallier, V. Jury

puree L. Espinosa, N. To, R. Symoneaux, C.M.G.C. Renard, N. Biau, G. Cuvelier	201
Potential application of pre-processed whey protein isolate (WPI) for high protein food	203
N. Purwanti, A. Moerkens, A. Jan van der Goot, R. Boom	
Food properties	
Effect of temperature on the density of whole milk under high pressure B. Guignon, I. Rey, P.D. Sanz	205
Texture-taste interactions: enhancement of taste intensity by structural modifications of the food matrix M. Stieger	207
Decomposition of absorption spectra of multi-layered biological materials by spatially-resolved spectroscopy and parallel factor analysis M. Tsuta, N. Nguyen Do Trong, E. Herremans, J. De Baerdemaeker, W. Saeys	209
Correlating mozzarella cheese properties to production processes by rheological, mechanical and microstructure study: Meltability study and activation energy XX. Ma, B. James, L. Zhang, E. Emanuelsson-Patterson	211
Comparison of nutritional composition between palm kernel fiber and the effect of the supercritical fluid extraction on its quality M.M. Ben Nama, N.N. Ab. Rahman, S.S. Al-Rawi, A.H. Ibrahim, M.O. Ab Kadir, A.M.S. Abdul Majid	213
Practical implications of probe- and sample-related variables in puncture testing of clingstone peaches R.R. Milczarek, T.H. McHugh	215
Inflammatory properties of almond milk fermented with potentially probiotic bacteria N. Bernat, M. Chafer, A. Chiralt, Y. Sanz Y, C. Gonzalez-Martínez, J.M. Laparra	217
Structural changes of gliadins during sourdough fermentation G. Komen, A.H. Baysal, S. Harsa	219
Food rheological properties	
Physico-chemical and rheological changes of fruit purees during storage F. Balestra, E. Cocci, M. Dalla Rosa	221
The influence of homogenisation on the micro-structure, rheological and sensory properties of some food fiber suspensions E. Tornberg, H. Bengtsson	223
Viscoelastic behavior of Peruvian carrot starch gels as affected by temperature and Concentration V.R. Nicoletti Telis, K.Mislaine Albano, C.M. Landi Franco	225
How the drying rate at bread crust can affect its viscosity? F.M. Vanin, C. Michon, G. Trystram, T. Lucas	227

Quantifying the effect of extrusion processing of a confectionery paste P. Martin, A. Walker, C. Martin, B. Hook, D. Cunningham, I. Van Damme	229
Effect of incubation temperature and caseinates on the rheological behaviour of kefir G. Dimitreli, K.D. Antoniou	231
Possibility of using acoustic techniques for dough processing evaluation H. Elfawakhry, M.A. Hassan, T. Becker	233
Thermophysical and physicochemical properties of foods	
Effects of heat treatment on protein denaturation and starch gelatinisation in wheat flour	235
T.R.A. Magee, G.Neill Determination of drip loss in beef by NIR hyperspectral imaging and multivariate	237
analysis G. ElMasry, DW. Sun, P. Allen	201
Specific heat capacity of crude palm oil J.S. Alakali, S.O. Eze, M.O. Ngadi	239
Modelling the effect of temperature and relative humidity on physicochemical properties of honey L. Mehryar, M. Esmaiili, A. Hassanzadeh	241
Assessment of physical properties and dissolution behavior of protein-based powders A. Gianfrancesco, C. Casteran, J.C. Andrieux, M. Giardiello, G. Vuataz	243
Transport properties	
MRI texture analysis as means for mddressing rehydration and milk diffusion on cereals A. Melado, P. Barreiro, L. Rodríguez-Sinobas, M.E. Fernández-Valle, J. Ruíz Cabello, S. Chassagne-Berces, H. Chanvrier	245
Texture changes in bolus to the "point of swallow" - fracture toughness and back extrusion to test start and end B. James, A. Young, B. Smith, E. Kim, A. Wilson, M.P. Morgenstern	247
Mostare distribution in broccoli: measurements by MRI hot air drying	249
Maria Call van der Sman, E. Gerkema, F.J. Vergeldt, H. van As, A.J.B. van Boxtel	
Rate kinetics of bread bolus disintegration during in vitro digestion GM Boenborst, R. P. Singh, D.R. Heldman	251
Moisture sorption characteristics of heat treated flour, culinary flour and high ratio cake T.R.A. Magee, G. Neill, A.H. Al-Muhtaseb	253
Effect of feed Equid viscosity on flavor retention of bergamot oil encapsulated in speny-dried modified starch powder P. Perbundirkul, H. Yoshii, U. Ruktanonchai, T. Charinpanitkul, A. Soottitantawat	255

