

AESFA 2009

ISBN 978-602-95924-0-5

International Symposium AGRICULTURAL ENGINEERING TOWARDS SUSTAINABLE AGRICULTURE IN ASIA

Editors :

Prof VM Salokhe (AE Regional Association), Dr Madan K.Jha (AE Regional Association)
Dr G Srzednicki (UNSW, Australia), Prof Hadi K Purwadaria (PERTETA),
Prof Kamaruddin Abdullah (PERTETA), Prof Sahid Susanto (PERTETA),
Prof Asep Sapei (PERTETA), Dr Agung Hendriadi (PERTETA),
Prof Armansyah Tambunan (PERTETA) Prof Tineke Mandang (PERTETA),
Dr Bambang Prastowo (PERTETA), Dr Handaka (PERTETA),
Dr Sam Herodian (PERTETA), Dr Raffi Paramawati (PERTETA)

PROCEEDINGS

TABLE OF CONTENTS

PREFACE

GROUP A : FARM MACHINERY AND MANAGEMENT (FMM)

Screen Types Affecting Efficiency of Soil Separation from Sugar Cane Stalks (Y.Suphan W.Seree and L. Juckamas)	1
Design of Simple Nyamplung Oil Presser (Puspitahati, Tri Tunggal, Edward Saleh)	9
Optimum Soil Tillage Method on Dry Land Sugarcane Cultivation (Gatot Pramuhadi)	16
Application of Neuro-Fuzzy Controller to Autonomous Agricultural Vehicle Operating on Unstructured Changing Terrain– Control Software Development (Lilik Sutiarsa, Tomohiro Takigawa)	24
Analysis on Optimal Sugar Cane Harvesting System in Jatitujuh SCP, Majalengka (Setyo Pertiwi and Vidy Haryanti)	34
City Waste Reduction Efforts for Environmental Quality Improvement (Trough Improved Agricultural Commodities Distribution System) (Emmy Darmawati)	42
Specific Soil Draft Resistance of Some Mould Board Ploughs Performed in Wetland Paddy Soil (Ade Moetangad Kramadibrata)	52
Mathematical Model for Turf Grass Mowing Torque by Using Rotary-Type Mower Blade (I Nengah Suastawa, Siti Suharyatun)	59
Machine Vibration Analysis for Determining Optimum Operational Engine Speed (Gatot Pramuhadi, Mad Yamin and Siti Khoirunnisa)	72
Two Wheels Hybrid Corn Seeds Holes Maker (TWHYCOM) (Astuti Puriwigati, Arief Sabdo Yuwono)	76
Development of Push Type Rotary Mower Powered by Engine of Back Pack Brush Cutter (A Modification from Potrum BBE-01 Prototype to Potrum BBE-02 Prototype) (I Nengah Suastawa)	86
Design of a Ditcher Equipped With Scrapers for Making Drainage Channel on Dry Land Sugar Cane Plantation (Wawan Hermawan, I Nengah Suastawa and Samsul Bahri)	95
Design and Traction Performance of Movable Lug Wheel Equipped with Spring Mechanism (Wawan Hermawan)	103
Development of Powered Disk Type Sugar cane Stubble Saver (Radite P.A.S., Lisyanto, I N. Suastawa)	111

