EVALUASI DAYA HASIL SEMBILAN HIBRIDA CABAI IPB (Capsicum annuum L.) DI SUBANG, JAWA BARAT

Yield Evaluation of Nine Chili Hybrid (Capsicum annuum L.) on Subang, West Java

Sinta Fatmawati¹, Muhamad Syukur², Sriani Sujiprihati²

¹Mahasiswa Departemen Agronomi dan Hortikultur, Fakultas Pertanian, IPB ² Staf Pengajar Departemen Agronomi dan Hortikultura, Fakulatas Pertanian, IPB

Abstract

This study was aimed to evaluate of nine chili genotypes were created by the Breeder of Agronomi and Horticulture, IPB. The result of this study was to select the better genotype than five comparator varieties. This study was held from March until August 2008, on Subang, West Java. This study was arrange in Randomized Complete Block Design with one factor that was genotypes and comparator varieties than three replicants. The result of this study show a marked difference between nine genotypes chili hibryd and five comparator varieties, except to width leaf. Hibryd of IPB CH3, IPB CH25, IPB CH28 had yield and early ripening more than comparator varieties.

Keywords: Capsicum Annuum L., Chili Hibryd, Yield

PENDAHULUAN

Latar Belakang

Permintaan cabai semakin meningkat seiring dengan pertumbuhan penduduk dan perindustrian berbahan baku cabai (Prajnanta, 1999). Berdasarkan data BPS dan Dirjen Bina Produksi Hortikultura 2008, produksi cabai di Indonesia tahun 2007 adalah 641 558 ton, dengan luasan lahan 103 082 ha dan produktivitas 6.22 ton/ha. Menurut Suwandi (2006) angka tersebut masih sangat rendah jika dibandingkan dengan potensi produksinya yang mencapai 20 ton/ha.

Untuk memenuhi permintaan yang semakin meningkat, berbagai usaha dalam meningkatkan produktivitas cabai sangat perlu dilakukan. Benih bermutu dari varietas unggul merupakan salah satu faktor yang mempengaruhi keberhasilan produksi di bidang pertanian, tidak terkecuali cabai. Salah satu alternatif untuk meningkatkan produktivitas cabai adalah dengan perakitan varietas unggul, diantaranya perakitan varietas hibrida.

Produktivitas varietas hibrida lebih tinggi dibandingkan dengan varietas open polinated (OP). Peningkatan hasil hibrida cabai dapat mencapai 61% lebih tinggi dari tetuanya (Kalloo, 1986). Program pembentukan hibrida cabai telah dilakukan sejak tahun 2003 oleh Bagian Genetika dan Pemuliaan Tanaman IPB. Hibrida cabai yang akan dilepas harus menunjukkan keunggulan dibandingkan varietas yang telah ada. Uji daya hasil perlu dilakukan untuk mengetahui sifat-sifat unggul hibrida tersebut dan dilanjutkan dengan uji multilokasi sebagai syarat pelepasan varietas (Dirjen Bina Produksi Hortikultura, 2008).

Tujuan

Penelitian ini bertujuan untuk mengetahui daya hasil sembilan hibrida cabai IPB (*Capsicum annuum* L.) hasil perakitan Bagian Genetika dan Pemuliaan Tanaman IPB dengan lima varietas pembanding.

Hipotesis

Hipotesis penelitian ini adalah terdapat satu atau lebih hibrida cabai IPB yang mempunyai daya hasil yang lebih tinggi daripada varietas pembanding.

BAHAN DAN METODE

Waktu dan Tempat

Percobaan dilaksanakan pada bulan Maret sampai Agustus 2008 di Desa Sindangsari, Kabupaten Subang, Jawa Barat. Lokasi terdapat pada ketinggian tempat 47 meter di atas permukaan laut (m dpl).

Bahan dan Alat

Bahan tanaman yang digunakan terdiri atas sembilan hibrida cabai IPB (*Capsicum annuun* L.) yaitu IPB CH1, IPB CH2, IPB CH3, IPB CH5, IPB CH19, IPB CH25, IPB CH28, IPB CH50, dan IPB CH51, serta lima varietas pembanding yaitu Adipati, Biola, Gada, Hot Beauty dan Imperial. Bahan lainnya yaitu media tanam, pupuk mutiara 15:15:15 (10 g/l), pupuk kandang (20 ton/ha), Urea (200 kg/ha), KCl (150 kg/ha), dan SP36 (150 kg/ha) dan pestisida. Alat yang digunakan adalah tray, gembor, ajir, cangkul, kored, meteran, timbangan analitik, timbangan kasar, sprayer, tali rafia, plastik, label, dan jangka sorong.

