PROCEEDING International Food Conference 2011

"Life Improvement through Food Technology" Surabaya, October 28th - 29th, 2011

Editors

Prof. Dr. Ir. Endang S. Rahayu Prof. Dr. Ir. Yustinus Marsono Dr. Ir. A. Ingani Widjajaseputra, MS M. Indah Epriliati, PhD Dr. Ihab Tewfik

Auditorium Benedictus Widya Mandala Catholic University Surabaya

Supported by

World Association for Sustainable Development International Forum For Public Health

Indonesian of Association Food Technologist Organized by

Agricultural Technology Faculty Widya Mandala Catholic University Surabaya

SCHEDULE OF INTERNATIONAL FOOD CONFERENCE 2011

Friday, October 28th 2011

Time	ne Activities				
07.00-09.00	Registration, Coffee Morning				
09.00-09.30	OPENING CEREMONY Indonesia Raya Anthem Welcome speech: Rector of UKWMS, Dean of Food Technology Facult Chairperson of Organizing Committee	y UKWMS,			
09.30-10.30	 FIRST PLENARY SESSION 1)Margaretha Indah Epriliati, PhD (Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Indonesia) Speech topic: Constructing a Framework to Safeguard Food Technology for Betterment 2)Dr. Dahrul Syah (The Indonesian Association of Food Technologis;) Speech topic: Indonesian Food Technologist; Expected Role in 	Moderator: Drs. Sutarjo Surjoseputro, MS			
10.30-11.30	Context of National Development SECOND PLENARY SESSION 3) Ihab Tewfik, PhD (Human and Health Science, School of Life Sciences, University of Westminster, United Kingdom; International Forum for Public Health, United Kingdom) Speech topic: Modern Functional Meal: a Potential Answer to the Challenge of the Millenium Development Goals 4) Roy Sparringa, PhD (The National Agency of Drug and Food Control, BPOM, Indonesia) Speech topic: Current Food Safety Issues in Indonesia: Challenge & Expectation	Moderator: Prof. Y. Marsono, PhD			
11.30-11.45	PT Ditek Jaya				
11.45-12.30	Lunch break + Pray				
12.30-13.30	Poster Session				
13.30-17.00	Paralel Session				
17.00-18.30	Evening Coffee and Expo (in Indonesian Traditional Atmosphere)				

Saturday, October 29th 2011

Time	Activities			
07.00-08.00	2 nd day registration			
08.00-10.20	Paralel Session			
10.20-10.45	Coffee break	Coffee break		
10.45 - 11.00	PT Campina Ice Cream Industry			
11.00-12.30	 THIRD PLENARY SESSION 1)Prof. Son Radu, PhD (Food Science and Technology, Universiti Putra Malaysia, Malaysia) Speech topic: Microbiological Risk Assessment as a Decision Support Tool: Reactive and Proactive Case Studies 2) Phillipe J. Blanc, PhD (Institut National des Sciences Appliquees de Toulouse, France) Speech topic: Trends in food biotechnology - Natural Food Colorants: Biotechnology Aspect and Application in Food Industry 3) Johan M. Krop, PhD (Process and Food Technology, The Hague University of Applied Sciences, Netherlands) Speech topic: Food Technology And Production In A Global Perspective 	Moderator: Prof. Endang S. Rahayu, PhD		
12.30-12.45	Best and Favourite Poster Announcement	1		
12.45-13.00	Closing ceremony			
13.00-14.00	Lunch			

LIST OF PAPER

PAPER OF KEYNOTE SPEAKER

NO	SPEAKER	TITLE	PAGE
1	Margaretha Indah Epriliati, PhD (Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Indonesia)	Constructing a Framework to Safeguard Food Technology for Betterment	К 1
2	Dr. Dahrul Syah (The Indonesian Association of Food Technologis;)	Indonesian Food Technologist: Expected Role in Context of National Development	К 2-11
3	Ihab Tewfik, PhD (Human and Health Science, School of Life Sciences, University of Westminster, United Kingdom; International Forum for Public Health, United Kingdom)	Modern Functional Meal: a Potential Answer to the Challenge of the Millenium Development Goals	К 12-20
4	Roy Sparringa, PhD (The National Agency of Drug and Food Control, BPOM, Indonesia)	Current Food Safety Issues in Indonesia: Challenge & Expectation	K 21-32
5	Prof. Son Radu, PhD (Food Science and Technology, Universiti Putra Malaysia, Malaysia)	Microbiological Risk Assessment as a Decision Support Tool: Reactive and Proactive Case Studies	K 33-44
6	Phillipe J. Blanc, PhD (Institut National des Sciences Appliquees de Toulouse, France)	Trends in food biotechnology - Natural Food Colorants: Biotechnology Aspect and Application in Food Industry	K 45-54
7	Johan M. Krop, PhD (Process and Food Technology, The Hague University of Applied Sciences, Netherlands)	Food Technology And Production In A Global Perspective	K 54-59