Evaluation of Diesel and Farm Tractor Performance Powered by Cocodiesel (CME) (Desrial)	121
Development and Testing of Automatic Sorting and Grading Machine for Citrus (Usman Ahmad, Mardison S., Rudy Tjahjohutomo, and Ana Nurhasanah)	132
Sieving Effect of Sorting Machine with Vibration Table Type on Cocoa Pod Based Compost (Siswoyo Soekarno, Edy Suharyanto, Ahmad Hudi Arif).....	142
Mechanical Cocoa Podbreaker Utilization in Cocoa Handling for Improving Labor and Production Efficiency (Sukrisno Widyotomo, Sri mulato and Siswoyo Soekarno).....	152
The Effect of Tractor Traffic and Organic Matter on Soil Compaction and Performance of Peanut Crop (Iqbal, Tineke Mandang, E. Namaken Sembiring)	162
GROUP B : LAND, WATER AND ENVIRONMENT	
Development of ANN Extension on Arcview-GIS for Prediction Land Plantation Productivity (Hermantoro Sastrohartono)	169
Hydraulical Approach in Designing of Proportional Division Structures in Traditional Irrigation Schemes (M. Hasan Yahya)	176
Plant Speaking Approach For Automatic Fertigation System In Greenhouse (Usman Ahmad, I Dewa Made Subrata, Chusnul Arif).....	185
Study on Phisic & Hidro-Meteorologycal Characteristics of Two Identical Catchments (Indarto and Sri Wahyuningsih)	194
Landuse Classification Using Aster Multispectral Data : Case Study at Sampean Watershed (East Java) (Indarto and Arif Faisol)	204
Land Use Classification at Sampean Watershed Using Multispectral Spot Image (Januar Ferry Irawan and Indarto)	213
Development of Digital Elevation Model For East Java (DEM-JATIM) Using Catchmentsim and Mapwindow GIS (Indarto)	220
Climate Change Adaption Using Reservoir Rule (M. Yanuar J. Purwanto).....	231
Quantification of Methane (CH4) Gas Emission as Selection Parameter of Rice Variety (P. Setyanto, S. Ambarwati, Arief Sabdo Yuwono)	240
Trend Study of Greenhouse Gases Emission and Carbon Balance of Several of Rice-Plant Management System (P. Setyanto, Isminingsih, Rina Kartikawati, Arief Sabdo Yuwono).....	247

Analysis of Water Absorption at Bandarlampung City (Ahmad Tusi and Moh. Amin).....	255
Evaluation of Moments on Water Scoop-Wheel (Kincir) for Irrigation By Kincirmod (Mohammad Agita Tjandra).....	265
The Environmentally Design of Water Management System for Sustainable Peat Land Development in Indonesia (Dedi Kusnadi Kalsim).....	274
Urban Water Demand on Interbasin Water Resources Management System (Sutoyo, M. Yanuar J. Purwanto, Kato Tasuku and Goto Akira).....	285
Tide-Aquifer Interaction Dynamics in Unconfined and Confined Coastal Aquifer Systems (Madan K. Jha, Yasunori Kamii)	297
Model 2D of Bank Erosion for Non Cohesive Soil River Banks (Case Study : Sorachigawa River, Hokkaido Japan) (Januar Fery Irawan).....	310
Intelligent Computation of Potential Land for Food Production Using a Spatial-Based System (Rakhmat Jaya Lahay, Kudang B. Seminar, Ade Komara Mulyana)	319
Determining Defferences in Soil Organic Matter Content Between Two Compost Types Used in Urban Agriculture (Ida Ayu Gede Bintang Madrini, Sakae Shibusawa).....	331
Design of Supervisory Environmental Parameter Ammonia (NH3) Control of Closed House System Model For Broilers (Alimuddin, Kudang Boro Seminar, I Dewa Made Subrata, Sumiati)	342
Influence of Water in Sri Method to Yield and Growth of Paddy Hybrid Variety on Field Experimental Plot at Desa Gemuruh, Kundur Islan, Karimun Regency, Kepulauan Riau Province (Wagiono).....	354
Utilization of Sidoarjo Mud to Develop Pitcher for Irrigation (Budi I. Setiawan, M.Bagus Hermanto, Agus Pakpaha)	363
 SESSION C : FOOD AND AGRICULTURAL PRODUCTS PROCESS ENGINEERING (FAPE)	
Drying Characteristics and Quality Attributes of Asiatic Pennyworth Leather (Wiriya Phomkong, Nittiya Homhuan, Sukanya Noranate)	371
Degradation of ascorbic acid during preparation and heat treatment of syrup from guava fruit (<i>Psidium guajava</i>) (Indera Sakti N)	383
Non Destructive Inner Quality Prediction In Intact Mango With Near Infrared Reflectance Spectroscopy (Agus A. Munawar & I Wayan Budistastra)	391
Effects of Water contents and Packaging Materials on Storage Life Time of Stick Sweet Potato Chip (Tamrin & Lela Arneli)	400

