Improving Smallholder and Industrial Livestock Production for Enhancing Food Security, Environment and Human Welfare

Proceedings Full Papers

Created by Tropical Animal Genetic Unit (TAGU), Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand 10900.

www.tagu.kasetsart.ac.th
Asian-Australasian Association of Animal Production Societies

Scope of AAAP: AAAP is established to devote for the efficient animal production in the Asian-Australasian region through national, regional, international cooperation and academic conferences.

Organization of AAAP:
- President: Recommended by the national society hosting the next biennial AAAP Animal Science Congress and approved by Council meeting and serve 2 years.
- Two Vice Presidents: One represents the present host society and the other represents next host society of the very next AAAP Animal Science Congress.
- Secretary General: All managerial works for AAAP with 6 years term by approval by the council.
- Council Members: AAAP president, vice presidents, secretary general and each presidents or representative of each member society are members of the council. The council decides congress venue and many important agenda of AAAP.

Office of AAAP: Decided by the council to have the permanent office of AAAP in Korea. Currently # 909 Korea Sci & Tech Center Seoul 135-703, Korea.

Current 19 Member Societies of AAAP:
- ASAP(Australia), BAHA(Bangladesh), CAASVM(China), IAAP(India), ISAS(Indonesia), IAAAS(Iran), JSAS(Japan), KSAST(Korea), MSAP(Malaysia), MLSBA(Mongolia), NASA(Nepal), NZSAP(New Zealand), PAHA(Pakistan), PNGSA(Papua New Guinea), PSAS(Philippines), SLAAP(Sri Lanka), CSAS(Taiwan), AHAT(Thailand), AHAV(Vietnam).

Previous Venues of AAAP Animal Science Congress and AAAP Presidents

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Country</th>
<th>President</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1980</td>
<td>Malaysia</td>
<td>S. Jalaludin</td>
</tr>
<tr>
<td>II</td>
<td>1982</td>
<td>Philippines</td>
<td>V. G. Argana</td>
</tr>
<tr>
<td>III</td>
<td>1983</td>
<td>Korea</td>
<td>In Kyu Han</td>
</tr>
<tr>
<td>IV</td>
<td>1987</td>
<td>New Zealand</td>
<td>A. R. Sykes</td>
</tr>
<tr>
<td>V</td>
<td>1991</td>
<td>Taiwan</td>
<td>T. P. Yeh</td>
</tr>
<tr>
<td>VI</td>
<td>1992</td>
<td>Thailand</td>
<td>C. Chantalakhana</td>
</tr>
<tr>
<td>VII</td>
<td>1994</td>
<td>Indonesia</td>
<td>E. Soetirto</td>
</tr>
<tr>
<td>VIII</td>
<td>1996</td>
<td>Japan</td>
<td>T. Morichi</td>
</tr>
<tr>
<td>IX</td>
<td>1997</td>
<td>Australia</td>
<td>J. Ternouth</td>
</tr>
<tr>
<td>X</td>
<td>2002</td>
<td>India</td>
<td>P. N. Bhat</td>
</tr>
<tr>
<td>XI</td>
<td>2006</td>
<td>Malaysia</td>
<td>Z. A. Jelan</td>
</tr>
<tr>
<td>XII</td>
<td>2006</td>
<td>Korea</td>
<td>I. K. Paik</td>
</tr>
<tr>
<td>XIII</td>
<td>2008</td>
<td>Vietnam</td>
<td>N. V. Thien</td>
</tr>
<tr>
<td>XIV</td>
<td>2010</td>
<td>Taiwan</td>
<td>L.C. Hsia</td>
</tr>
<tr>
<td>XV</td>
<td>2012</td>
<td>Thailand</td>
<td>C. Kittayachaweng</td>
</tr>
</tbody>
</table>
AAAP Officials (2010-2012)

President
Mr. Chayanon Kittayachaweng (Thailand)
Emeritus Prof. Dr. Charan Chantalahakha (Thailand)
Mr. Suitaporn Vongruen (Thailand)
Mr. Tossaporn Srisak (Thailand)

Honorary President
Mr. Yudi Gunart (Indonesia)

Executive Vice President
Assoc. Prof. Dr. Panit Kheunthong (Thailand)
Assoc. Prof. Dr. Kampol Ruchiwit (Thailand)

Vice-President
Prof. Dr. Liang Chou Hsia (Taiwan R.O.C.)

