
ISBN: 978-979-95093-7-6

PROSIDING

Seminar Nasional Sains IV

PERAN SAINS DALAM PENINGKATAN PRODUKTIVITAS PERTANIAN

Diterbitkan Oleh:

Fakultas Matematika dan IlmuPengetahuan Alam Institut Pertanian Bogor

ISBN: 978-979-95093-7-6

Seminar Nasional Sains IV

12 November 2011

PERAN SAINS DALAM PENINGKATAN PRODUKTIVITAS PERTANIAN

Prosiding

Dewan Editor

Kiagus Dahlan
Akhiruddin Maddu
Ence Darmo Jaya Supena
Miftahudin
Endar Hasafah Nugrahani
Ali Kusnanto
Sri Mulijani
Sulistiyani

Fakultas Matematika dan Ilmu Pengetahuan Alam

Institut Pertanian Bogor 2012

Copyright© 2012

Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Prosiding Seminar Nasional Sains IV "Peran Sains dalam Peningkatan Produktivitas Pertanian" di Bogor pada tanggal 12 November 2011

Penerbit : FMIPA-IPB, Jalan Meranti Kampus IPB Dramaga, Bogor 16680

Telp/Fax: 0251-8625481/8625708

http://fmipa.ipb.ac.id Terbit 1 Mei 2012 ix + 536 halaman

ISBN: 978-979-95093-7-6

KATA PENGANTAR

Seminar Nasional Sains adalah kegiatan rutin yang diselenggarakan oleh Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor sejak Tahun 2008. Tahun ini adalah penyelenggaraan yang ke-4, dengan tema "PERAN SAINS DALAM PENINGKATAN PRODUKTIVITAS PERTANIAN".

Kegiatan ini bertujuan mengumpulkan peneliti-peneliti dari berbagai institusi pendidikan dan penelitian baik perguruan tinggi maupun lembaga-lembaga penelitian dari seluruh Indonesia untuk saling bertukar pikiran dan memaparkan hasil-hasil penelitian terkait penerapan sains (statistik, biosains, klimatologi, kimia, matematika, ilmu komputer, fisika, dan biokimia) untuk peningkatan produktivitas pertanian dalam arti luas. Seminar Nasional Sains IV ini diikuti oleh lebih dari 200 orang peserta dengan sebanyak 63 peserta sebagai pemakalah pada sesi presentasi paralel yang berasal dari berbagai perguruan tinggi meliputi Universitas Riau, Universitas Sriwijaya, Universitas Lampung, Universitas Pancasila, Universitas Jenderal Sudirman, Institut Teknologi Bandung, Universitas Kristen Satya Wacana, Universitas Mulawarman, Universitas Negeri Makassar, Universitas Tadulako, dan Institut Pertanian Bogor sendiri. Selain itu, peserta pemakalah juga berasal dari beberapa lembaga penelitian seperti Pusat Penelitian Bioteknologi LIPI, dan pusat-pusat penelitian di bawah Kementerian Pertanian Republik Indonesia.

Diharapkan dari kegiatan ini dapat memberikan informasi perkembangan sains, memicu inovasi-inovasi teknologi yang berlandaskan sains, meningkatkan interaksi dan komunikasi antar peneliti, pemerhati, dan pengguna sains dan teknologi. Diharapkan pula kegiatan ini dapat menjalin kerjasama riset dan penerapan sains dan teknologi antar peneliti, pemerhati, dan pengguna sains dan teknologi, khususnya yang terkait dengan peningkatan produktivitas pertanian.

Prosiding ini merupakan kumpulan makalah yang dipersembahkan pada seminar tersebut. Semoga bermanfaat!