Simple Refining Technique of Coconut Oil for Small Holder Industries (Sugeng Triyono and Agus Haryanto)	406
Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Induced in Tomato (Sutrisno, Y. Aris Purwanto, Sugiyono, Ismi M. Edris, Olly S. Hutabarat)	413
Improving Volatile and Lipid Quality of Macadamia Nut Through the Use of Hybrid Drying (Phatanayindee, S., Borompichaichartkul, G., Craske, J. and Wooton, M.)	420
3D Visualization of Cell Membrane of Cucumber Fruits Stored Under Chilled and Non Chilled Temperature (Yohanes Aris Purwanto, Seiichi Oshita, Yoshinori Kawagoe, Yoshio Makino)	427
Study of Respiration Rate and Texture of Bali Snake Fruit Using Polyethylene Plastic Packaging During Modified Atmosphere Storage (I.A. Rina Pratiwi Pudja)	434
Preparation of Styrene and Methyl Methacrylate Grafted Onto Natural Rubber (Ahmad Randy, Dewi Sondari, Kuntari A.S., Ariadi B., Surasno)	439
Improvement of The Technology Packaging for The Transportation of Mangosteen (Niluh Yulianti, Sutrisno, Emmy Darmawati)	444
Influence of Potassium Persulfate Initiator in Emulsion Polymerization of Polymethyl Methacrylate Onto Natural Rubber (Dewi Sondari, Agus Haryono and Evi Triwulandari)	452
Ultrasonic Wave Characteristic of Arumanis Mangoes and Damage arumanis mangoes by fruit fly (Warji and Rokhani Hasbullah)	460
Biodegradable Plasticizers From Isobutyl Oleate Based on Palm Oil as The Substitute of Dop on PVC Resin (Evi Triwulandari and Agus Haryono)	469
Technical Performance Evaluation of Cooffee Bean Roaster with Rotating Cylinder Type (Sutarsi, Siswoyo Soekarno and Sukrisno Widjotomo)	479
Thin Layer Charateristic of Fermented and Unfermented Cocoa Beans (S. Salengke)	488
Determination of Soluble Solids Content (SSC) of Orange and Lemon by a Portable NIR Spectroscopy (Rudiati Evi Masitoh, Sumio Kawano, Sirinnapa Saranwong)	500
Identification and Quantitative Analysis of Catechin in Dried “Gambir” Leaves Extract (Devi Yuni Susanti, Umar Santoso, Kapti Rahayu)	508
Mathematical Model of Heat Transfer During Compression at Tablet Processing (Ansar, Budi Rahardjo, Zuheid Noor, and Rochmadi)	519

The Novel of Benzaldehyde In Controlling the Growth of Green Mould (Penicillium Digitatum) Valencia Oranges (I Made S. Utama).....	528
Characteristic of Six Indonesia Corn Grains and Their Flours (Titi C. Sunarti, Riyani, N.A. Permatasari, N.Richana, F. Kasim).....	538
Retention Pond Design and Charateristics Modelling in Fermented Pulp Cocoa (Pandu Gunawan, Gardjito).....	548
Grafting Ability of Plasticized Tapioca on Poly (butylenes adipate-co-terephthalate) (Raffi Paramawati, Weipeng Liu, Ramani Narayan).....	559
Characteristics of Easter Lily Flower (<i>Lilium longitflorum</i> Thunb) in Cool Storage (I. A. Longdong, D. Tooy).....	570
Fruitfly Disinfestation of Mango cv Gedong Gincu Using Vapor Heat Treatment (VHT) Method (Rokhani Hasbullah, Elpodesy Marlisa, Dadang).....	579
 Group D : GLOBAL ISSUES (BIOENERGY AND RENEWABLE ENERGY, WORK SAFETY AND ERGONOMICS) (GIS)	
Kinetic Model of Biodiesel Processing with Ultrasound (Bambang Susilo).....	590
Effect of Crude Glycerol Addition on Hardwood Ships Gasification Using a Downdraft Gasifier (Agus Haryanto, Lester R. Pordesimo, Sandun D. Fernando, James R. Wooten, Eugene P. Colombus, Lin Wei)	600
Performance of Pressurize Stove by Utilizing Plant Oils in Indonesia (Bambang Prastowo, Srimulato and Elita Rahmarestia).....	610
Comprasion of Two Burners on Charcoal Yield and Compositons (W.Songchai, Y. Suphan and L. Juckamas).....	618
Production of Charcoal Mixed with Egg – shell (Bopit Bubphachot and Songchai Wiriyauampaiwong)	623
Energy Auditing in Urea Production Process (Case Study in PT Pupuk Kujang-Cikampek, West Java) (S. Endah Agustina and Hera Pratiwi).....	630
Sustainability Parameters in Dissemination Renewable Energy Technologies (Kamaruddin Abdullah)	641
Supporting ESSV Program with The E31 Village Concept (Kamaruddin Abdullah)	648
Design of Rotary Rack Type Greenhouse Effect (GHE) Hybrid Solar Dryer for Cardamom (Wulandani, D., S.E Agustina, Y. Aris Purwanto, L.O.Nelwan)	657
Analysis of Energy Consumption for Paddy Production in Indonesia (Agung Hendriadi and Lilik Mulyantoro).....	666