Immediate Past President
Assoc. Prof. Dr. Supaporn Isriyodom (Thailand)
Mrs. Krongkaew Borisupsawat (Thailand)

Secretary General
Asst. Prof. Dr. Skorn Koornnarittririttirun (Thailand)
Dr. Thanathip Suwantasopce (Thailand)
Ms. Chintana Vongnagagorn (Thailand)

Treasurer:

International Advisory Committee
Dr. C. Devendra (Malaysia)
Prof. J. K. Ha (Korea)
Prof. F. Infascelli (Italy)
Prof. Z. A. M. Jelan (Malaysia)
Prof. H. Makkar (FAO, Italy)
Prof. S. J. Ohh (Korea)
Prof. P. Rawlinson (UK)
Prof. J. Wiseman (UK)

Prof. L. Fulvey (Australia)
Prof. Y. Hayashi (Japan)
Prof. S. Jalaludin (Malaysia)
Prof. Le. Viet Ly (Vietnam)
Prof. N. Manabe (Japan)
Prof. E. R. Orskov (UK)
Prof. S. de Smet (Belgium)
Prof. P. Wynn (Australia)

National Organizing Committee for Technical Programs

Advisory Committee
Mr. Chayanon Kittayachaweng
Emeritus Prof. Dr. Charan Chantalahakha
Mr. Suitaporn Vongruen
Mr. Tossaporn Srisakdi
Manager, Bank of Agriculture and Cooperatives
Dean, Faculty of Science and Technology
Assoc. Prof. Dr. Chancharat Reodecha
Dr. Naiyana Nakhata

Asst. Prof. Dr. Jovaman Khajarem
Assoc. Prof. Dr. Somchai Chalhattrakan
Assoc. Prof. Dr. Somprach Thantsawanyangkura
Mr. Sarakit Thavinpavat
Dr. Sunraporn R. Na Phuket
Assoc. Prof. Dr. Supaporn Isriyodom
Mr. Anek Boonnoont

Chairman
Prof. Dr. Metha Wanapat

Vice Chairpersons
Mrs. Pakapun Skunmun
Mrs. Jintana Indramangala
Assoc. Prof. Dr. Jutarat Sethakul

Committee
Director, Bureau of Animal Nutrition Development, DLD
Director, Bureau of Animal Husbandry and Genetic Improvement, DLD
Director, Bureau of Livestock of extension and Development, DLD
Director, Sunanvajnikkusit Animal Research and Development Institute, KU
Head, Department of Agricultural Technology, TU
Head, Department of Animal Science, KU-Bangkhun

Prof. Dr. Sanchai Jaturasitha
Assoc. Prof. Dr. Somchai Suwanpradit
Assoc. Prof. Dr. Kasidit Uechiewcharntik
Assoc. Prof. Dr. Sutipong Uriyapongson
Assoc. Prof. Dr. Chalong Wachirapatorn
Asst. Prof. Sukda Klinsubun
Assoc. Prof. Dr. Yanin Opatsapatamkit
Asst. Prof. Dr. Panwadee Pakdee
Assoc. Prof. Dr. Nuanchari Paraka
Dr. Niparat Siritarat
Assoc. Prof. Dr. Boonlom Cheawisarakul
Dr. Kornpol Chuevessa
Assoc. Prof. Dr. Ronachai Sithiripong
Dr. Krailas Kiyothong