LIST OF PAPER

PAPER OF ORAL PRESENTATION

NO	AUTHOR	TITLE	PAGE
1	Umi Purwandari, Galih Suprianto, Dian Milanita, Supriyanto And Burhan	Textural Properties Of Dioscorea Tubers Flour, Its Effect On Bread Quality And Its Improvement Using Hydrocolloid	1-8
2	Kitiya Suhem, Narumol Matan, Mudtorlep Nisoa, and Nirundorn Matan	The Effects Of Low Pressure Rf Plasma On The Mineral Content And Other Quality Parameters Of A Brown Rice Snack Bar	9-13
3	Santi Dwi Astuti and Rifda Naufalin	Formulation and Characterization of Functional Biscuits Consisting of Canna Edulis, Kerr Resistant Starch Type III, Granulated Palm Sugar, and Soy Protein Concentrate	14-21
4	Pudji Hastuti, Lukita Purnamayati, Siswanti, and Supriyanto	Roasting Effects of Indonesian Sesame Seed (Sesamum Indicum L.) on Oil Yield, Antioxidant Activity And Compounds in the Oil	22-26
5	Somayeh Ghandehari, Sayed Amir Hossein Goli, Mahdi Kadivar	Qualitative Evaluation Of Frying Oil Enriched By Conjugated Linoleic Acid (CLA)	27-31
6	Mariyati Bilang	Study of Fermented Cow Milk Tofu (Fresh Cheese) by Using <i>Lactobacillus Lactis</i> and Soaked in Brine	32-39
7	Chusnul Hidayat, Pudji Hastuti, Yulius Bayu Prastowo	Characterization of Native Jatropa curcas L Protein Isolates	40-48
8	Maryam Jafari, Mahdi Kadivar, Sayed Amir Hossein Goli	Optimization of chemical synthesis of Cis-9,trans- 11-Octadecadienoic acid through KOH-catalyzed dehydration of castor oil by response surface method (RSM)	
9	Siti Tamaroh	Production of Instant Rice Arrowroot Low Glycemic Index and Protein Quality	55-60
10	Sri Luwihana	Beras Oyek Made from Various Tubers and Their Acceptability	61-65
11	Angelia Dwi Lestiyani, Thomas Indarto P S., Ignatius Srianta	Effect of Soybean And Sweet Corn Ratio on The Characteristics of Low Aflatoxin Soy Corn Yogurt	66-72
12	Tyas Utami, Palupi Melati Pangastuti, Endang S. Rahayu	Acid production and antioxidant activity in peanut milk fermented with <i>Lactobacillus paracasei</i> SNP2 and <i>Lactobacillus plantarum</i> Dad 13	73-79
13	Thitikorn Mahidsanan,Piyawan Gasaluck	Effect of Freeze drying and maltodextrin on Poly- Î ³ -glutamic acid (Î ³ -PGA) production ability of <i>Bacillus subtilis</i> starter powder	
14	Balogun, I.O; Otunla, E.T; Olatidoye, O.P and Adebayo- Oyetoro, O.A	Effect of Fermentation with Rhizopus Species on Some Physico-chemical Properties of Starch Extracts from Velvet Bean (<i>Mucuna utilis</i>)	
15	Meta Mahendratta, Abu Bakar Tawali, Februadi Bastian, and Mulyadi Tahir	Optimizing Production Process of Seasoning Powder Made From Fermented Fish Products	96-102
16	Chatarina Wariyah and Riyanto	Effect of Drying Temperature on Antioxidant Activity and Acceptability of Aloe vera (<i>Aloe vera</i> var. Chinensis) Powder	103-109

APER OF ORAL PRESENTATION (Cont'd)