PLANT SPEAKING APPROACH FOR AUTOMATIC FERTIGATION SYSTEM IN GREENHOUSE

Usman Ahmad and I Dewa Made Subrata
Department of Agricultural Engineering – IPB
Darmaga Campus PO Box 220 Bogor 16002

Chusnul Arif
Department of Civil and Environmental Engineering – IPB
Darmaga Campus PO Box 220 Bogor 16002

ABSTRACT

Nowadays, many vegetables are grown inside greenhouses in which environment is controlled and nutrition can be supplied through water supply using electrical pump, namely fertigation. Dosage of nutrition in water for many vegetable plants are also known so that by controlling water supply all the needs for the plants to grow are available. Furthermore, water supply can be controlled using electrical pump which is activated according to the plants condition.

In order to supply water and nutrition in the right amount and time, plants condition can be observed using a CCD camera attached to image processing facilities. In this study, plants development during their growing period are observed. Three populations of tomato plants, with less, enough, and exceeded nutrition in water, are captured using a CCD camera every three days, and the images were analyzed using a developed computer program for the height of plants. The results showed that the development of the plants can be monitored using this method. After that, the response of plant growth in the same condition was monitored, and the response was used as input for the fertigation system to turn electrical pump automatically on and off, so the fertigation system could maintain the growth of the plants.

Keywords: tomato plant, fertigation system, image processing

BACKGROUND

Vegetables are very important as source of vitamins and fibers. To increase vegetables production, technology in vegetables cultivation is continually improved. Such a technology is growing vegetables in relatively controlled space in a greenhouse or screenhouse. Even, some materials for constructing greenhouse are modified so the greenhouse can be optimized to trap only a certain of wavelength from sunlight for specific purposes (Wilson dan Rajapakse, 2001).

Nowadays, in Indonesia many vegetables are grown in a well controlled environment such as in greenhouse and screenhouse. The vegetables are grown on a normal sterilized medium like soil and paddy husks charcoal, sand, small rock, carbon, or zeolite, as long as they are sterilized (Wardi et al., 1998).

Some experiments for determining dosage of nutrition needed for specific plants were also conducted. For strawberry, the suggested dosage are 30 lb/a of nitrogen, until 100 lb/a of phosphate depends on the soil condition, until 100 lb/a of

potassium depends on the soil condition, 15 lb/a of sulphate, 20 lb/a of magnesium, and small amount of boron (Hart et al., 2000). Rahman et al. (2004) reported that mixing of nitrogen, phosphate, potassium, magnesium and zing then applied them to potato gave a better result. For red chilli, recommended dosage for optimum result is 100 kg/ha nitrogen, 90 kg/ha phosphate, 90 kg/ha potassium, 20 kg/ha sulphate, and 2 kg/ha zing (Sarker et al., 2003). For tomato, recommended dosage for optimum result is 175 kg/ha urea, 350 kg/ha TSP, dan 200 kg/ha KCl (Ferziana, 2001). Other work reported that nutrition needed to grow tomato is 8-10 g/plant for urea and 10-15 g/plant for TSP (Marr, 1996).

Plant nutrition for horticulture commercially available both in solid and liquid forms. Nowadays, liquid form is preferable because of simple and easy to apply, especially for vegetables, ornamental, and some kinds of fruits. It is believed that more than 100 different brands are commercially available in Indonesia with primary and secondary nutrition as well as micro compounds (Susilowati, 2002). Every brand has its own unique formula for several plants which is determined by nutrition composition and concentration.

Supply of plant nutrition in water can be done continuously by flowing the water into the medium where the plants are growing, but this method will consume a lot of electrical power to run the pumps all the time. Besides, some amount of plant nutrition in water drain will be released to the surrounding and this affect the environment and increase the production cost. One method to avoid this is by giving the nutrition in water only when the plants need it, not all the time. And the plants might need different amount of plant nutrition and water from day to day during the growing period since they might experience different micro climate in the greenhouse as a factor of external climate changes. We might be able to predict when and how much plant nutrition and water is needed by the plants if we know response of the plants to micro climate changes, or normal growth rate of the plants during growing period. One possibility to observe normal growth rate of the plant is by taking its images during its growing period and take some parameter as a series of data using image processing technique. Also, to know response to the micro climate changes, the plant can be placed in different conditions and take its images, analyze them and compare the data to the optimal condition.