Metode Penelitian

Percobaan dilakukan dengan menggunakan Rancangan Kelompok Lengkap Teracak (RKLT) faktor tunggal, yaitu sembilan genotipe hibrida cabai IPB dan lima varietas hibrida pembanding yang diulang tiga kali. Setiap satuan percobaan terdiri dari 20 tanaman. Model matemetika yang digunakan adalah:

$$Yij = \mu + Vi + Kj + Gij$$

Keterangan:

Yij : Nilai respon yang diberikan oleh genotipe ke-i

dan kelompok ke-j

 μ : Nilai rata-rata

Vi : Pengaruh genotipe ke-i (i : 1, 2, 3, ...14)

Kj : Pengaruh kelompok ke-j (j : 1, 2, 3)

Gij : Pengaruh galat percobaan dari genotipe ke-i dan kelompok ke-j

Jika nilai F-hitung berbeda nyata maka dilakukan uji lanjut dengan Uji Dunnett pada taraf 5%.

Pelaksanaan Penelitian

Penyemaian dilakukan pada tray semai dengan media semai steril selama empat minggu atau setelah bibit mempunyai empat sampai lima helai daun.

Pengolahan lahan dilakukan dua minggu sebelum tanam dengan penggemburan tanah dan pemberian pupuk

kandang. Lahan dibuat bedengan-bedengan dengan panjang 5 m x 1 m x 0.3 m. Pupuk dasar yang digunakan adalah Urea, SP-36 dan KCl, kemudian bedengan ditutup dengan mulsa plastik hitam perak (MPHP), dilanjutkan dengan pembuatan lubang tanam dengan jarak tanam 0.5 m x 0.5 m.

Penanaman dilakukan setelah bibit mempunyai 4-5 daun. Penyulaman dilakukan pada tanaman yang mati dan pengajiran dilakukan setelah satu MST.

Pemeliharaan tanaman meliputi penyiraman, pewiwilan, penyiangan, pemupukan, dan pengendalian hama penyakit.

Pemanenan dilakukan pada buah yang matang 75% sampai matang penuh. Pemanenan dilakukan satu kali seminggu selama delapan minggu.

Peubah Kuantitatif yang Diamati:

- 1. Umur berbunga (Hari Setelah Tanam (HST)) : jumlah hari setelah transplating sampai 50% tanaman anthesis.
- 2. Umur panen (HST) : jumlah hari setelah transplating sampai 50% tanaman berbuah masak.
- 3. Tinggi tanaman (cm) : diukur dari permukaan tanah sampai pucuk, di ukur setelah panen pertama.
- 4. Tinggi dikotomus (cm) : diukur dari permukaan tanah sampai percabangan utama setelah panen pertama.
- 5. Lebar kanopi (cm) : diukur pada kanopi terlebar pada saat fase generatif (20 MST).
- 6. Lebar daun (cm): diukur dari 20 daun
- 7. Bobot per buah (g) : rata-rata bobot buah dari 10 buah segar dari panen ke dua.
- 8. Panjang buah (cm) : diukur dari 10 buah segar dari panen ke dua.
- 9. Diameter buah (cm) : rata-rata dari 10 buah segar dari panen ke dua.
- 10. Tebal kulit buah (cm) : rata-rata dari 10 buah segar dari panen ke dua.
- 11. Bobot buah per tanaman (g) : jumlah keseluruhan bobot buah yang dipanen dari 10 tanaman contoh pada panen ke-1 sampai panen ke-8.
- 12. Bobot buah layak pasar (g/tanaman) : hasil pengurangan bobot buah pertanaman dengan bobot buah tidak layak pasar.
- 13. Produktivitas (ton/ha):

Luas Efektif per Tanaman x 80% Jarak Tanam x Bobot Buah per Tanaman

Hasilnya dikonversi ke luasan ha.

Peubah Kualitatif yang Diamati:

Habitus tanaman, bentuk daun, tepi daun, ujung daun, warna daun, warna batang, warna kelopak bunga, warna tangkai bunga, warna mahkota bunga, jumlah helai mahkota, warna anter, warna kepala putik, bentuk buah, permukaan kulit buah, warna buah muda, warna buah masak.

HASIL DAN PEMBAHASAN

Kondisi Umum

Percobaan dilakukan pada bulan Maret sampai Agustus 2008 di Subang, Jawa Barat. Rata-rata curah hujan pada saat percobaan adalah 42.28 mm/bln dengan 58 hari hujan.