0	AUTHOR	TITLE	PAGE
17	Gatot Priyanto, Kiki Yuliati and Lucyana	Nitrogen Gas Application for Packaging of Nila Chips on Various Storage Times and Temperatures	110-117
18	Misnawi, Ariza Budi Tunjung Sari and Shinta Setiadevi	Process of Producing Polyphenol from Unfermented Cocoa Bean Using Various Extracting Solvents	118-122
19	Junaedi Muhidong and Kartika	Volumetric-Shrinkage Model of Cocoa Beans	123-128
20	Ariestya Arlene A., Anastasia Prima K., Tisadona Mulyanto and Cynthia Suriya	Red Food Coloring Extraction From Rosella (Hibiscus sabdariffa)	129-133
21	Andri Cahyo Kumoro	Preliminary Investigation on the Preparation of Wanang From Jackfruit (Artocarpus heterophyllus Lam) Juice Using Saccharomyces cereviseae	139-144
22	Tang, J.Y.H., Izenty, B.I., Nur'Izzati, A.J., Rahmah, S.M., Roslan, A. and Abu Bakar, C.A.	Survival of Vibrio Cholerae O1 in Cooked Rice, Coffee and Tea	145-152
23	Budi Sustriawan, Rahma Purnama Sari	Study of lead contaminant on seafood at seafood restaurants in Purwokerto	153-159
24 .	Laksmi Widajanti, Dina R. Pangestuti	Hygiene and sanitation of warung makan in Tembalang Sub-district, Semarang City, Central Java, Indonesia	160-163
25	Sabaianah Bachok, Chemah Tamby Chik, Maaruf Abd Ghani Â, Aliffaizi ArsatÂ, Jazziana Jamil & Suria Sulaiman	The Impac of Halal Logo Implementation on Malaysian Restaurant Operators	164-167
26	Siti Nur Afifah Jaafar, Margaret Lumbers and Anita Eves	The Role of Food Quality in Determining Consumer Satisfaction, Post-purchase Attitudes and Behavioral Intentions in the Restaurants	168-176
27	Hasnelly	Strategies of Market Based on Customer Loyalty of Green Food Products in Indonesia	177-186
28	Baiq Rien Handayani And Stanley E. Gilliland	Antibacterial Activity Of Coffee Berry Pulp Fractions And Their Phenolics Content	187-194
29	Harsojo	The Effect of Irradiation And Storage On Chicken Processed Food	195-201
30	Nurhayati, B. Sri Laksmi Jenie, Sri Widowati, Harsi D Kusumaningrum	Low glycemic index modified plantain flour as functional foods	202-208
31	Jayus, Nuri and Andri Tilaqza	Anti-diabetic Activities of Ethanolic Extract of Merremia mammosa (Lour.) Hall. f. Tuber in Diabetic Rats by in vivo Glucose Tolerance Test	209-213
32	Tejasari and Ali Santoso	Health Effects of Nutrafosin Beverage on Lipid Profile of Patient with Dislipidemia	214-223
33	Budi Laksono, Hadisaputro Suharyo' Suwandono A, and Gasem MH	The Influence of <i>Phylanthus Niruri</i> Extract on The Progression of HIV/AIDS Infection as Indicated by Monitoring of CD4 and TNF Alpha Levels	224-233
34	Rio Jati Kusuma, Sri Lestari, Finotia Astari, Fadhila Pratamasari, and Susetyowati	Planting a hope from lactic acid bacteria: reducing the risk of cardiovascular disease in acute renal failure with black soygurt	234-240

PAPER OF ORAL PRESENTATION (Cont'd)

NO	AUTHOR	TITLE	PAGE
35	Babji, A.S., Yusop, S. M., Ghassem, M. and Azhana, H.		
36	Siti Baitul Mukarromah	Effect of PMT and Iron Supplementation on The Level of Serum Hb of Women Athletes with Low Hb Problem in Central Java	247-251
37	Anton Rahmadi, Elisabeth Hansen, Lezanne Ooi, Gerald Münch	A Versatile Microglia-Neuron and Macrophage- Neuron Co-Culture System for the Identification and Screening of Anti-Inflammatory and Neuroprotective Drugs from Natural Plant Extracts.	252-256
38	Caesariana Ariyani Priatko1 and Amelia Juwana	Functional Properties of Leaf Mustard (Brasssica Juncea) Along the "Sayur Asin" Production Chain	257-264

LIST OF PAPER

2. .