Whatever the medium is, this method of cultivation needs plant nutrition that can be supplied through watering by using electrical pumps, namely fertigation system. Hence, plant nutrition supply through fertigation system for vegetables grown in the greenhouse is very important to obtain good produces. For this purposes, dosage of nutrition for some vegetable plants are known, and the formula is already developed for each plant. What we have to do is to put some amount of plant nutrition into a gallon of water for example, stir and distribute it to the plants. If the nutrition in water is given in a right amount and time during the growing period, the plants will grow and produce whatever we want from them in a normal period of time, with a good yield and quality. To accomplish this task, application of automatic control would be very helpful, which is sometimes referred as biosystems, meaning that automatic application using computer technology and electronic (Grift, 2003).

Automation in agricultural activities is considered necessary based on the following reasons; 1) many tasks are still laborious and monotonous which are not suitable for human, but require certain intelligence to perform, 2) the availability of farming workforce is decreasing at an alarming rate in many countries, 3) the problem of labor shortage frequently result in rising in labor cost, and 4) the market demand for product quality has become an important factor in bioproduction (Kondo and Ting,

1998). Image processing is a technology to get information from images by manipulating images and produces the desired information to be used for taking action. If image processing is employed and collected information is used to operate a device such as electrical pump, it is called machine vision (Jain et al., 1995).

Image processing has been developed and tested in many agricultural activities; for example in automatic cherry tomato harvester in greenhouse (Kondo et al., 1996), mushroom picker to find and locate mushroom when it is ready to harvest (Reed et al., 1995), and melon harvester to find watermelon and judge it for harvest criteria (Tokuda et al., 1995). Color images processing was used to predict ripeness level of Gedong mango in a sorting and grading machine (Ahmad, et al., 2004).

Development of control system based on the feedback from the plants is called plant speaking system. To develop a plant speaking system, growth characteristics of the plant and its relationship with nutrition and water should be studied first (Hashimoto, 1985). Growth rate of groups of lettuces grown in different light condition were captured and analyzed to determine the optimum environment (Murase et al. 1994).

The objective of this preliminary research is to observe the growth rate of plants population growing in the greenhouse in different fertigation formula, using image processing technique. Another objective is to develop a real-time monitoring system using a CCD camera that can be used for automatic fertigation system.

METHODOLOGY

The research was conducted in experimental field of Agricultural Engineering Department, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor. The research was started on June 2008, and data (images) collecting was accomplished on August 2008. After that, the images were analyzed using a developed computer program.

Material used in this research were tomato seeds, paddy husk charcoal as medium to grow the plants, polybag, and commercially available plant nutrition for tomato. Equipments used were a greenhouse, a set of drip irrigation system with a water tank and elastic pipes. A digital camera was used for image acquisition, which was taken every three days during the growing period, and a computer with image processing program to analyze the images.

First, the tomato seeds were grown in a tray in shade to produce seedlings. After two weeks, the seedlings were placed into polybags filled with charcoal of burned paddy husk. Before that, the charcoal was sterilized by soaking it into water with disinfectant. The polybags with seedlings then were placed in the greenhouse and their images were taken individually every three days. There were three groups of plants grown in the greenhouse, every group consist of 20 plants. Different formula in concentration was applied to the three groups, one group with under-fertilized (1.0–1.5 mS or mili Siemens, a unit for concentration measurement through the electrical conductivity), one with normal-fertilized (2.5–5.0 mS), and one with over-fertilized (10.0–12.5 mS).

Since they were placed in the greenhouse, their images were taken every three days from the same distance using a digital camera, with a red pannel placed as a background. When the plant grew bigger and taller so that camera could not cover the whole plant from the same distance, the distance was adjusted. Later, in image processing, distance factor was considered so that the data resulted from image processing can be compared from day to day.

Response of the plant for deficiency in fertigation was also studied from the images. For this purpose, width of the plant in image captured at time t is compared with width of the plant in image captured at time $t+\Delta t$ because plant tends to wilt when experiencing water deficiency. Therefore, it is important to determine water deficiency condition by finding the right ratio value of width comparison. Ratio of plant's width for current condition and plant's width of normal condition might be useful for wilt determination using image processing.

