Proceeding
International Seminar
CURRENT ISSUES AND CHALLENGES IN FOOD SAFETY:
science-based approach for food safety management

editor:
Ratih Dewanti-Hariyadi
Lilis Nuraida
Desty Gitapratiwi
Nelis Immaningsih
Purwiyatno Hariyadi

Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center
Bogor Agricultural University
CURRENT ISSUES AND CHALLENGES IN FOOD SAFETY
SCIENCE-BASED APPROACH FOR FOOD SAFETY MANAGEMENT

Proceeding of The International Seminar
'Current Issues and Challenges in Food Safety:
Science-Based Approach for Food Safety Management'
Bogor, December 2-3, 2009

Organized by:
Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center
Bogor Agricultural University
International Commision on Microbiological Specifications for Foods (ICMSF)
Norman Borlaug Institute for International Agriculture
Texas A & M University

Editor:
Ratih Dewanti-Hariyadi
Lilis Nuraida
Desty Gitapratwi
Nelis Immaningsih
Purwiyatno Hariyadi

Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center,
Bogor Agricultural University
2010
CURRENT ISSUES AND CHALLENGES IN FOOD SAFETY
SCIENCE-BASED APPROACH FOR FOOD SAFETY MANAGEMENT

Proceeding of The International Seminar
‘Current Issues and Challenges in Food Safety:
Science-Based Approach for Food Safety Management’
Bogor, December 2-3, 2009

Editor
Ratih Dewanti-Hariyadi
Lilis Nuraida
Desty Gitapradiwi
Nelis Immaningsih
Purwiyatno Hariyadi

Publisher
Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center
Bogor Agricultural University
Bogor-Indonesia

National Library Republic of Indonesia
ISBN 978-602-96665-3-3

Acknowledgement
Thanks to Leo Wibisono Arifin, Yesica Dwi Ariesta, Amelinda Angela, Vita Ayu
Puspita, Palestina Santana, Virna Berliani Putri, Zulaikah and Nurwandi NC
for preparing manuscript of this proceeding

Copyright©2010
Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center,
Bogor Agricultural University
Kampus IPB Darmaga, Bogor 16680
www.seafast.ipb.ac.id
CONTENT

Preface .. iii
Welcome Speech of Rector of Bogor Agricultural University.. xi
Organizers ... xv

Keynote Speech
Cold Chain: Managing Food Safety for Fresh Produce and Frozen Food Product.............................. 1
Derk Van Mackelenbergh

PLENARY PRESENTATION

Microbiological Food Safety
A Modern Approach to Food Safety Management .. 9
Martin Cole

Use of Epidemiological Data for The Improvement of Food Safety .. 21
Fumiko Kasuga

Implementation of Food Safety Management at Industry Level in Developing Countries: Is Gmp/Haccp Confusing? ... 29
Ratih Dewanti-Hariyadi

Chemical Food Safety
Controlling Allergens: Industry Perspective .. 41
Soo Chuah

Food Safety Issues in Food Packaging - Aseptic Technology Approach .. 51
Hari Yanto Tekno Yuwono

Science-based Approach to Food Safety
Predictive Microbiology ... 61
Tom Ross

Risk Analysis: Using Risk Assessment to Establish Risk Based Metrics .. 75
Leon Gorris

Role of Microbiology Criteria and Limitations of Sampling ... 89
Tom Ross
Current Issues and Challenges in Food Safety

Safety of Food Biotechnology
Safety of Food Biotechnology Products .. 103
James Maryanski

Safety Assessment of Genetically Modified Food in Indonesia 111
Maggy Thenawidjaja Suhartono

TECHNICAL PRESENTATION
Managing the Safety and Quality of Fresh Produce

Risk Assessment Of Listeria Monocytogenes In Raw Vegetables 121
Son Radu

Good Agricultural Practice: A Vital Program for Ensuring
Microbial Safety of Fresh Produce .. 139
Maria Auxilia T. Siringan