PAPER OF POSTER PRESENTATION

NO	AUTHOR	TITLE	PAGE
1.	Nurul Amira Buslima, Asmah Rahmat, Fauziah Othman and Hadijah Hassan	Effect Of Different Drying Methods On Total Phenolic, Total Flavonoid, And Antioxidant Activities Of <i>Strobilanthes crispus</i> Plant	265-271
2.	Wanlabha Kuekkong and Suwattana Pruksasri	In Vitro Study Of <i>Lactobacillus acidophilus</i> Tistr1338 Growth On Fructooligosaccharides Extracted From Bananas	272-276
3.	Fungki Sri Rejeki, Endang Retno Wedowati and Diana Puspitasari	Optimization Molded Siwalan Sugar Process	277-286
4.	Mongkon Thanyacharoen, Witsanu Srila, Budsaraporn Ngampanya, Adisak Jaturapiree and Phimchanok Jaturapiree	Productions Of Prebiotic Galacto- oligosaccharides (Gos) By Beta-Galactosidase from <i>Lactobacillus delbrueckii</i> Subsp. <i>Bulgaricus</i> Tistr 892	287-290
5.	Eveline, W. Donald R. Pokatong, dan Meliani Oktavia Suryadi	Application Of Ganyong (<i>Canna Edulis</i> Ker.) Starch And Glycerol As Edible Coating For Strawberry (<i>Fragaria Ananasa</i>)	291-299
6.	Endang Noerhartati, Tri Rahayuningsih and Endang Retno Wedowati	Purple Sweet Potato Anthocyanins Substance (<i>Ipomoea Batatas</i> L.) As Natural Food Dyes: Extraction And Characterization	300-307
7.	Murniyati and Bambang Priono	The Effect Of Salt And Sugar Consentration On Lactic Acid Bacteria Of Fermented Sea Urchin (<i>Echinotrix Calamaris</i>) Gonad	308-311
8.	Erryna Tripuspitasari, Dina R. Pangestuti and Apoina Kartini	The Effect Of Food Safety Comic To The Student's Preference Of Snack Food	312-316
9.	Jalil Genisa	The Effect Of Sugar And Pectin Addition On The Product Of Palm Fruit Jam (<i>Borassus flabellifer</i> Linn)	317-324
10.	Diah Kartikawati, Dyah Ilminingtyas WH, Retno Murwani and Ninik Rustanti	Effect Of Organic Iron And Pumpkin Provitamin A Fortification In Wet Noodle On Iron Status In Deficient-Mouse Infected With <i>Escherichia Coli</i>	325-333
11.	Murdinah and Isnani Syafarini	Formulation And Characteristic Quality Of Ice Cream With Phycocolloid As Stabilizing Agents	334-342
12.	Meliany, Ignatius Srianta, Chatarina Yayuk Trisnawati and Susana Ristiarini	Effect Of Carrageenan And Agar Proportion On Physicochemical And Sensory Properties Of Cogon Grass (<i>Imperata cylindrica</i>) Jelly Drink	343-348
13.	Renny Evelyn Hartono, Netty Kusumawati, Ignatius Srianta, Indah Kuswardani	Antibacterial Activity Of Probolinggo Biru Grapefruit Extract Against Escherichia coli, Staphylococcus aureus And Bacillus subtilis	349-355
14.	Stephanie Rosarie Dina Puspitadewi, Ignatius Srianta, and Netty Kusumawati	Monascus Pigment Production By Monascus sp. KJR 2 Growth On Petruk Durian Seeds Through Solid-State Fermentation	356-361
15.	Chomdao Sikkhamondhol and Wanida Tewaruth	Using Germinated Brown Rice Flour, Hom-Dang Rice Flour And Hom-Nil Rice Flour In Gluten Free Mini Cupcake	362-368

PAPER OF POSTER PRESENTATION (Cont'd)

16.	Asmah Rahmat, Sim Wei Guan,	Comparison Of Phenolic Content And	369-372
	Nurul Amira Buslima and Yan	Antioxidant Activity Of Fresh Durian (Durio	
	See Wan	zibethinus) And Rambutan (Nephelium	
		lappaceum) To Their Freeze-Dried Forms	
17.	Joek Hendrasari Arisasmita,	Physicochemical And Sensory Properties Of	373-378
	Chatarina Yayuk Trisnawati dan	Calcium-Fortified Red Rice-Soy Milk	
	Ignatius Srianta		
18.	Lilis Nuraida, Suliantari, Fitri	Evaluation On Potency Of Green Chinesse Leaf	379-387
	Syawaliyah, Yessica Sinaga,	(Brassica juncea L) Juice Fermented By Lactic	
	Vanya A. Muthia and Ulfa	Acid Bacteria Isolated From Breast Milk As Wet	
	Nurmaida	Noodles Evaluation On Potency Of Preservatives	
19.	Endang Kusdiyantini	Rhodosporidium paludigenum DUCC Y-007 As	388-392
		An Alternative Of Natural Pigment Source: Study	
		On The Growth And Carotenoids Production	
a.		Kinetics	
20.	Anita Maya Sutedja and	Rice Cake Characteristics: Effect Of Corn Flour	393-399
	Chatarina Yayuk Trisnawati	Subtitution And Natrium Carboxymethyl	
		Cellulose	a
21.	Dwi Sutiningsih and Eko	Survey On Contamination Of Clostridium	400-411
	Kurniasih	Botulinum On Sardines Product Which Sold At	
	4	Some Traditional Market In Semarang	
22.	Anang Lastriyanto, Sudjito	Determination Of Water Removal Rate Constant	412-420
	Soeparman, Rudy Soenoko,	Under Vacuum Frying Of Peanaples	
	Sumardi HS	-	

LOW GLYCEMIC INDEX MODIFIED PLANTAIN FLOUR AS FUNCTIONAL FOODS

Nurhayati^{1*,} B. Sri Laksmi Jenie², Sri Widowati³ and Harsi D Kusumaningrum²

 ¹Department of Agricultural Products Technology, Faculty of Agricultural Technology-Jember University, Kampus Tegalboto Jl. Kalimantan I, Jember 68121, Indonesia
 ²Department of Food Science and Technology, Faculty of Agricultural Technology, Bogor Agricultural University Kampus IPB Darmaga, Bogor 16680, Indonesia
 ³Indonesian Center for Agricultural Postharvest Research and Development Jl. Tentara Pelajar No. 12, Bogor 16111, Indonesia
 * Corresponding author Email: <u>nhyati04@yahoo.com</u> Telphone/Faximile: +62331-321784/+62331-321784

ABSTRACT

One of the current tendencies in nutrition and health is consuming low-carbohydrate food products. Modified plantain flour was made from "var agung semeru" horn plantain (Musa paradisiaca formatypica). The flour were produced by spontaneous fermentation of plantain slices for 24 h at room temperature, retrogradation (two cycles of autoclaving following by cooling) process, and the combination of spontaneous fermentation with retrogradation process. The glycemic index (GI) of native and modified plantain flour was evaluated by teen volunteers. The results showed that the GI score decreased from moderate GI (65.84 - 66.03) to low GI (45.72 - 51.96) when two cycles of retrogradation process were applied. The combination process increased resistant starch content up to about five times, resulted in lowering the GI of the flour. It can be concluded that modified plantain flour by two cycles of retrogradation process or the combination process can be recommended for use in the diet of low GI. More research is needed to evaluate prebiotic properties of resistant starch-rich plantain flour.