RESULTS AND DISCUSSION

A number of tomato seedlings were grown in polybags after two weeks of nursery and placed in the greenhouse. Image of every plant was taken using a digital camera (Fig. 1). The captured images of tomato plants during their growing period were then analyzed using a developed image processing program. Prior to analysis, the images were collected and stored in a harddisk, separated into their groups respectively. From the collected images height of every plant was calculated. Data obtained from image processing were processed to get average of height. The average height data then were plotted into a graph to see the growth rate (Fig. 2).

Figure 1. Image acquisition of tomato plant

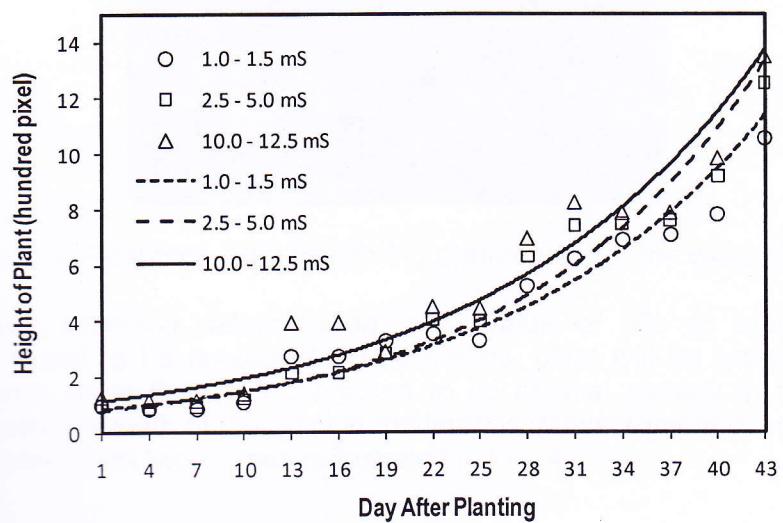


Figure 2. Plant height development obtained from image

The plants were actually grown until they produced fruits, around 75 days after planting. However, due to small space in the greenhouse, after 43 days the plant could not be captured individually since there were leaves overlapping among the plants. Overlapped leaves in image were difficult to analyzed because the developed program was desinged to analyze tomato plant image as it is taken individually.

From Fig. 2, we can see that group of tomato plant with under-fertilized (1.0–1.5 mS), experienced the slowest growth rate compare to the other two groups, the plants with normal-fertilized (2.5–5.0 mS) and the plants with over-fertilized (10.0–12.5 mS). Group of plants with over-fertilized showed the fastest height increment, followed by group of plants with normal-fertilized and group of plants with under-fertilized. Change in image quality due to change of sunlight intensity during image acquisition time, caused some fluctuation data, indicated by decreased values at some points (normally, the height of plants increases from day to day). We can see also that the graph is non-linear, meaning that the tomato plants growth was increasingly faster from day to day. More attention should be taken especially when the plants were very small for the first two weeks after planting. Lack of nutrition in this period will cause abnormal growth where the plants are still tiny and weak in roots system, and might produce less fruits later.

Automatic fertigation was attempted by applying real-time monitoring using a CCD camera and plant wilt determination was developed in the computer program to turn pump ON and OFF. For this experiment, a one month tomato plant was observed by real-time image processing system, and other 10 plants were used to apply watering action (Fig. 3). The plant that observed by the camera was placed in front of a red cloth to get contrast background with the plant in image. The camera connected to a laptop with interfacing facility to control an electrical pump, that will pump the fertilized water into all the plants. When the result of image processing meets the criteria of wilt condition, the program will turn ON the pump for 5 seconds, then OFF again.

Figure 3. Real-time plant monitoring system used in the experiment

For wilt condition determination, ratio value of 2% or more for width comparison found to be reasonable. This means, plant will be watered when its canopy shrinks more than 2% compared to its original canopy in the morning, measured from the width of the plant in the images. Measurement of comparison of width of the plant from two images is illustrated in Fig. 4.