Biosafety of Vibrio Parahaemolyticus in Raw Salad Vegetables at
Retail and Farm Level .. 147
Tunung Robin

The Effect of Blanching Method, Storage and Temperature to the
Characteristics of Cowpea Tempeh Substituted by 40% Soybean 167
Mery Tambaria Damanik Ambarita

Microbiological Risk Assessment of Fresh Water Aquaculture
Fish in Malaysia: from Farm to Table .. 187
Rizal Damanik

Implementation of Food Safety and Quality Management at
Industry Level

Control of Salmonella in Nut Processing ... 199
Chaven Suchart

Integrated Food Safety Management-Kraft Approach 213
Soo Chuah

Shelf-Life Prediction of Seasoning Powder Made from Whole
Fermented Fish (Peda) by Using Arrhenius Method 221
Meta Mahendradatta

Chemoreaction Drying and its Effect on Black Pepper Quality 235
Nur Wulandari
Application of NMR Based Metabolomics and Multivariate Data Analysis for Quality Control of Herbal Material .. 243
Nancy Dewi Yuliana

Managing Food Safety and Quality in Food Services and Retail Industries
Managing Food Safety in Food Retail: A Lesson Learnt 259
Andi Nur’aida

Food Safety Management in Aerofood Angkasa Citra Sarana (ACS) Catering Service ... 265
Hoerip Satyagraha

Formalin Contamination in Children’s Street Foods at Schools in Surakarta, Central Java, Indonesia ... 273
Indrias Tri Purwanti

Isolation Of Enterobacter sakazakii (Cronobacter Spp) from Powdered Infant Formula and Other Dry Foods Obtained from Bogor Area, Indonesia .. 281
Ratih Dewanti-Hariyadi

POSTER PRESENTATION
Inhibition of Duku (Lansium domesticum) Spoilage using Ozone 287
Anny Yanuriati

Nutrition Properties and the Prospect of Six Amorphophallus Species of Tubers in Java ... 299
Yuzammi

Gewang (Corypha utan lam.) as Local Food in Timor Island and Its Nutritional Properties .. 307
Joko Ridho Witono

Two Stages Tea Chemical Withering during Peak Season 321
Dadan Rohdiana

The Physiology of Organs and Organism of Mus Musculus Induced Repeatedly with Formalin-Contaminated Fish and Chlorophyllin .. 329
Alfonds Andrew Maramis
Current Issues and Challenges in Food Safety

The Occurrence of *Pseudomonas* sp in Grouper Fish Fillets (*Plectropoma leopardus*) at Bone Pante .. 345
Rieny Sulistijowati

HACCP Plan for Green Tea Product of PT GT and its Implementation .. 359
Raniayu

Establishment and Implementation Sanitation Standard Operating Procedures (SSOP) in Green Tea Processing 369
Ratna Handayani

Utilization of Leaves of Kunyit (*Curcuma domestica* Val.), Ruku-Ruku (*Ocimum gratissimum* L.) and Mangkolan (*Nothopanax cutellarium* Merr.) in Steamed Fish (*Rastrelliger* Sp) Processing 383
Novelina

Effect Of Time-Temperature and Amylose Content of Rice on the Color and Texture of Rice-Based Emergency Canned Food........ 391
Elvira Syamsir

Safety of School Children Foods in Indonesia ... 399
Nuri Andarwulan

The Role of Women in Community Management of Biosecurity and Food Safety .. 415
Eka Martiningsih

x |
ISOLATION OF ENTEROBACTER SAKAZAKII (CRONOBACTER SPP) FROM POWDERED INFANT FORMULA AND OTHER DRY FOODS OBTAINED FROM BOGOR AREA, INDONESIA

Ratih Dewanti-Hariyadi¹, Desty Gitapratiwi¹, Yuliasri Ramadhan Meutia¹,², Sri Estuningsih³, Sri Hendrastuti Hidayat⁴, Siti Nurjanah¹