Proceedings of the 15th AAAP Animal Science Congress
26-30 November 2012, Thammasat University, Rangsit Campus, Thailand
Improving Smallholder and Industrial Livestock Production for Enhancing Food Security, Environment and Human Welfare

Scientific Session Sub-committee
Chairperson
Dr. Kalaya Boonyanuvat

Committee
Assoc. Prof. Dr. Kittapol Sommart
Assoc. Prof. Dr. San Sukasupat
Assoc. Prof. Dr. Kunya Tuntivisootikul
Assoc. Prof. Dr. Taweesak Songserm
Assoc. Prof. Dr. Pornsri Chairatanayuth
Assoc. Prof. Dr. Pipat Sompam
Assoc. Prof. Dr. Paichok Panja
Assoc. Prof. Dr. Monchai Duangjinda
Assoc. Prof. Dr. Amnart Poopalathep
Assoc. Prof. Dr. Suporn Phalang
Assoc. Prof. Dr. Virote Patarajinda
Asst. Prof. Dr. Yuvares Ruangpanit

Secretary
Asst. Prof. Dr. Skorn Koonavootrittrirorn

Scientific Session Sub-committee Group

Mrs. Konlisa Na-boruiswat
Dr. Kalaya Boonyanuvat
Mrs. Junas Indramangala
Miss. Jaypruk Yaiagate
Assoc. Prof. Dr. Nuanchan Paraksa
Mrs. Prasop Skumun
Dr. Phrauthorn Kongmun

Secretariat
Asst. Prof. Dr. Skorn Koonavootrittrirorn

Deputy Secretary
Dr. Thanathip Suwanasopee

Reviewers:
Prof. Dr. Chayapruek Vajrabukkioo
Prof. Dr. Narongsak Chaiyabut
Prof. Dr. Wongsak Sato
 Assoc. Prof. Dr. Boonrit Thongsong
 Assoc. Prof. Dr. Chanin Tirawattananawinich
 Assoc. Prof. Dr. Jeerachai Kanjanaprolhipong
 Assoc. Prof. Dr. Keatisak Suwatan
 Assoc. Prof. Dr. Kris Angkanaporn
 Assoc. Prof. Dr. Monchai Duangjinda
 Assoc. Prof. Dr. Nuanchan Paraksa
 Assoc. Dr. Orapin Jintasuthaporn
 Assoc. Prof. Dr. Paichok Paipiri
 Assoc. Prof. Dr. Panas tunktiranawong
 Assoc. Prof. Dr. Pipat Sompam
 Assoc. Prof. Dr. Pongchan Na-Lampang
 Assoc. Prof. Dr. Smith Yimmongkol
 Assoc. Prof. Dr. Somsak Pakpinyo
 Assoc. Prof. Dr. Srivusan Chomchai
 Assoc. Prof. Dr. Suchon Tangteerawong
 Assoc. Prof. Dr. Suthipong Uriyaphongson
 Assoc. Prof. Dr. Sutonya Thongrak

Asst. Prof. Dr. Chanin Tirawattananawinich
Asst. Prof. Dr. Lerchart Boon-Ek
Asst. Prof. Dr. Sivaporn Paengkoum
Asst. Prof. Dr. Suporn Phalang
Asst. Prof. Dr. Suporn Suporn
Dr. Phanom Panja
Dr. Monchai Duangjinda
Asst. Prof. Dr. Virote Patarajinda
Asst. Prof. Dr. Yuvares Ruangpanit

Mrs. Thanathip Suwanasopee

Dr. Thanathip Suwanasopee

Dr. Sukanya Rattanatabtimitong
Ms. Phakkaorn Akaramatharakul

Assoc. Prof. Dr. Pipat Sompam
Assoc. Prof. Pensri Somprasitti
Asst. Prof. Dr. Sivaporn Phaengkoum
Miss. Siriluk Ornam
Dr. Sukanya Rattanatabtimitong
Dr. Sansak Nakavisut