neuring and Food - Athens, Greece, 2011

xxiii

The Influence of freeze drying conditions on microstructural changes of food products	257
V.P. Oikonomopoulou, M.K. Krokida, V.T. Karathanos	
The effect of supercritical fluid extraction parameters on the nutmeg oil extraction and its cytotoxic and antiangiogenic properties S.S. Al-Rawi, A.H. Ibrahim, N.N. Ab Rahman, M.M. Ben Nama, A.M.S. Abdul Majid, M. O. Ab Kadir	259
MODELING & CONTROL OF FOOD PROCESSES	
Modelling and simulation	
Evaluation of heat transfer coefficients associated with thermal processing systems employed for commercial sterilization H.S. Ramaswamy	261
Optimal shape design of bypass holding tubes configuration in aseptic processing F. Sarghini, A. Silano, P. Masi	263
Study of laminar mixing in kenics static mixer by using positron emission particle tracking (PEPT) S. Bakalis, M. Rafiee, P.J. Fryer, A. Ingram	265
Quality degradation of lactic acid bacteria during the freeze drying process: Experimental study and mathematical modelling I. Douania, S. Passot, F. Fonseca, S. Cenard, I.C. Tréléa	267
Computer aided simulation for developing a simple model to predict cooling of packaged foods M. Gram Christensen, A. Heilu Fayissa, J. Adler-Nissen	269
Prediction of quality properties of dried cranberries with combination method of ultrasound-osmotic-microwave using artificial neural networks model Z. Emam-Djomeh, S. Shamaei	271
Simulation of coating process and validation in actual system: Application of artificial neural network and development of a system analytical model S. Bhattacharya	273
Drying of spherical food materials: mathematical modeling including stress fields Mariana Carvalho, Dermeval Jose Mazzini Sartori, Leonardo da Silva Arrieche	275
Automation, process control, intelligent systems & Sensors	
Advanced sensors, quality attributes and modeling in food process control M. McCarthy, K. McCarthy	277
The automatic sorting using image processing improves postharvest blueberries storage quality G. Leiva, G. Mondragón, D. Mery, J.M. Aguilera	279

Optimal on-line decision making for food thermal processes A.A. Alonso, A. Arias-Mendez, E. Balsa-Canto, M.R. Garcia, J.I. Molina, C. Vilas, M.

281

Villafin

Prediction of water content of baking powder using near-infrared spectroscopy T. Yano, J. Kohda, Y. Nakano	283
Hyperspectral imaging for the detection of microbial spoilage of mushrooms E. Gaston, J.M. Frías, P.J. Cullen, C.P. O´Connell, A.A. Gowen	285
Detection of chicken egg fertility and early embryo development using hyperspectral imaging L. Liu, M.O. Ngadi	287
Automated detection of softening and hard columella in kiwifruits during postharvestusing X-ray testing G. Leiva, G. Mondragón, J.M. Aguilera, D. Mery	289
Modelling of transport phenomena	
Modeling food process, quality and safety: Frameworks and practical aspects A. Datta, A. Dhall	291
Diffusion mechanisms of solutes in chitosan-based edible films – behaviour in liquid and solid media and comparison between macro and nano scale M.A.C. Quintas, A.I. Bourbon, J.T. Martins, D.A.C. Quintas, A.C. Pinheiro, A.A. Vicente	293
An Eulerian-Lagrangian approach for coupling CFD and population balance equation E. Chantoiseau, A. Plana-Fattori, F-T. Ndoye, C. Doursat, D. Flick	295
Non-equilibrium multiphase modeling approach for convective drying of potato tissues: the spatial reaction engineering approach (S-REA) X. Dong Chen, A. Putranto	297
3D Pore scale network model for the transport of liquid water, water vapor and oxygen in polymeric films L.A. Segura, J.E. Paz	299
Multiscale model of structure development in expanded starch snacks R.G.M. van der Sman, J. Broeze	301
Effect of morphology on water sorption in cellular solid foods E. Esveld ^a , R. van der Sman ^a , M. Witek ^{b,d} , C. Windt ^{b,e} , G. van Dalen ^c , H. van As, J. van Duynhoven, M. Meinders	303
Fundamentals-based quality prediction: texture development during drying and related processes S. Thussu, A. Datta	305
Modelling and simulation	
Food preservation process design D.R. Heldman	307
Empirical modeling for spray drying process of sticky and nonsticky products F. Saleena Taip, L. Woun Tan, M. Nordin Ibrahim, R. Kamil	309
Optimal design of experiments for the modelling of food processes F. Courtois, D. Goujot, X. Meyer	311

Development of Citrus Grading System Using Image Processing

U. Ahmad^a, M. Suhil^b, R. Tjahjohutomo^c, and H.K. Purwadaria^d

^a Department of Mechanical and Biosystem Engineering, Bogor Agricultural University (IPB), Bogor, Indonesia (<u>usmanahmad@ipb.ac.id</u>)

b Centre of Agricultural Mechanization Development, Ministry of Agriculture, Serpong, Indonesia

(ardhison_pipo@yahoo.com)

^c Centre of Postharvest Technology Development, Ministry of Agriculture, Bogor, Indonesia (rudyhutomo@yahoo.com)

^d Department of Mechanical and Biosystem Engineering, Bogor Agricultural University (IPB), Bogor, Indonesia (tpphp@indo.net.id)

INTRODUCTION

Citrus production in Indonesia has been increasing to a yield of 17-25 tons/ha. However, the quality is still a serious problem. Most of the citrus produced from the production centers such as Pontianak and Medan enter domestic market with unattractive appearance with big varieties in size, color, and taste. For that reason, the quality improvement of citrus through the development of quality assurance system using new technologies is necessary. Many postharvest handling technologies such as waxing and modified atmosphere packaging can be applied, but uniformity in size, color, and taste is very important in marketing the products.