Bogor, 1 Mei 2012

PANITIA

Hal

DAFTAR ISI

	Kata Pengantar Daftar Isi		iv v
NT-	Penulis	<i>Biosains</i> Judul	Hal
No. 1	Ellyzarti, dan Sri Gusniati	Keanekaragaman Jenis Paku-pakuan (<i>Pteridophyta</i>) di Gunung Betung Taman Hutan Raya Wan Abdurahaman Bandar Lampung	па і 2
2	Herman	Pemilihan Varietas Cabe (Capsicum annum L) Kering yang Bermutu Tinggi Hasil Kawin Silang	11
3	Yulianty, Eti Ernawiati, Sri Wahyuningsih	Pemanfaatan Daun Kembang Sungsang (Gloriosa superba) dalam Upaya Mengendalikan Penyakit Antraknosa (Colletotrichum capsici (Syd.) Butler & Bisby) pada Tanaman Cabai Merah (Capsicum annuum L.)	16
4	I GP Suryadarma	Efisiensi Pembuatan Biogas dan Pupuk dalam Satu Bak Penampung: Studi Kasus Kotoran Sapi di Desa Geluntung, Tabanan, Bali	27
5	Oslan Jumadi, Yusminah Hala, Abd.Muis, Andi Asmawati	Penurunan Emisi Gas <i>Nitrous Oxida</i> (N ₂ O) dan Laju Nitrifikasi pada Lahan Jagung (<i>Zea mays</i>) dengan Menggunakan Mimba (<i>Azadirachta indica</i>) Sebagai Bahan Penghambat Nitrifikasi	35
6	Setyadjit, D.A. Setyabudi, E. Sukasih and E.M. Lokollo	A Concept of Sustainable Tofu Industry by Linking it with Soybean Production in Indonesia	`44
7	Setyadjit, E. D. Astuty and E. Sukasih	Effect of Crushing Method, and Storage Temperature on the quality of frozen Soursop Puree	59
8	Nurul Sumiasri	Variasi Tanaman di Lahan Pertanian dalam Upaya Intensifikasi Pertanian: Studi Kasus di Dua Desa Kecamatan Jenggawah, Jember	73
9	Dody Priadi	Pengaruh Penambahan Glomus aggregatumpada Enkapsulasi Benih Sengon (Paraserianthes falcataria)	82
10	Muhammad Wiharto	Analisis Vegetasi Pohon pada Berbagai Tipe Vegetasi Tingkat Aliansi di Hutan Sub Pegunungan Gunung Salak Bogor Jawa Barat	90
11	Martha L. Lande,	Keanekaragaman Tanaman Pisang (Musa spp.) di Kab.	100

	Yulianty, Rita	Pesawaran Propensi Lampung	
	Puspitasari		
12	Ali Husni dan Ifa	Peningkatan Ragam Genetik Tanaman Padi Gogo	107
	Manzila	Untuk Meningkatkan Produktivitas dalam Upaya	
		Mendukung Swasembada Berkelanjutan	
13	Andi Mu'nisa,	Uji Kapasitas Antioksidan Ekstrak Daun dan Flavonoid	119
	Halifah Pagarra, dan	• •	
	Andi Muflihunna		

		Kimia	
No.	Penulis	Judul	Hal
1	Budi Untari, Ahsol	Potensi Sediaan Isolat Beta-Karyofilen dan Eugenol	129
	Hasyim, Setiawaty	yang Diformulasi sebagai Atraktan Lalat Buah	
	Yusuf	Bactrocera spp. (Diptera: Tephritidae)	
2	Herlina, MT.	Pengaruh Senyawa Murni dari Pegagan (Centella	138
	Kamaluddin dan	asiatica (L.) Urban) Terhadap Fungsi Kognitif Belajar	
	Lentary Hutasoit	dan Mengingat dan Efek Toksisitas pada Mencit (Mus	
_		musculus) Betina	
3	Syamsudin, Ros	Perbandingan Efek Hipoglikemik dari Beberapa Ekstrak	150
	Sumarny, Partomuan	Biji Petai Cina (Leucaena leucocephala (lmk)De Wit)	
	Simanjuntak	pada Mencit yang Diinduksi Aloksan	
4	Fahma Riyanti,	Pengaruh Pemanasan dan Penambahan Antioksidan	158
	Poedji Loekitowati	BHT pada Minyak Biji Ketapang (Terminalia catappa	
	H. dan Rizki	Linn.) dan Kinetika Reaksi Oksidasi	
_	Muharrani		1.00
5	Waras Nurcholis,	Aktivitas Antioksidan Sediaan Jamu dan Ekstrak Etanol	168
	Tyas Ayu Lestari,	Temulawak (Curcuma xanthorrhiza Roxb.), Kunyit	
	Theresia Pratiwi,	(Curcuma longa Linn.), dan Meniran (Phyllanthus	
	Kartika	niruri Linn.)	
6	Dudi Tohir, Gustini	Isolasi dan Identifikasi Golongan Flavonoid Daun	177
	Syahbirin, Akbar	Dandang Gendis (Clinacanthus nutans)	
7	Death Takin Plan	Berpotensi sebagai Antioksidan	100
7	Dudi Tohir, Eka	Sitotoksisitas Fraksi Aktif Biji Mahoni (Swietenia	190
0	Wuyung, Rida Farida	mahagoni) pada Sel Kanker Payudara T47D	202
8	Tetty Kemala,	Optimasi dan Evaluasi Mikrokapsul Ibuprofen Tersalut Paduan Poliasamlaktat-Lilin Lebah	202
	Ahmad Sjahriza, Randi Abdur	Paduan Pohasamiaktat—Lilin Leban	
	Rohman		
9	Charlena,	Pemanfaatan Konsorsium Mikroba dari Kotoran Sapi	218
2	•	dan Kuda untuk Proses Biodegradasi Kotoran Limbah	410
	Mohammad Yani,	Minyak Berat	
	Eka NW	winiyak Dorat	