Asst. Prof. Dr. Lerchart Boon-Ek
Asst. Prof. Dr. Narin Upragarin
Asst. Prof. Dr. Natsanok Amornthevaphat
Asst. Prof. Dr. Ornprapun Songserm
Asst. Prof. Dr. Parkwai Poolperm
Asst. Prof. Dr. Sritorn Khuntram
Asst. Prof. Dr. Skorn Koonavootrittrirorn
Asst. Prof. Dr. Suporn Suporn
Asst. Prof. Dr. Surachai Suwanee
Asst. Prof. Dr. Suniya Sawanon
Asst. Prof. Dr. Wannapa Upragarin
C12-OP-111 Effect of Rain Tree Pod Meal Supplementation on Rumen Fermentation, Microbial Population, and Microbial Protein Synthesis in Dairy Steers
N. Anantasook and M. Wanapat (Thailand) 578

C12-OP-112 Microbial Populations, Rumen Fermentation and Microbial Protein Synthesis as Affected by Physical Form of Untreated or Urea-Treated Rice Straw in Dairy Steers
P. Gunun and M. Wanapat (Thailand) 583

C12-OP-113 Performance and Ruminal Fermentation Characteristics of Holstein Calves Fed Starter Concentrate Containing Two Different Fiber Levels
A. Salarinia, M. H. F. Nasri, H. F. Far, H. Naeimipour and V. K. Moghadam (Iran) 588

C12-OP-114 Effect of Age at Harvest on Whole Cassava (Manihot esculenta) Silage Qualities
Despal, D. A. Lestari, I. G. Permana and P. Hidayah (Indonesia) 594

C12-OP-115 The Effects of Soluble Protein and Sugar Level on In Vitro Gas Production and Nutrient Digestion
S. Buaphan, V. Pattrarajinda, M. Duangjinda, Y. Opatpatanakit and M. A. Froetschel (Thailand) 600

C12-OP-116 Inclusions of Rumen Protected Protein-Fat Supplements in the Ration of Lactating Dairy Cow: Effects on Feed Intake and Digestibility, Milk Production and Composition, and Milk Fatty Acid Profile
L. Hartati, A. Agus, L. M. Yusiati and B. P. Widyobroto (Indonesia) 606

C12-OP-117 Effect of Total Mixed Silage on Feed Intake and Milk Production of Lactating Dairy Cows
W. Maneerat, S. Prasanpanich and S. Tumwasorn (Thailand) 613

C12-OP-118 Effects of Expander and Expander-Pelleting on the Extent of Protein Denaturation in Peas, Lupins and Faba Beans
A. Azarfar and H. Khosravinia (Iran) 621

C12-OP-119 The Effect of Liquid Methionine Supplemented in Diet on Milk Production and Health in Dairy Milking Cows
R. Panivivat, P. Sopananrat and S. Sirichai (Thailand) 628
Title	Page
Inclusion of Raisin Co-Products in the Diet of Mehraban Growing Lambs | 1638
Using Restaurant Waste in Finishing Rations of Lambs: Eating Behavior Regarding to Ration and Rumen Health | 1643
Effects of Different Levels of Sorghum Grain on the Kidney of Ghezel × Arkhar-Merino Crossbred Lambs | 1648
Comparison on Goat Milk Production Fed with Different Rations of Organic Corn Stover Silage | 1655
Effect of Protein Source and Curcumin Supplementation on Feed Intake, Rumen Fermentation and Nitrogen Utilization in Goats | 1660
Digestibility Comparison of Ramie (Boehmeria nivea) Leaves Hay and Silage in Jawarandu Goat Ration | 1666
Effect of Microwave Heating or Simple Heat Treatment of Rice Bran on the Rate of Release of Free Fatty Acids during Storage at Room Temperature | 1671
Effect of Grape Pomace Powder and Roughage Sources on Rumen Fermentation by Using In Vitro Gas Fermentation Technique | 1676
Effect of Different Chemical Agents on Polyphenolic Compounds of Pomegranate Seed Pulp | 1682
Determination of Saffron Residues (Crocus sativus) Nutritive Value by In Situ and In Vitro Methods | 1686
Effect of Age at Harvest on Whole Cassava (Manihot esculenta) Silage Qualities