¹ Department of Food Science and Technology and SEAFAST Center, Bogor Agricultural University, Indonesia
² Center for Agro Based Industry, Ministry of Industry, Bogor, Indonesia
³ Faculty of Veterinary Medicine, Bogor Agricultural University, Indonesia
⁴ Faculty of Agriculture, Bogor Agricultural University, Indonesia

ABSTRACT

Recently there has been increasing concern related to the presence of Enterobacter sakazakii in powdered infant formula (PIF) which was linked to severe systemic infection in certain groups of neonates. E. sakazakii has been previously isolated from PIF in Indonesia; however more information regarding E. sakazakii is needed to assess the risk of this pathogen for infants in Indonesia.

The research was aimed to isolate E. sakazakii from PIF, weaning foods and other dry foods obtained in Bogor, Indonesia. PIF and weaning food samples were obtained in 2006 and sampling were repeated in 2009. Several non PIF samples were collected in 2009. Isolation and detection were carried out according to FDA methods (2002) as modified by Iversen & Forsythe (2004).

Four E. sakazakii were isolated from 2 out of 16 PIF samples in 2006 but none was isolated from 3 PIF samples collected in 2009. Four isolates were obtained from 2 out of 9 weaning foods samples obtained in 2006 while two were isolated from two out of 15 samples taken in 2009. Two E. sakazakii were also isolated from two corn starch samples and one was isolated from chocolate powder sample. The result implied significant improvement of E. sakazakii management by PIF manufacturer in the past 2 years, while improved processing and or process control is probably needed for dry food products to minimize contamination by E. sakazakii.
BACKGROUND

Enterobacter sakazakii has been classified as severe pathogen to a restricted population. The bacterium has been reported to cause several cases of fatality and diseases in prematures baby, immuno-compromised newborn infants, and newborn infant up to few weeks of age. Meningitis and necrotizing enterocolitis (NEC) diseases caused by *E. sakazakii* in newborn infant has been linked to consumption of powdered infant formula (PIF) (van Acker *et al.* 2001).

Recent study on *E. sakazakii* in Indonesia has been done by Estuningsih *et al.* (2006) who reported the occurrence of *E. sakazakii* from weaning food in Indonesia from 2 different manufacturers. The report has stirred fears in Indonesia, thus more research is should be conducted to understand the presence of this bacterium in PIF and other foods. This information is important to assess the risk of this pathogen and establish measures to control *E. sakazakii*. Therefore, data regarding the presence of *E. sakazakii* in PIF and weaning food in Indonesia is needed.

The aim of this research was to evaluate the presence of *E. sakazakii* in PIF, weaning food and other dry food obtained from Indonesia based on their biochemical properties.

MATERIAL AND METHODS

Bacterial Isolation

A total 19 PIF samples and 9 weaning food were purchased from retail market in Bogor, Indonesia in 2006. Meanwhile, three PIF samples and 15 weaning food samples were obtained in 2009. Other food samples evaluated in 2009 include 5 cassava starch, 8 corn starch, 4 mung bean starch, 7 chocolate powder, 3 milk powder, 2 agar-agar powder and 4 instant cereal powder samples.

All samples were obtained from products purchased in closed, intact packages, as offered in the shop. The media used for isolation of *E. sakazakii* were: Buffered- Peptone Water (BPW); *Enterobacter* erichment (EE) broth; Violet Red Bile Glucose (VRBG) Agar; Druggan-Forsythe-Iversen (DFI) Agar; Trypticase (Tryptic) Soy Agar (TSA); and also API 20E Biochemical Strips.
Isolation of *E. sakazakii* was carried out according to FDA recommended methods (2002) modified by Iversen & Forsythe (2004). Each food samples were weighed aseptically (25 g) and diluted in nine parts of sterile BPW (1:10) then prewarmed to 45°C and gently shaken until the samples were uniformly suspended. The suspension were then incubated at 37°C for 24 hours. Ten milliliters of each suspensions were taken, placed in 90 ml EE broth and then incubated at 37°C for 24 h. After incubation, 1 loopful of the suspension were streaked onto VRBG agar and incubated at 37°C for another 24 h. The streaking was repeated on two VRBG agar plates. Presumptive colonies of *E. sakazakii* on VRBG agar were picked and re-streaked onto OFI agar plates and then incubated at 37°C for 24 h. Typical *E. sakazakii* colonies found on OFI agar were then streaked onto TSA agar plates and incubated at 37°C for 48 - 72 h. Each typical colony was confirmed by API 20E biochemical identification system and the results were analyzed using software apiweb™ (Biomerieux).