235

10	Catur Hertika, Djoko Prijono, Dadang	Sebagai Insektisida Nabati Terhadap Ulat Kubis Crocidolomia Pavonana	200
		Matematika	
No.	Penulis	Judul	Hal
1	Mohammad Masjkur	Perbandingan Model Nonlinear Jerapan Fosfor	248
2	Sariyanto, Hadi Sumarno dan Siswandi	Model Multistate Life Table (<i>MSLT</i>) dan Aplikasinya dalam Bidang Pendidikan: Kausu Khusus di Kabupaten Sintang	263
3	M. Endro Prasetyo Toni Bakhtiar Farida Hanum	Perencanaan Strategik Rumah Sakit Melalui Efisiensi dan Optimasi Penggunaan Kamar Operasi	275
4	Ayu Meryanti G, Farida Hanum, Endar H. Nugrahan	Optimasi Portofolio Obligasi yang Terimunisasi dengan Goal Programming	286
5	Hari Agung, Karomatul Aulia	Data Warehouse dan Aplikasi OLAP Akademik Kurikulum Mayor-Minor Departemen Ilmu Komputer IPB Berbasis LINUX	297
6	Mutia Indah Sari, Endar H. Nugrahani, Retno Budiarti	Pemodelan Harga Saham Menggunakan Generalisasi Model Wiener dan Model ARIMA	308
7	Ali Kusnanto, Nurrachmawati, Toni Bakhtiar	Pengaruh Waktu Penyimpanan Stok Modal pada Model Siklus Bisnis Kaldor-Kalecki	317
8	Hari Agungdan Windy Deliana Khairani	Pengembangan WebGIS Kampus IPB Darmaga	327
9	Farida Hanum, Rangga Nakasumi, Toni Bakhtiar	Penyelesaian Rural Postman Problem pada Graf Berarah dengan Metode Heuristik	339
10	Hari Agung, Baba Barus, Diar Shiddiq, Bambang H Trisasongko, La Ode Syamsul Iman, Auriza Akbar	Pengembangan Sistem Informasi Perkebunan (SCIBUN) menggunakan Free Open Source Software (FOSS)	350
11	Endar H. Nugrahani, Muhammad Syazali, Suritno	Penilaian Opsi <i>Put</i> Amerika dengan Metode Monte Carlo dan Metode Beda Hingga	362
11	Berlian Setiawaty	Pemodelan Nilai Tukar Rupiah terhadap Dolar Amerika Menggunakan Hidden Markoy	373