Figure 4. Measurement of comparison of width of the plant in image. (Dark gray is original condition, light gray is wilt condition, and black is overlapped part of the two images)

After determining the ratio value for width comparison, we need to apply a second rule in wilt definition, to avoid system from watering again in the next action since the condition will not change much in a short time, thus the ratio value may be still bigger than 2%. However, if a small change in wilt condition is noticed (or wilt gradient changes its value from positive to negative) , it will help to be used as a second rule for wilt condition definition. It was found that the plant will stop shrinking, or at least slow down the process, 10-15 minutes after watering. This response was used as a second rule, so the rules for watering (turn the pump ON for 5 seconds, then OFF again) are:

```
if (wilt_degree > 0.02 and previous_width > width)
then pump=ON;
```

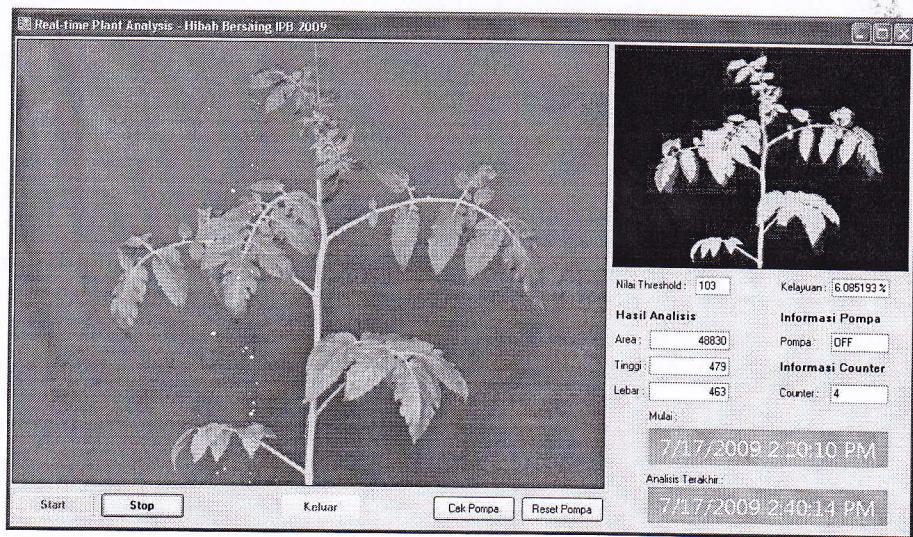


Figure 5. Developed program for real-time plant monitoring

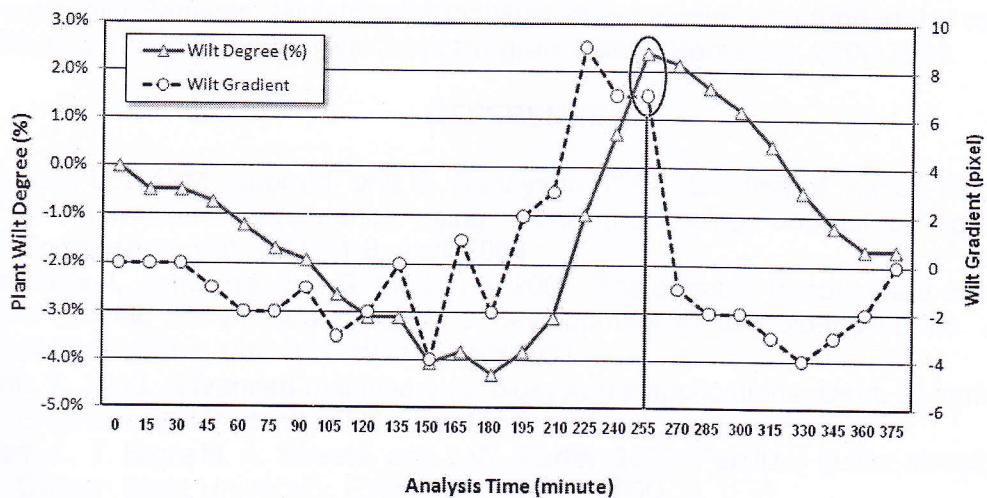


Figure 6. The record for 6 hours and 15 minutes real-time monitoring

The above rules will avoid the automatic fertigation system from watering again in the next action since the condition of the plant will stop wilting and probably get more fresh condition if compared with the last condition just before watering, so that width of plant increasing, not decreasing just like before watering. The image analysis and rules checking were conducted using a developed real-time image processing program (Fig. 5). The program was set up to capture and analysis an image, in 640 by 480 pixels resolution, every 15 minutes. The record for 6 hours and 15 minutes real-time monitoring was shown in Fig. 6. From the figure, it can be noticed that the system only turn on the pump once, after 4 hours and 15 minutes of monitoring (at 255th minute), when the wilt ratio value was more than 2% and the wilt gradient was positive. This time, we only tested that the automatic fertigation system

was working and able to flow the water with plant nutrition in it, based on the determined wilt condition which was still very simple. In the next step, determination of wilt condition of the plant being monitored using some other parameters is very important to obtain the real condition of the plant that need watering.