Despal, D. A. Lestari, I. G. Permana and P. Hidayah

Department of Animal Nutrition, Bogor Agricultural University, Bogor 1668, Indonesia

Improving local feed resource is a growing concern. Cassava is one of Indonesian local feed resource that can be grown in almost all of Indonesian region. However, because of its competitive use for human consumption and fuel production, and its high cyanic acid content, as well as its seasonal availability, therefore, utilization of the whole crop and conservation technique should be applied. So far, there is limited information available about the age at harvesting of the plant to produce the best quality of its whole crop silage. The study was aimed to compare 7, 8 and 9 months of age at harvesting time of cassava plant on whole crop silage qualities produced. The qualities were compared based on their physical (color, odor, moisture, texture, and spoilage), ensiling (pH, DM, VFA, DM losses, CP, N-NH3, CP degradation, WSC used, HCN and flye point) and utility (in vitro rumen fermentabilities and degradabilities) characteristics. Two kg of well mixed chopped sample of each the whole plants were ensiled for 5 weeks anaerobically in three fold 35 x 50 cm polyvinyl bags silo at room temperature. The experiment was designed completely random and each treatment was repeated thrice. Ensiling process reduced HCN content of the silage by more than 60%. Harvesting cassava plant at 8 months of age gave the best whole cassava plant silage quality (best physical characteristics, higher flye point as well as in vitro rumen digestibility). Because of its low CP content, solely diet in ruminant should be avoided.

Key Words: Cassava, Crop age, Local feed, Silage

INTRODUCTION

Comparing high feed import to the potential of Indonesian agriculture to support feed security in Indonesia shows that Indonesian local feed resources such as cassava have not been use optimally. In 2011, Indonesian cassava tuber production reached up to 22 million ton (Deptan, 2011). The problem with cyanic acid (HCN) content of cassava and its competitive use as food and fuel may be some of the reason for the situation. There is a need to reduce HCN content as well as improve its feed competitive advantage so that it is safe for use as animal feed commercially.

Ensiling technique has been used to conserve feed for years. The technique has been proven to lower HCN content of ensiled feed. Improvement of cassava feed competitive advantage might be done by increasing the proportion of the plant used in animal ration such as whole plant. Ensiling whole plant cassava is hoped lower the HCN content of ensiled cassava as well as improve its feed competitive advantage.
As proportion of cassava plant such as leaf, stem, tuber change with the age, nutrient content of whole cassava plant will also be influenced. At age of 6 month, the leave proportion is optimum; the proportion will then steadily decrease after 7 month of age (Sudaryanto, 1990). So far only limited information is available on the optimum age at harvesting of the cassava plant to produce the best quality of whole cassava silage.

The study was aimed at finding the optimum age of cassava plant harvesting on the nutrient content and physical, fermentative and utilities characteristics of whole cassava plant silage produced.

MATERIALS AND METHODS

The research had been conducted in June 2011 to February 2012. Cassava plants of known age were collected periodically from a farmer plantation in Ciawi District of Bogor Regency. Total mixed ration (TMR) as a control were formulated and mixed. The ration consisted of 50% natural grass, 15% cassava extract meal, 7.07% corn meal, 15.73% coconut oil meal, 10.49% soybean oil meal, 1.24% dicalcium phosphate (DCP), and 0.47% calcium carbonate (CaCO₃).