One of the advanced technologies that can be used for sorting and grading fruits is an automatic grading system with image processing for quality measurement. Image processing technology is a technology developed to obtain information from image by modifying the image into a desired and more informative one and analyzing it, or translate the meaning into an action in machine vision. Image processing technology has been applied to detect cherry tomato in a bunch of cherry tomato plants by recognizing object with different color. The method was integrated in the harvesting robot for cherry tomato cultivated in a greenhouse [1]. Another example of image processing application is in mushroom harvesting robot, to detect the mature mushroom to harvest [2] and in watermelon harvester to do the same task [3].

The objectives of this study were to develop software using image processing to grade citrus based on their weight and color, and to develop a real-time grading machine prototype.

MATERIALS AND METHODS

Data of the area of each citrus in image obtained from a CCD camera attached to a grading machine prototype was transformed to the weight of citrus, and was used for classifying the citrus conformed to SNI grades.

Data of the area of each citrus in image obtained from a CCD camera attached to a grading machine prototype was transformed to the weight of citrus, and was used for classifying the citrus conformed to SNI grades.

The machine prototype was designed and constructed consisting of a rotating fruit feeder with two pneumatic solenoids that open and close one after another to release one fruit at a time, a belt conveyor, a color CCD camera, four openings with three pneumatic solenoids, four collecting boxes, a logic control panel, and a computer.

Eight hundred and fifty of Pontianak citrus, composed of 125 grade A fruits, 125 grade B fruits, and 200 fruits each for grades C, D, E respectively, were used as samples. The samples

were graded manually based on size. The results of image processing classification was then compared to the ones from manually grading, while the performance of the machine was observed through its capacity.

RESULTS AND DISCUSSION

In grading the citrus based on size, it is important to use Indonesian standard (SNI 01-3165-1992) as referrence by re-grading the samples into a new grades by direct measuring using a digital balance. This re-grading of 850 fruits resulting 91 fruits as grade A, 269 fruits as grade B, 467 fruits as grade C, and 23 fruits as grade D. No grade E in Indonesian standard for citrus.

The results show that out of 850 samples used in this experiment, there were 323 fruits (38%) which were not compromised to SNI based on direct weigth measuring using a digital balance. It can be seen from the same table that manual grading agreed with SNI in grade A by 100%, in grade B by 46%, in grade C by 19%, and in grade D by 0%. In average, manual grading agreed with SNI in all grades by 41%, which is very low. It can be said that, manual grading was done in a random way and not using Indonesia standard as reference, or done subjectively.

Furthermore, the same samples were graded based on size of fruit, or area projection of the fruit in image using the developed computer program. In the computer program, the borders of each grade in weight (g), were converted into threshold values (pixel), based on equation y=205x+7018, with y as area projection (pixel) and x as weight (g). The results of grading using the machine and its conformity to SNI is shown in Table 1.

Table 1. Variance of grading by image processing to	SNI 01-3165-1992 citrus grad	de
---	------------------------------	----

SNI Citrus Grade	Grading by Image Processing				A
	A	В	С	D	Amount
А	84 (92%)	7 (8%)	0 (0%)	0 (0%)	91
В	2 (1%)	263 (98%)	4 (1%)	0 (0%)	269
C	0 (0%)	17 (4%)	436 (93%)	14 (3%)	467
D	0 (0%)	0 (0%)	0 (0%)	23 (100%)	23
Total fruit	86	287	440	37	850

CONCLUSION

The developed prototype for automatic grading machine with image processing as quality evaluation method had been performed successfully to the designed function. The results indicated that citrus graded by image processing conformed to SNI at a degree of 96% compared to 41% performed by manual grading. However, the capacity of the grading machine was 700 fruits/hr, thus it needed further improvements, especially in speed, before the implementation in the field.

REFERENCES

- [1] Kondo, N., Nishitsuji Y, Ling, P. & Ting, K.C. 1996. Visual Feedback Guided Robotic Cherry Tomato Harvesting. Transactions of the ASAE, 39 (6), 2331-2338.
- [2] Reed, J.N., He, W. & Tillett, R.D. 1995. Picking Mushrooms by Robot. International Symposium on Automation and Robotics in Bioproduction and Processing. Vol. 1. Kobe. Japan. 22 September 1995. Proceedings p. 27-34.
- [3] Tokuda M., Namikawa K., Sugari, M., Umeda, M., & lida M. Description of Watermelon Harvesting Robot (1): Machine Vision System for Watermelon Burnesing Robot. International Symposium On Automation And Robotics In Bioproductor and Translate Vol. 2. Kobe, Japan, 22 September 1995. Proceedings p.9-16.