CONCLUSIONS

From this research, some important information has been obtained and can be concluded as follows:

1. The results showed that plant growth can be monitored by analyzing a series of images of the plants during their growth period using image processing
2. For more accurate results as well as longer period of observation, condition for image acquisition should be optimized so that leaves over-lapping among the plants can be avoided.
3. In the real-time image analysis, width of the plant can be used to determine wilt condition by comparing current condition with the original condition when the plant was still fresh.

ACKNOWLEDGMENT

The authors would like to thank the Directorate General of Research and Community Services, Ministry of Agriculture of Indonesia, who funded this research activities through Competitive Grant Program (Hibah Bersaing), 2008-2009.

REFERENCES

Ahmad, U., I.D.M. Subrata, and S. Gunayanti. 2004. Grading of mango fruit based on their visual appearance using image processing. *Journal of Agricultural Engineering*, Vol. 18(1): 1-8. April 2004.

Ferziana, L. Agustina, and G. Mudjiono. 2001. The effect of tomato plant population to its yield and *Plutella xylostella* L. development without bio-insecticide. *Journal of Bio-science*, Vol. 1(1): 10-18. April 2001.

Grift, T. 2003. Advanced machinery for biosystems applications. Dept. of Agricultural Engineering, University of Illinois at Urbana-Campaign.

Hart, J., T. Righetti, A. Sheets, and L.W. Martin. 2000. Fertilizer guide: strawberries. Oregon State University, Extension Service. 2000.

Hashimoto, Y. 1985. Some speaking plant approach to the synthesis of control system in the greenhouse. *Acta Horticulture* 174:226-229.

Jain, R., R. Kasturi, and B.G. Schunck. 1995. Machine Vision. McGraw-Hill Book, Inc. New York, USA.

Kondo, N., Y. Nishitsuji, P. Ling, and K.C. Ting. 1996. Visual feedback guided robotic for cherry tomato harvesting. *Transaction of ASAE* Vol. 39(6): 2331-2338.

Kondo, N. and K.C. Ting. 1998. Robotics for Bioproduction Systems. The Society of Agricultural Engineering, Foods, and Biological System (ASAE) Book. St. Joseph, USA.

Marr, C.W. 1995. Greenhouse tomatoes. Agricultural Experiment Station and Cooperative Extension Service, Kansas State Univ.

Murase, H., Y. Nishiura, and N. Honami. 1994. Textural features/neural network for plant growth monitoring. ASAE Paper No. 944016, Missouri, USA.

Rahman, M.M., A. Naqi Shah and F.C. Oad. 2004. Evaluation of various methods of fertilizer application in potato (*Solanum tuberosum*). *Asian Journal of Plant Sciences*, 3(2):260-261. 2004.

Reed, J.N., W. He, and R.D. Tillett. 1995. Picking mushrooms by robot. *Proc. of International Symposium on Automation and Robotics in Bioproduction and Processing*, Vol 1:27-34. Kobe, Japan.

Sarker, N.K.H.J.U, A.H.M.F. Kabir, D. Sultana, and Z. Islam. 2003. Response of chilli to integrated management in North-eastern Brown Hill soils of Bangladesh. *Online Journal of Biological Science*, 3(9):797-801. 2003.

Susilowati. 2002. Liquid fertilizer composition for some brand available commercially in Indonesia. *Research Institution for Chemical Industry Development*, Minsitry of Industrial and Commerce, Indonesia.

Tokuda, M., K. Namikawa, M. Sugari, M. Umeda, and M. Ida. 1995. Development of watermelon harvesting robot (1): machine vision system for watermelon harvesting robot. *Proc. of International Symposium on Automation and Robotics in Bioproduction and Processing*, Vol 2:9-16. Kobe, Japan.

Wardi, H., Sudarmodjo and D. Pitoyo. 1998. Charcoal paddy husk media for hydroponic horticulture. *Directorate of Technology for Cultivation, Assesment and Application of Technology* Berau, Indonesia.

Wilson, S.B. and N.C. Rajapakse. 2001. Use of photoselective plastic films to control growth of three perenial salvias. *Journal of Applied Horticulture*, 3(2):71-74, July–December 2001.