Cassava plants used in this experiment were harvested from 7, 8 and 9 months of age. After harvesting, leaf, stem and tuber part of the plants were separated and weighted. All component of the plant were then manually chopped to about 1 cm length and then mixed homogeneously. Two kg of the mixed component plant were fed into three fold 35 cm x 50 cm polyvinyl plastic bag silos. The airs were removed by compacting and the silos were rapidly sealed with plastic tape. The Ensiling were let for 5 weeks at room temperature.

Characteristics of cassava plant used in the experiment were observed including weight of each plant component, dry matter (DM), crude protein (CP), HCN and water soluble carbohydrate (WSC) contents of the whole plant. Physical (color, odor, texture, moisture and spoilage), fermentative (pH, DM, VFA, DM degradation, CP, NH₃, HCN, WSC and fleigh point) and utilities (in vitro organic matter and protein ruminal fermentabilities, and DM and OM digestibilities) characteristics of silage produced were also determined.

Proportion of cassava plant component was calculated after separating and weighting leaves, stem, tuber and comparing to the total weight of the plant. Dry matter and CP contents of cassava plant were analyzed according to Neumann and Bassler (1997) procedures. Water soluble carbohydrates were determined using Phenol method (Singleton and Rossi, 1965). While HCN content of cassava plant were measured using APHA (1985) method.

Physical characteristic of silage was described for its color, odor, texture, moisture and existance spoilage. The value of 1 to 4 was given for the worse to the best color, odor, texture and moisture of the silage produced as compare to the plant material. The amount of contaminated silage was weighted to calculate the proportion of spoilage silage.
The pH value of silage was measured using calibrated Hanna pocket pH meter. Silage DM were measured using oven heat method, while, crude protein content were analyzed using micro kjeldahl method according to Neumann and Bassler (1997) procedure. Concentration of silage VFA's were measured using steam distillation method of the same supernatant sample that have been used for pH measurement. Silage dry matter degradation (DMD) was calculated as proportion of DM loss to the material DM. Ammonia concentration in silage was observed from the same supernatant sample as used for pH and VFA. The concentration was determined using micro diffusion Conway (General Laboratory Procedure, 1966). The proportion of protein degraded was calculated from the proportion of CP material that has been converted into ammonia. WSC and HCN contents left in the silage were determined using the same procedure with determination of WSC in plant material. Fleigh point (FP) grade of silage based on DM content and pH value of the silage (Öztürk et al., 2009). The point was calculated according to formula:
\[FP = 220 + [(2 \times {\text{DM}}\%) - 15] - [40 \times \text{pH}] \]
where FP denotes values between 85 and 100, very good quality; 60 and 80, good quality; 55 and 60, moderate quality; 25 and 40, satisfying quality; <20, worthless.

Ruminal fermentabilities of organic matter to produce VFA and protein to produce NH₃ were determined from supernatant after in vitro incubation of silage sample in buffer-rumen liquor for 6 h. While DM and OM in vitro digestibilities were determined according to two stage methods by Tilley and Terry (1963).

The experiment was completely random designed with 4 treatments (TMR, 7, 8 and 9 months age at harvesting) and 3 replications. Data were analyzed using ANOVA and significant different between treatments were subjected to contras orthogonal test.

RESULTS AND DISCUSSIONS

Cassava plant properties

Proportion and DM, CP, WSC and HCN contents of the plant were shown in Table 1. Ensiling might change properties of the plant, however, the silage properties pretty much depend on the properties of the plant material. The table showed that the older the plant, the lower leave and the higher tuber proportions of the plant have. DM content increased with the age, while CP, WSC and HCN contents decreased.