Key Words: plantain flour, spontenous fermentation, retrogradation process, glycemic index, functional food

INTRODUCTION

Recent knowledge diet may modulate various functions in the body and may play beneficial effects in some diseases. Foods are expanding from emphasis on survival, satisfaction, hunger and preventing adverse effects to emphasizing the use of foods to promote a state of well-being and better health and to help reduce the risk of disease. They are called as functional foods. A functional food component can be a macronutrient if it has specific physiologic effects (e.g. resistant starch, n23 fatty acids) or an essential micronutrient if its intake is more than the

daily recommendations (Roberfroid, 2000).

One of the current tendencies in nutrition and health is consuming low-carbohydrate food products. The glycemic index (GI) is a quantity which can be used to compare the glycemic responses of different foods containing carbohydrates. GI is defined as the area under the glucose response curve after consumption of 50 g of carbohydrates from a test food divided by the area under the curve after consumption of 50 g of carbohydrates from a control food, either white bread or glucose (Ludwig, 2000).

Proceeding of IFC 2011

Plantain of var agung semeru (Musa paradisiaca formatypica), also called horn plantain, is widely cultivated in Lumajang Regency, East Java Province, Indonesia. The plantain is a major source of carbohydrate. Jenie et al. (2009) reported hat Musa paradisiaca formatypica contain nore than 70% starch on a dry weight basis and about 6% resistant starch (RS) content. RS is indigestible compounds of starchy food so the food has moderate GI Juarez-Garcia et al., 2006). Tribbes et al. 2009) reported that The RS content of banana flour was influenced by the combination of drying conditions. Drying condition on 55 °C/1.4 m s⁻¹ and 55 °C/1.0 n s⁻¹ presented higher content of resistant starch.

Modification processes on the plantain were conducted by retrogradation (two cycles of autoclaving-cooling) process and he combination of spontaneous 'ermentation on plantain slices with two cycles of retrogradation process. In this study, functional properties of modified plantain flour was evaluated based on the glycemic index as diet functional food.

MATERIALS AND METHODS

Material

Plantain of var agung semeru (*Musa paradisiaca* formatypica) was used for this study. The fully mature but unripe banana ruits were obtained from Central Supply n Lumajang Regency, which were parvested at 120 days after flowering.

Modified banana flour preparation

Native plantain flour (NPF) was prepared by peeling the fruits, cutting into 5 mm, lrying at 50°C in a convection oven for 8 1, grinding to pass 80 mesh. Retrogradation process was conducted on he plantain slices. The fruits were peeled, and sliced into 5 mm. For spontaneous rementation the slices were immediately insed in sterile distilled water (750 g/L), hen incubated at room temperature for 24

h. The slices were drained and pressurecooked (autoclave) at 121°C for 15 min, then cooled at room temperature and stored at 4°C for 24 h. Retrogdaration (autoclaving-cooling) process were repeated two cycles. After that, the plantain slices were dried at 50°C in a convection oven for 8 h and ground into 80 mesh. There were three kinds of modified plantain flour (MPF) i.e fermented plantain flour (FPF), retrogradated plantain flour (RPF), and fermented-retrogradated plantain flour (FRPF). Native and modified plantain were analyzed flour for chemical composition including moisture. ash. protein, fat and carbohydrate content (AOAC, 1999). Rapidly digestible starch (RDS), slowly digestible starch (SDS) and starch (RS)content resistant were determined according to Englyst et al (1992).

Experimental design

Non-diabetic volunteers (n = 10; 2 males, 8 females, aged 21 - 30 years) were offered a single meal of one of the four test foods on different days. The volunteers were administered 50 g glucose in 300 ml distilled water. The serving size was determined by calculating the quantity of the test food that will give 50 g carbohydrate when eaten. Blood samples were collected before feeding (0 min) and at 30, 60 90 and 120 min after the test meal was given. The subjects were not allowed to perform strenuous activities on the day of GI determination. The experimental design to evaluate the banana flour volunteers GI by (in vivo determination) was approved by Ministry of Health Republic of Indonesia through Ethical Approval No. LB.03.04/KE/8320/ 2010.