Potensi Minyak Atsiri Daun Cinnamomum multiflorum

Gustini Syahbirin,

10

12	Diana Purwandari, Endar H. Nugrahani, NK Kutha Ardhana	Analisis Regresi Laten pada Efek Plasebo Menggunakan Algoritma EM	381
13	Rina Ratianingsih dan Agus Indra Jaya	Identifikasi Model Konsumsi Gas CO ₂ di Atmosfir Untuk Mendapatkan Interaksi Unsur-Unsur Utama Iklim yang Stabil	389
14	Wahfuanah, Jaharuddin, Ali Kusnanto	Penyelesaian Model Infeksi HIV pada Sel Darah Putih (T CD4+) dengan Menggunakan Metode Perturbasi Homotopi	398
.		Fisika	***
No.	Penulis P. Dita Paharu	Judul Karakterisasi Sensor Kristal Fotonik Satu Dimensi	Hal
1	R Dita Rahayu Budiarti, Mamat Rahmat, Irmansyah	untuk Pengukuran Gas Nitrogen Dioksida	410
2	Irzaman, A. Arif, A. Kumiawan, M. N. Hilaluddin, J. Iskandar, D. Yosman	Penerapan Fotodioda Film Tipis Ba _{0.5} Sr _{0.5} TiO ₃ (BST) Sebagai Detektor Garis pada Robot <i>LINE FOLLOWER</i> Berbasis Mikrokontroler ATMEGA8535	421
3	Sitti Yani, Akhiruddin Maddu, Irmansyah	Efek Fotovoltaik Pada Persambungan Hibrid CdS dengan Campuran P3HT/Kitosan	433
4	Akhiruddin Maddu, Ujang Sudrajat, Mersi Kurniati	Sifat Optik Film ZnO Nanokristal yang Ditumbuhkan dengan Chemical Bath Deposition (CBD)	443
5	Rani Chahyani, Gustan Pari, Kiagus Dahlan	Pembuatan dan Analisis Kualitas Arang Aktif dari Tempurung Kelapa dengan Aktivasi Uap dan Kalium Hidroksida	454
6	I. Aisyah, S. U. Dewi, K. Dahlan	Sintesis β-Tricalcium Phosphate dari Cangkang Telur Ayam di Udara Terbuka dengan Variasi Waktu Sintering	467
7	Tb Gamma N.R., Mersi Kurniati, Hendradi Hadrienata	Analisis Frekuensi Gelombang Ultrasonik Terhadap Radius Gelembung Kavitasi pada Sistem Cairan Kompresibel	476
8	Tony Ibnu Sumaryada	Identifikasi Transisi Fasa Pada Sistem Mesoskopik Menggunakan Invariant Correlational Entropy	483
9	Arianti Tumanngor,	Karakterisasi Sensor Kristal Fotonik Satu Dimensi	490

Akhiruddin Maddu

		Poster	
1	Sitti Fatimah Syahid	Effect Of Benzyl Adenin and Thidiazuron On Shoot Multiplication Of St. John's Wort (<i>Hypericum perforatum</i>) In Vitro	502
2	Trisnowati Budi Ambarningrum	Bioinsektisida <i>Bacillus thuringiensis</i> : Pengaruhnya Terhadap Indeks Nutrisi Larva Instar V <i>Spodoptera litura</i> Fabr. (Lepidoptera: Noctuidae)	508
	Susunan Panitia	Lampiran	517
	Jadwal Acara		518
	Daftar Peserta		531

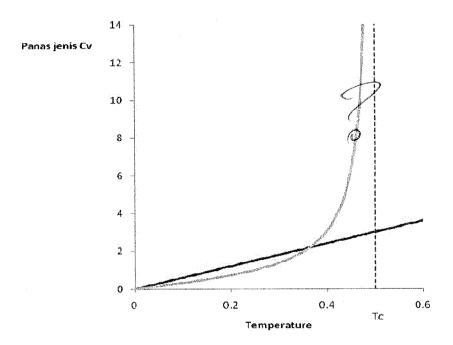
IDENTIFIKASI TRANSISI FASA PADA SISTEM MESOSKOPIK MENGGUNAKAN INVARIANT CORRELATIONAL ENTROPY

Tony Ibnu Sumaryada

Bagian Fisika Teori, Departemen Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Kampus Darmaga IPB Bogor 16880

ABSTRAK

Sistem mesoskopik merupakan sistem yang unik, jumlah partikel yang berkisar dari orde beberapa buah partikel hingga ribuan partikel menyebabkan sistem ini terlalu rumit untuk diperlakukan sebagai sistem kuantum, namun juga terlalu kecil untuk diperlakukan sebagai sistem makroskopik. Detil transisi fasa pada sistem ini tidak dapat diperoleh jika hanya mengandalkan metoda pendekatan fisika statistik. Dalam presentasi ini akan diperkenalkan metoda pendeteksian transisi fasa baru yang sangat sensitif, yaitu *Invariant Correlational Entropy* (ICE). Metode ini sangat sensitif karena hanya bergantung pada perubahan fungsi korelasi antar keadaan dan tidak bergantung pada basis keadaan yang dipilih.