Table 1. Cassava plant properties

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant proportion (%)</th>
<th>DM (%)</th>
<th>CP (%)</th>
<th>WSC (%)</th>
<th>HCN (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stem</td>
<td>Leaves</td>
<td>Tuber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45.29</td>
<td>20.83</td>
</tr>
<tr>
<td>7 months</td>
<td>35.82</td>
<td>19.94</td>
<td>44.24</td>
<td>28.14</td>
<td>7.87</td>
</tr>
<tr>
<td>8 months</td>
<td>35.66</td>
<td>12.99</td>
<td>51.35</td>
<td>34.50</td>
<td>6.98</td>
</tr>
<tr>
<td>9 months</td>
<td>34.96</td>
<td>12.09</td>
<td>52.95</td>
<td>35.18</td>
<td>5.71</td>
</tr>
</tbody>
</table>
Started from 7 month age of harvesting, the cassava plant has shown a good material characteristic to be ensiled (Parakassi, 1999). However, HCN content of the plant material were above normal level that can be tolerate (500 ppm) by ruminant (Sandi et al., 2010), therefore pretreatment are needed. Crude protein content of the plant material less than 7.9% which shows value below ruminant requirement. Water soluble carbohydrate content in the plant material more than enough (> 10%) to provide material for lactic acid bacterial (LAB) to produce acid and lower the pH value of during ensiling (Parakassi, 1999).

Characteristics of whole plant silage

Physical, fermentative and utilities characteristic of whole plant silage compare to TMR are shown in Table 2. Physically whole plant cassava silages (WPCS) were better than TMR silage. No spoilages were found in the WPCS but in TMR. High DM content of TMR (~40%) might caused difficulty of compacting which lead to the present of oxygen during ensiling (Sandi et al., 2010). However, the percentage of spoilage silage in this experiment was lower than that was found by Lendrawati (2008) on corn silage based TMR (7.64%).

According to Wilkins (1988), treatment 7 and 8 months produced better silage pH in compare to 9 months and TMR treatment. The lower pH value of treatment 7 and 8 months might be caused by ideal DM content and high WSC content which provided better material and environment for BAL to grow and produce lactic acid (Despal et al., 2011). Although TMR had high WSC content, only very small proportion of it have been used by BAL. High protein content of the TMR might also caused higher buffering capacity in the medium which lead to higher pH value. Dry matter degradation was not significantly different between the treatments (<11%) but lower than 16% that was found by Sumarsih and Waluyo (2002).

Concentration of ammonia in TMR (4.30 mM) and 8 months (4.23 mM) treatments were significantly higher than 7 (2.2 mM) and 9 months (2.08 mM) treatments. Ammonia concentration of less than 50 g/kg total N (~2.94 mM) were categorized by Zamudio et al. (2008) as good quality silage. Because of higher CP content in TMR material in compare to whole plant cassava material then percentage of CP degraded from TRM (3.94%) was lower than whole plant cassava (>7.31%).

Although ensiling could reduce more than 60% of cyanic acid content of WPCS (Man and Hans, 2002), however, HCN concentration found in treatment 7 and 8 months were still above safety level for ruminant consumption. There is a need to let the silage open for a while before fed it to ruminant. Although FP of the silage statistically different, but the point (>85) showed that all silage produced were in very good quality (Öztürk et al., 2009).
Table 2. Characteristics of whole plant cassava silage