Determination of blood glucose

On the morning of each test, finger-prick capillary blood samples were collected to determine baseline glucose levels. Ten minutes were allowed for the test foods to be eaten and over 2 h following the start of each test meal, 0.5 mL capillary blood samples were collected at 0, 30, 60, 90 and 120 min. Blood samples were taken using a Easy Touch[®] device and blood glucose concentration was determinated by a Easy Touch[®] glucometer (Chiuan Rwey Enterprise, Ltd. Taiwan).

GI determination

GI was calculated from the blood glucose curve of teen volunteers response (subject). The incremental area under the curve (IAUC) for each test meal for each subject was calculated as the sum of the surface triangle and trapezoids of the blood glucose curve and the horizontal baseline running in parallel to the time axis from the beginning of the curve to the point at 120 min. There reflect the total rise of blood glucose concentration after eating the test food. The IAUC for test and control (50 g of pure glucose - IAUCS) was obtained in a similar way. GI for each food was calculated from the formulae:

 $GI = (IAUC/IAUCS) \times 100\%$.

Statistical analysis

Chemical compotition of plantain flour were expressed as the mean values \pm standard error of the two separate determinations. Comparison of means was performed by one-way analysis of variance (ANOVA) followed by Fisher's LSD (Least Significant Difference) at a significance level of 5% ($\alpha \le 0.05$).

RESULT AND DISCUSSION

Chemical composition

Chemical composition of native and modified plantain flour are presented in the Table 1. The moisture content of modified plantain flour was slightly higher compared to native plantain flour. The difference may be attributed to the particular formulation of the flour. Slade and Levine (1991) explaned water content can be related to the relative abundance of amorphous starch zones in native flour, which influences water absorption to a large extent. There were no difference (P \leq 0.05) in fat and protein content of the flour, but there was difference (P \leq 0.05) in ash and carbohydrate content. The carbohydrate content decreased from 88.75 \pm 0.06 g/100g to 85.66 \pm 0.03 g/100g of flour.

For both modified banana flour. retrogradated plantain flour (RPF) and retrogradated-fermented plantain flour (RPF), had lower amounts of starch compared to native plantain flour (NPF). The starch can be degradated by microbial activity for 24 h spontaneous fermentation process. While the starch was leaching for retrogradation process.

The results demonstrated that during 24 h of spontaneous fermentation the amylose content was increase but the starch content was decrease. Amylose content increased from 13.56 ± 0.05 g/100g of starch (NPF) to 16.54 ± 0.53 g/100g of starch (FRPF). fermentation During debranching of amylopectin might occur and amylose with lower degree of polymerization (DP) was formed. Soto et al (2004) reported that the linear fragments of starch (amylose) can contributed to starch retrogradation and decreased the enzymatic susceptibility of starch.

Digestible starch

Rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) fractions are shown in the Table 2. RDS and SDS were calculated from the in vitro starch digestion at 30 and 120 min of enzymatic incubation respectively (Englyst *et al.*, 1992). The RDS was higher for the native plantain flour and significantly lower for all modified plantain flour. But the SDS was higher on fermented plantain flour. The result showed that spontaneous fermentation can reduce RDS but not for SDS.

Fermented-retrogradated plantain flour had the highest amount of RS than the others. Modification two cycles of autoclavingcooling process could be able to increase the RS content significantly. RS content of native plantain flour (RS2) was $10.48 \pm$ 0.06 g/100g of flour, while RS content of modified plantain flour (RS3) was $45.83 \pm$ 0.96 g/100g of flour.

RS3 was formed by heating and cooling while RS2 was formed native starch granules and unstable if the granules were gelatinized by hydrothermal process. Autoclaving-cooling process can destroy the starch granular crystalline structure so decreased RS2 content. A high content of resistant starch was detected in the native plantain flour (30.4%), but the value decreased drastically after boiling the plantain flour (3.6%) (Ambriz et al., 2008). Combination of debranching by pullulanase autoclaving using with processes (121 °C for 30 min) followed by cooling process (4°C for 24 h) can increase RS content of plantain starch up to six times (Soto et al., 2007).

According to Goni et al. (1996), breakfast cereals have low (1-2.5%) to intermediate (2.5-5.0%) RS content depending on the process and processing conditions used. extrusion During cooking. high temperature and high shear forces cause increasing of the starch susceptibility to enzyme hydrolysis (Holm et al., 1985). Other factors that explain the differences in RS quantities beside degree of starch gelatinization and particle size, are the type of cellular structure and the presence of other components such as dietary fiber and antinutrients (Rosin et al., 2002).

A part of gelatinized starch is known to crystallize during storage, this phenomenon being faster at low temperatures, because the hydrogen bonds are strong in cool temperatures. The recrystallization conditions determine the crystal structure. Different retrogradation temperatures result in a significant polymorphism in starches isolated from corn, wheat and high amylose corn (Shamai *et al.*, 2003).

Glycemic index

Glycemic index of native and modified plantain flour are presented in Figure 1. Moderate GI were showed by native and fermented plantain flour. Juarez-Garcia *et al.* (2006) reported that unripe plantain flour is a starchy food that contains a high proportion of indigestible compounds such as resistant starch and non-starch polysaccharides, included in the dietary fiber content so the flour has moderate GI.