Kata Kunci: Transisi fasa, mesoskopik, Invariantb Correlation Entropy

1 PENDAHULUAN

Identifikasi perubahan fasa pada suatu sistem merupakan salah satu topik yang sangat penting dalam fisika. Berbagai metoda baik eksperimen maupun teori telah banyak diperkenalkan dan digunakan untuk mengetahui kapan transisi dari satu keadaan ke keadaan lainnya dimulai. Sebagai contoh, dapat dikemukakan disini perubahan keadaan atau *phase transition* dari keadaan Superkonduksi ke keadaan Normal. Bila dilakukan pengukuran panas jenis (*specific heat* atau C_v) dari suatu bahan superkonduktor maka akan teramati perubahan drastis C_v pada temperatur tertentu yang kita sebut sebagai temperature kritis atau T_c yaitu temperatur saat terjadinya perubahan fasa, sebagaimana yang ditunjukkan dalam ilustrasi di bawah ini.

Terjadinya perubahan mendadak atau diskontinuitas pada panas jenis suatu bahan hanya berlaku untuk sistem yang memenuhi limit termodinamik (Jumlah partikel mendekati

tak hingga), sedangkan pada sistem kecil (small system) perubahan tersebut akan tampak lebih kontinu .

Gambar 1. Ilustrasi mengenai transisi dari keadaan superkonduksi ke keadaan normal dari suatu bahan superkonduktor. Panas jenis dan Temperatur dalam unit sembarang.

Secara umum dapat dikatakan bahwa sistem mesoskopik sesungguhnya merupakan miniatur dari sistem makroskopik, namun dengan sifat dan perilakunya yang hanya dapat dijelaskan secara fisika kuantum. Contoh dari sistem mesoskopik anatara lain atomic cluster, quantum dots, nanomaterials, dan lain lain. Karena teknologi di masa depan akan sangat bergantung pada ilmu dan teknologi nano, maka studi mengenai sistem mesoskopik baik teori maupun eksperimen menjadi sangat penting untuk dilakukan.

Perubahan fasa pada sistem kecil lebih sulit diamati karena sangat dipengaruhi oleh fluktuasi termal, perubahan struktural dalam sistem, serta sensitifitas sistem terhadap perubahan parameter transisi [1]. Beberapa metoda pengidentifikasian dan pengklasifikasian transisi fasa pada sistem mesoskopik dan kuantum dapat ditemukan pada referensi berikut [2-5].

Pada tulisan ini kami akan mengunakan metoda Invariant Correlational Entropy atau ICE yang dikembangkan oleh Sokolov dan Zelevinsky [5] untuk mengidentifikasi transisi fasa pada sistem mesoskopik. Metoda ini sangat akurat dan sensitif karena mampu mendeteksi transisi fasa dari suatu keadaan (state) dengan cara memberikan gangguan kecil (small variation) terhadap parameter eksternal. Transisi fasa yang kami kerjakan disini dibatasi hanya untuk transisi fasa dari keadaan normal ke keadaan superkonduksi / superfluida pada model sistem mesoskopik. Model yang kami gunakan disini adalah sistem dengan dua keadaan (two-level system).

2METODE

Metode Invariant Correlational Entropy dirancang untuk mampu mendeteksi transisi fasa hingga ke level mekanika kuantum. Untuk menghitung ICE, pertama tama kita perlu mengasumsikan Hamiltonian $H(\beta)$ yang bergantung pada parameter eksternal β (yang dalam hal ini kita pilih kekuatan pemasangan atau *pairing strength*) [6]. Untuk sembarang basis $|n\rangle$ keadaan eigen dari $H(\beta)$ dapat di dekomposisikan menjadi:

$$\left|\alpha(\beta)\right\rangle = \sum_{n} C_{n}^{\alpha}(\beta) \left|n\right\rangle \tag{1}$$

ICE untuk keadaan eigen individual β dapat diperoleh dengan cara mereratakan matrik kerapatan dalam rentang interval *pairing strength* antara β hingga $\beta+\delta$. δ di sini adalah perubahan atau gangguan kecil yang diberikan kepada sistem.