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TMR</th>
<th>7 months</th>
<th>8 months</th>
<th>9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Odor</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Texture</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Moisture</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Spoilage</td>
<td>1.158%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fermentative characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.53 ± 0.08</td>
<td>4.21 ± 0.08</td>
<td>4.29 ± 0.22</td>
<td>4.54 ± 0.04</td>
</tr>
<tr>
<td>DM (%)</td>
<td>43.30 ± 2.34²</td>
<td>26.31 ± 0.46²</td>
<td>32.56 ± 0.31ᵇ</td>
<td>32.70 ± 1.07ᵇ</td>
</tr>
<tr>
<td>Silage VFA (mM)</td>
<td>5.36 ± 5.12ᵇ</td>
<td>58.02 ± 11.82ᵃ</td>
<td>17.06 ± 5.91ᵇ</td>
<td>51.19 ± 10.24ᵃ</td>
</tr>
<tr>
<td>DM degradation (%)</td>
<td>10.88 ± 3.45ᵇ</td>
<td>9.75 ± 2.01ᵇ</td>
<td>10.96 ± 1.18ᵇ</td>
<td>9.32 ± 2.68ᵇ</td>
</tr>
<tr>
<td>CP (%)</td>
<td>20.53 ± 5.24ᵇ</td>
<td>7.36 ± 0.42ᵇ</td>
<td>6.91 ± 0.80ᵇ</td>
<td>5.99 ± 0.77ᶜ</td>
</tr>
<tr>
<td>Silage NH₃ (mM)</td>
<td>4.30 ± 0.21ᵃ</td>
<td>2.22 ± 0.39ᵇ</td>
<td>4.23 ± 0.30ᵇ</td>
<td>2.08 ± 0.45ᵇ</td>
</tr>
<tr>
<td>CP degradation (%)</td>
<td>3.94 ± 1.05ᵃ</td>
<td>8.54 ± 1.93ᶜ</td>
<td>14.21 ± 2.44ᵈ</td>
<td>7.31 ± 0.89ᵇ</td>
</tr>
<tr>
<td>WSC (%)</td>
<td>13.27 ± 0.80ᵃ</td>
<td>6.30 ± 2.64ᵇ</td>
<td>12.29 ± 2.54ᵇ</td>
<td>5.44 ± 0.72ᵇ</td>
</tr>
<tr>
<td>HCN (ppm)</td>
<td>13.56 ± 0.63ᵃ</td>
<td>829.86 ± 9.26ᵇ</td>
<td>680.50 ± 3.13ᵇ</td>
<td>326.94 ± 6.24ᵇ</td>
</tr>
<tr>
<td>FPA (ppm)</td>
<td>120.72 ± 4.69ᵃ</td>
<td>89.34 ± 0.92ᶜ</td>
<td>101.83 ± 0.63ᵇ</td>
<td>102.13 ± 2.14ᵇ</td>
</tr>
<tr>
<td>Utilitarian characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruminal NH₃ (mM)</td>
<td>9.96 ± 0.86</td>
<td>8.96 ± 1.21ᵇ</td>
<td>9.44 ± 0.83ᵇ</td>
<td>8.30 ± 1.83ᵇ</td>
</tr>
<tr>
<td>Ruminal VFA (mM)</td>
<td>106.55 ± 9.64ᵇ</td>
<td>111.88 ± 1.11ᵇ</td>
<td>123.21 ± 6.65ᵃ</td>
<td>93.21 ± 10.86ᵇ</td>
</tr>
<tr>
<td>DM degradation (%)</td>
<td>67.54 ± 2.87ᵇ</td>
<td>70.25 ± 1.31ᵇ</td>
<td>77.10 ± 4.32ᵃ</td>
<td>77.43 ± 0.35ᵃ</td>
</tr>
<tr>
<td>OMD (%)</td>
<td>62.91 ± 10.25ᵇ</td>
<td>70.47 ± 2.14ᵇ</td>
<td>77.79 ± 4.77ᵇ</td>
<td>77.96 ± 0.25ᵇ</td>
</tr>
</tbody>
</table>

Note: Different superscript at the same row showed statistically different (p < 0.05); + = less desired and ++++ = most desired physical quality of silage; DMD and OMD = dry matter and organic matter digestibilities.

In vitro utilities test of the WPCS showed that the silage produced were fermentable and highly digestible for ruminant. Digestibility of 8 and 9 months treatments silage were higher than others. Increasing proportion of tuber and reducing proportion of leaves might cause this condition.

REFERENCES

Öztürk, D., M. Kızılçınsek, A. Kamalak, O. Çanbolat, & C. O. Ozkan. 2005. Effects of ensiling alfalfa with whole-crop maize on the chemical composition and