Retrogradated plantain flour (RPF) and retrogradated-fermented plantain flour (RPF), had low glycemic index than native or fermented plantain flour. The GI reduced from moderate (66) to low GI (46-52). This could be due to the fact that two cycles of autoclaving-cooling process could cause reducing of digestible starch and increasing RS content, thus making it resistant for amylase digestion and release of glucose into the bloodstream. This confirms the research of Frie et al. (2003) that storing rice in the refrigerator (4°C for 24 h) led to a reduction of the estimated glycemic index for all cultivars. Tahvonen et al. (2006) reported that cooling after cooking decreased the potato GI significantly.

According to Foster-Powell *et al.* (2002), the reasons for differing GI values of the same type of foods may be due to different processing methods, different testing methods of GI, different testing methods used for determining the digestible carbohydrate content of the test foods and inherent botanical differences. Roasting decreased the GI of unripe plantain flour from 65 to 57 (Ayodele and Erema, 2010). Astawan and Widowati (2011) reported that sweet potatoes showed low GI after frying process.

CONCLUSION

Modified plantain flour by retrogradation cycles of autoclaving-cooling) (two processes (RPF) and the combination of spontaneous fermentation with retrogradation process (FRPF) were able to reduce glycemic index of plantain flour. The modification process can increase the amount of resistant starch up to five times. RPF and FRPF can be suggested for dietary staples to control and reduce hyperglycemia of diabetic patient. More research is needed to evaluate functional properties of the modified plantain flour as the prebiotic candidate based on high resistant starch content.

ACKNOWLEDGMENTS

The research was supported by National Strategic Research of Directorate General Higher Education Department of National Education-Indonesia 2009/2010.

REFERENCES

- Ambriz, S.L.R., J.J.I. Hernandez, E.A. Acevedo, J. Tovar, L.A.B. Perez. (2008). Characterization of a fibrerich powder prepared by liquefaction of unripe banana flour. *J Food Chem* 107: 1515–1521.
- AOAC (1999). Official Methods of Analysis of AOAC International^{16th}. USA
- Astawan, M. dan S Widowati. 2011. Evaluation of nutrition and glycemic index of sweet potatoes and its appropriate processing to hypoglycemic foods. Indonesian Journal of Agricultural Science Vol 12 (1)
- Ayodele, O.H., Erema, V.G. (2010). Glycemic indices of processed unripe plantain (*Musa paradisiaca*) meals. *African J Food Sci.* 4(8): 514 – 521.
- Englyst H.N., Kingman S.M., Cummings J.H. (1992). Classification and

measurement of nutritionally important starch fractions. *Eur J Clin Nutr* 46:S33–S50.

- Foster-Powell, K., Holt, S.H.A., Brand-Miller, J.C., (2002). International table of glycemic index and glycemic load values. *American J Clinical Association* 76, 5–56.
- Frei M, P Siddhuraju, K Becker. 2003. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. J Food Chem 83: 395–402.
- Goni, I., L. Garcia-Diaz, E. Manas, F. Saura-Calixto, (1996). Analysis of resistant starch. A method for food products. *J Food Chemistry*. 56:445– 449.
- Jenie, B.S.L., Widowati, S., Nurjannah, S., Nurhayati. (2009). Development of low glycemic and prebiotics properties banana flour products as functional foods. Report of National Strategic Research (Indonesian). Bogor Agricultural University.
- Juarez-Garcia, E., Agama-Acevedo, E., Sayago-Ayerdi, S. G., Rodriguez-Ambriz, S. L., Bello-Perez, L. A. (2006). Composition, digestibility and application in breadmaking of banana flour. J Plant Food for Human Nutrition, 61, 131–137.
- Ludwig, D.S. (2000). Dietary glycemic index and obesity. J Nutr. 130: 280– 283.
- Pascal G. (1996) Functional foods in the European Union. J Nutr Rev. 54:S29–32.
- Roberfroid, M.B. (2000) Concepts and strategy of functional food science: the European Perspective. *Am J Clin Nutr*. 71:1660S–4S
- Saguilan, A.A., S.G.S. Ayerdi, A.V. Torresa, J. Tovar, T.E.A. Oterb, L.A.B. Perez. (2007). Slowly digestible cookies prepared from resistant starch-rich lintnerized banana starch. J Food Composition and Analysis. 20:175–181

- Shamai, K., Bianco-Peled, H., Shimonic, E. (2003). Polymorphism of resistant starch type III . J Carbohy Polymers 54, 363–369.
- Slade, L., Levine, H. (1991). Beyond water activity. Recent advances based on an alternative approach to the assessment of food quality and safety. *Critical Review of Food Science and Nutrition* 30, 115–360.
- oto RAG, RM Escobedo, HH Sanchez, MS Rivera, LAB Perez. 2007. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. J Food Research Int 40: 304–310.
- Tahvonena, R., R.M. Hietanena, J. Sihvonena, E. Salminen. (2006) Influence of different processing methods on the glycemic index of potato (Nicola). J Food Composition and Analysis. 19: 372–378
- Tribess, T.B., Hernandez-Uribe, J.P., Mendez-Montealvo, M.G.C., Menezes, E.W., Bello-Perez, L.A., Tadini. C.C. (2009).Thermal resistant properties and starch content of green banana flour (Musa cavendishii) produced at different conditions. LWT-Food drving Science and Technology. 42, 1022-1025.