Dari sini kita dapat mendefinisikan ICE sebagai :

$$I^{\alpha}(\beta) = -Tr(\overline{\rho^{\alpha}} \ln \overline{\rho^{\alpha}})$$
 (2)

Sedangkan matrik kerapatan sendiri didefinisikan sebagai :

$$\overline{\rho_{nn'}^{\alpha}}(\beta) = \overline{\langle n | \alpha \rangle \langle \alpha | n' \rangle}$$
(3)

dan merupakan kerapatan keadaan dari state α di dalam basis |n> yang direratakan dalam rentang pairing strength yang sangat sempit yaitu antara β hingga $\beta+\delta$. Hamiltonian yang

digunakan dalam kasus ini diambil dari model pemasangan eksak atau (exact pairing model) dan memiliki dua suku yaitu suku partikel tunggal dan suku interaksi pasangan :

$$H = 2\sum_{i>0} \varepsilon_i n_i - \sum_{i,j>0} G_{ij} p_i^{\dagger} p_j$$
(4)

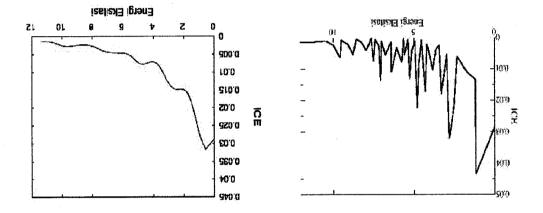
 ϵ adalah energi partikel tunggal, n merupakan jumlah total partikel, dan G berhubungan dengan kekuatan pemasangan atau pairing strength. Operator p^+ dan p^- merupakan creation and annihillation operator of pairing, yang bertanggung jawab atas penciptaan dan pemusnahan pasangan. Dengan menggunakan aljabar spin (spin algebra) kita dapat menyelesaikan persamaan ini secara eksak dan memperoleh spektrum energi lengkap dari sistem ini. Data spektrum energi tersebut selanjutnya diolah menggunakan fisika statistik untuk menghasilkan besaran termodinamika yang diinginkan. Penjelasan lengkap mengenai metoda ini dapat dibaca pada Ref [7].

3 HASIL DAN PEMBAHASAN

Pada Gambar 2 ditampilkan perbandingan antara ICE yang diperoleh dari perhitungan langsung dengan hasil penghalusan Bezier. Tampak bahwa hasil perhitungan langsung telah mampu mengidentifikasi transisi fasa pada beberapa tingkat energi eksitasi. Hanya saja kurva yang dihasilkan mengandung terlalu banyak *noise* dan sulit bagi kita untuk menentukan posisi-posisi energi yang tepat saat terjadinya perubahan fasa.

Untuk memperoleh kurva ICE yang baik perlu dilakukan proses penghalusan atau *smoothing* terhadap hasil perhitungan. Proses penghalusan kurva yang digunakan adalah metoda Bezier yang tersedia dan siap digunakan dalam program *gnuplot*.

Metoda Bezier pertama kali diperkenalkan oleh Pierre Bezier di tahun 1962 [8]. Metoda ini mulanya digunakan untuk mempermudah desain dan perancangan bentuk mobil. Metoda ini kemudian diperluas penerapannya untuk membantu menyederhanakan berbagai macam masalah mulai dari program animasi kartun hingga perhitungan ilmiah.

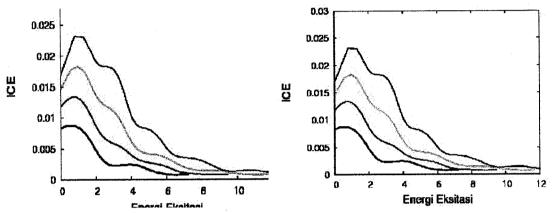

Untuk sembarang derajat n, fungsi Bezier B(t), dan titik awal P_0 , P_1 , hingga P_n proses penghalusan Bezier menggunakan persamaan berikut :

(c)
$$\int_{1}^{1} i^{1-n} (i-1) \binom{n}{i} \sum_{0=i}^{n} = (i) A$$

di mana $\binom{n}{i}$ adalah koefisien binomial.

Kurva ICE hasil penghalusan Bezier (Gambar 2. panel sebelah kanan) memudahkan kita untuk memprediksi posisi-posisi energi saat terjadi perubahan fasa. Lima puncak atau bumps yang teramati pada plot tersebut menunjukkan posisi-posisi energi saat terjadinya pemecahan pasangan pair breaking yang mendorong terjadinya transisi fasa dari keadaan superkonduksi / superfluida (fully poired system) ke keadaan normal (no poired system).