RESULTS AND DISCUSSIONS

Bacterial Isolation from PIF and Weaning Foods

Two *E. sakazakii* isolates were obtained from two out of 16 PIF samples obtained in 2006, but none was isolated from three samples obtained in 2009. The results suggests that there was increased process or process control in the manufacturing of PIF which may have been caused by 2007 public outcry on the publication of *E. sakazakii* finding in the PIF.

Of the 9 weaning food samples obtained in 2006, two typical *E. sakazakii* were isolated. Two isolates were also isolated from 15 weaning food samples collected in 2009. The results also suggests decrease in the isolation frequency of *E. sakazakii* in weaning food product from 22% in 2008 and 14.3% in this research. This isolation frequency was also significantly lower than that of Estuningsih et al. (2006) who suggest an isolation rate of 34%.
Bacterial Isolation from Food Other than PIF or Weaning Foods

Fewer isolates were obtained from samples other than weaning food. Three isolates were obtained from 3 samples out of the 36 samples taken (8%). *E. sakazakii* was not found in cassava starch, mung bean starch, milk powder, agar-agar powder, instant cereal powder, non dairy creamer, instant coconut milk powder, instant spicy drink powder samples.

Two isolates were obtained from two out of 8 corn starch samples while one isolate was obtained from one out of 7 chocolate powder samples. The results support Eddelson-Mammel and Buchanan (2004) who reported that *E. sakazakii* was able to survive for over 2 years in dry products. Table 1 shows the complete data.

Table 1. Isolation of *E. sakazakii* from dry foods obtained from Bogor area, Indonesia

<table>
<thead>
<tr>
<th>Samples (year taken)</th>
<th>No of samples</th>
<th>No of positive sample</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIF (2006)</td>
<td>16</td>
<td>2</td>
<td>12.5</td>
</tr>
<tr>
<td>PIF (2009)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weaning food (2006)</td>
<td>9</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Weaning food (2009)</td>
<td>15</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Cassava starch (2009)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corn starch</td>
<td>8</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Mungbean starch</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agar-agar powder</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk Powder</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chocolate powder</td>
<td>7</td>
<td>1</td>
<td>14.3</td>
</tr>
<tr>
<td>Instant cereal powder</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non dairy creamer</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Instant coconut milk powder</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Instant spicy drink</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>9</td>
<td>11.4</td>
</tr>
</tbody>
</table>
All isolates showed typical colonies on selective media (VRB agar) as well as chromogenic media (DFI agar). However, although showing typical *E. sakazakii* colonies in DFI, four isolates shows similarity with other *Enterobacteriaceae* when tested with API 20E. One PIF isolate showed 90.6% similarity with *Enterobacter amnigenus* while only had 2.6% similarity with *E.sakazakii*. Another isolate has 90.0% similarity with *E.amnigenus*, the third showed 18.5% similarity with *E.sakazakii* and has more similarity with *E.cloacae* (81.4%) while the fourth isolate is more related to Pantoea spp 3 (80.3%).

Acknowledgement

Thanks to Dr Sri Estuningsih for the confirmed cultures used as standards. The research was partially funded by SEAFAST Center, Bogor Agriculture University (2006) and Competitive Grant for Graduate Program of the Directorate General of Higher Education, Ministry of Education, Indonesia (2009).

Reference

http://www.ifm.net/issues/esakazakii_background.htm