T 11 1	C1 · 1	••• •		1.0 1	1
ahle	(hemical	composition of	native and	modified	nlantain flour
rable r.	Chemical	composition of	nau ve anu	mounted	planam nou

Plantain Flour			
Native (NPF)	Fermentated (FPF)	Retrogradated (RPF)	Fermented- Retrogradate d (FRPF)
5.03 ± 0.05^{d}	7.79 ± 0.03^{t}	$6.72 \pm 0.02^{\circ}$	9.74 ± 0.03^{a}
2.21 ± 0.05^{a}	$1.77 \pm 0.01^{\circ}$	1.84 ± 0.04^{b}	1.67 ± 0.01^{d}
1.02 ± 0.03^{a}	$1.09 \pm 0.03^{\circ}$	1.07 ± 0.06^{a}	1.07 ± 0.04^{a}
1.99 ± 0.03^{a}	1.89 ± 0.04^{a}	2.04 ± 0.06^{a}	1.86 ± 0.04^{a}
88.75 ± 0.06^{a}	$87.47 \pm .030^{\circ}$	88.32 ± 0.05^{b}	85.66 ± 0.03^{d}
70.16 ± 0.12^{a}	69.79 ± 0.14^{t}	67.12 ± 0.86^{d}	$67.67 \pm 0.52^{\circ}$
13.56 ± 0.05^{d}	15.44 ± 0.01^{b}	$14.52 \pm 0.01^{\circ}$	16.54 ± 0.53^{a}
	5.03 ± 0.05^{d} 2.21 ± 0.05^{a} 1.02 ± 0.03^{a} 1.99 ± 0.03^{a} 88.75 ± 0.06^{a} 70.16 ± 0.12^{a}	Native (NPF)Fermentated (FPF) 5.03 ± 0.05^d 7.79 ± 0.03^b 2.21 ± 0.05^a 1.77 ± 0.01^c 1.02 ± 0.03^a 1.09 ± 0.03^a 1.99 ± 0.03^a 1.89 ± 0.04^a 88.75 ± 0.06^a $87.47 \pm .030^c$ 70.16 ± 0.12^a 69.79 ± 0.14^b	Native (NPF)Fermentated (FPF)Retrogradated (RPF) 5.03 ± 0.05^d 7.79 ± 0.03^b 6.72 ± 0.02^c 2.21 ± 0.05^a 1.77 ± 0.01^c 1.84 ± 0.04^b 1.02 ± 0.03^a 1.09 ± 0.03^a 1.07 ± 0.06^a 1.99 ± 0.03^a 1.89 ± 0.04^a 2.04 ± 0.06^a 88.75 ± 0.06^a $87.47 \pm .030^c$ 88.32 ± 0.05^b 70.16 ± 0.12^a 69.79 ± 0.14^b 67.12 ± 0.86^d

¹ wet basis

² dry basis

³ dry basis based on starch

Values followed by the same letter in the same row are not significantly different (P < 0.05)

	Plantain Flour			
Chemical Composition (%)	Native (NPF)	Fermentated (FPF)	Retrogradated (RPF)	Fermented- Retrogradate
				d (FRPF)
RDS [*]	38.15 ± 0.05^{a}	32.64 ± 0.16^{b}	$21.53 \pm 0.07^{\circ}$	18.26 ± 0.33^{d}
SDS^*	24.66 ± 0.01^{b}	32.80 ± 0.35^{a}	$19.42 \pm 0.14^{\circ}$	18.39 ± 0.12^{d}
Resistant starch*	$10.48 \pm .06^{\circ}$	6.24 ± 0.73^{d}	38.97 ± 0.32^{b}	45.83 ± 0.96^a

Table 2. Digestable starch of native and modified plantain flour

* dry basis based on starch

Values followed by the same letter in the same row are not significantly different (P < 0.05)

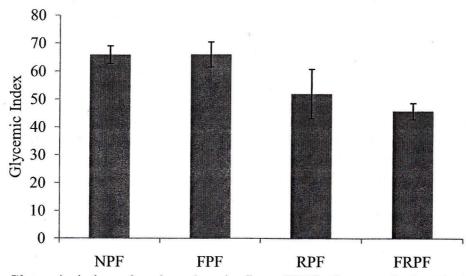


Figure 1. Glycemic index of native plantain flour (NPF), fermented plantain flour (FPF), retrogradated plantain flour (RPF) and fermented-retrogradated plantain flour (FRPF)