Untuk semua gambar dan plot dalam tulisan ini kami menggunakan unit sembarang (orbitrory unit) untuk ICE dan panas jenis, sedangkan untuk energi eksitasi dinyatakan dalam



Gambar 2Perbandingan antara ICE hasil perhitungan langsung (panel sebelah kiri) dengan ICE hasil penghalusan menggunakan metoda Bezier dari program gnuplot (panel sebelah kanan). Simulasi perhitungan dibuat untuk sistem dengan jumlah partikel N=12 dan kekuatan pemasangan atau poiring strength $\beta=0.50$

Pada Gambar.3 kami tampilkan perbandingan langsung antara Transisi fasa ditinjau dari kurva kapasitas jenis dan *Invariant Correlational Entroy*. Ditinjau dari kurva panas jenis terlihat bahwa transisi fasa hanya mampu menampilkan transisi fasa tunggal dari keadaan

unit energi pemisahan level (level spacingenergy).

superkonduksi ke keadaan normal. Sedangkan dilihat dari kurva ICE, kita mampu memprediksi kapan terjadinya transisi fasa dari setiap pasangan. Posisi-posisi energi saat terjadinya pemecahan pasangan *pair breaking* terlihat jelas pada kurva ICE. Untuk Gambar.3, perhitungan dilakukan untuk variasi jumlah partikel 6,8,10,dan 12, serta *pairing strength* $\beta=1.00$

Gambar 3 Panel kiri menggambarkan transisi fasa dilihat dari kurva panas jenis. Sedangkan panel kanan menunjukkan transisi fasa ditinjau dari *Invariant Correlational Entropy. Pairing strength* ynag digunakan adalah β =1.00.

Pengaruh jumlah partikel juga ditampilkan pada ke dua kurva tersebut. Secara teoritis, apabila jumlah partikel semakin banyak, maka transisi fasa yang terjadi akan semakin mendekati karakter sistem makroskopik yaitu kurva yang tajam dan diskontinu. Terlihat jelas pada Gambar.3, bahwa semakin banyak jumlah partikel maka akan semakin tinggi dan tajam pula bentuk kurva panas jenis maupun ICE-nya

4 KESIMPULAN DAN PROSPEK

Metoda Invariant Correlational Entropy mampu mengidentifikasi perubahan struktural yang terjadi ketika terjadi variasi perubahan parameter kontrol, yang dalam hal ini adalah kekuatan pemasangan atau pairing strength. Perubahan struktural tersebut berhubungan langsung dengan transisi fasa dalam level mekanika kuantum. Kemampuan mengendus perubahan keadaan dalam level mekanika kuantum ini menjadikan ICE sebagai

suatu perkakas atau tool yang sangat baik untuk mendeteksi transisi fasa pada sistem mesoskopik, dimana jumlah partikel yang tersedia jauh di bawah limit termodinamika.

Di masa depan penguasaan ilmu dan teknologi nano akan menjadi sangat penting dan bernilai strategis, untuk itu studi dan pengaplikasian metoda ICE untuk sistem mesoskopik lainnya seperti quantum dots, atomic clusters, ultra small metallic superconductor dan nano materials lainnya perlu untuk dilakukan.

Ucapan Terima kasih

Ucapan terima kasih terutama ditujukan kepada A. Volya dan V. Zelevinsky atas diskusi dan arahannya yang sangat berguna dalam penelitian ini. Ucapan terima kasih juga ditujukan kepada Departemen Fisika IPB terutama Bagian Fisika Teori, yang telah mendukung penelitian ini.

DAFTAR PUSTAKA

- [1] A. Volya, V. Zelevinsky, Physics Letters B 574 (2003) 27-34.
- [2] O. Mulken, H. Stamerjohanns, P. Borrmann, Phys. Rev E 64 (2001) 047105.
- [3] P. Cejnar, V. Zelevinsky, V.V. Sokolov, Phys.Rev E 63 (2001) 036127.
- [4] P. Borrmann, J. Harting, Phys.Rev. Lett. 86 (2001) 3120.
- [5] V.V. Sokolov, B.A. Brown, V. Zelevinsky, Phys.Rev E 58 (1998) 56.
- [6] T. Sumaryada, Pairing Correlations and Phase Transitions in Mesoscopic Systems,
- Ph.D thesis, Florida State University, 2007.
- [8] A. Volya, B. Brown, V. Zelevinsky, Phys.Lett B 509 (2001) 37
- [9] Wikipedia, Bezier Curve, http://en.wikipedia.org/wiki/Béziier_curve