Penanaman dilakukan pada tanggal 13 April 2008. Hama yang menyerang tanaman yaitu belalang, thrips (*Thrips* sp.), kutu daun (*Myzus persicae*), lalat buah (*Bactocera Dorsalis*), ulat buah (*Helicoperpa armigera*), dan ulat daun (*Spodoptera* Sp.). Penyakit yang menyerang adalah busuk lunak, layu bakteri, dan antraknosa. Secara

umum hama dan penyakit yang mengakibatkan penurunan produksi adalah hama lalat buah, ulat buah, thrips dan penyakit layu bakteri. Lalat buah, ulat buah dan thrips menyerang semua genotipe kecuali Adipati menujukkan ketahanan yang lebih baik terhadap serangan thrips. Penyakit layu bakteri banyak menyerang IPB CH5, Biola dan Gada.

Analisis Ragam Peubah yang Diamati

Hasil analisis data (Tabel 1) menunjukkan bahwa semua peubah berbeda nyata kecuali pada peubah lebar daun (tidak berbeda nyata). Koefisien keragaman berkisar anatara 4.29-20.79%.

Tabel 1. Rekapitulasi F-hitung, Peluang, dan Koefisien Keragaman

No.	Peubah	F-hitung	Peluang	KK
				(%)
1.	Umur Berbunga	11.50**	0.0001	4.28
2.	Umur Panen	4.83**	0.0003	8.01
3.	Tinggi Tanaman	2.38*	0.0289	9.56
4.	Tinggi Dikotomus	15.30**	0.0001	4.69
5.	Lebar Kanopi	2.73*	0.0143	9.41
6.	Lebar Daun	1.82^{tn}	0.0934	11.19
7.	Bobot per Buah	16.23**	0.0001	10.70
8.	Panjang Buah	11.22**	0.0001	5.37
9.	Diameter Buah	13.93**	0.0001	5.12
10.	Tebal Kulit Buah	6.72**	0.0001	9.45
11.	Bobot Buah per	3.03**	0.0078	20.79
	Tanaman			
12.	Bobot Buah Layak	2.80*	0.0123	25.35
	Pasar			
13.	Produktivitas	3.03**	0.0078	20.79

Keterangan: * berbeda nyata pada taraf 5%, ** berbeda nyata pada taraf 1%, dan ^{tn} tidak berbeda nyata.

Umur berbunga dan Umur Panen

Tabel 2. Nilai Rataan Umur Berbunga dan Umur Panen

Canatina	Umur Berbunga	Umur Panen
Genotipe	(HST)	(HST)
IPB CH1	24.67 ^d	60.67 ^{bd}
IPB CH2	25.00^{d}	69.67 ^d
IPB CH3	22.33^{abd}	64.00^{bd}
IPB CH5	24.00^{d}	61.33 ^{bd}
IPB CH19	24.00^{d}	65.00^{bd}
IPB CH25	30.67 ^{abce}	73.67
IPB CH28	27.00^{e}	76.33
IPB CH50	26.00	76.00
IPB CH51	24.33 ^d	71.33
Adipati	25.33	71.33
Biola	26.67	82.33
Gada	24.67	68.33
Hot Beauty	28.00	81.33
Imperial	23.33	70.67

Keterangan: Angka yang diikuti dengan huruf a, b, c, d. dan e, berturutturut berbeda nyata dengan Adipati, Biola, Gada, Hot Beauty, dan Imperial berdasarkan uji Dunnett taraf 5%.

Hibrida IPB CH3 memiliki umur berbunga lebih cepat dibanding Adipati, Biola dan Hot Beauty, sedangkan IPB CH25 mempunyai umur berbunga yang lebih lambat dari semua pembanding kecuali Hot Beauty.

IPB CH1, IPB CH3, IPB CH5 dan IPB CH19 mempunyai umur panen lebih cepat dibandingkan dengan Biola dan Hot Beauty (Tabel 2).

Tinggi Tanaman, Tinggi Dikotomus, dan Lebar Kanopi

Tanaman IPB CH3, IPB CH5, IPB CH28 dan IPB CH51 lebih pendek dibanding Biola, sedangkan hibrida lainnya tidak berbeda nyata dengan semua pembanding (Tabel 3).

Hampir semua hibrida yang dievaluasi memiiki dikotomus lebih tinggi dibandingkan vaietas pembandig, akan tetapi tidak pada IPB CH3 (22.76), IPB CH19 (24.38), IPB CH50 (24.31) dan IPB CH51 (23.30) (Tabel 3).

Sementara itu pada peubah lebar kanopi, semua hibrida IPB tidak berbeda nyata dengan semua pembanding kecuali IPB CH1, IPB CH3, IPB CH5 IPB CH28, IPB CH50 dan IPB CH51 yang memiliki lebar kanopi lebih sempit dibandingkan dengan Biola.

Tabel 3. Nilai Rataan Tinggi Tanaman, Tinggi Dikotomus, dan Lebar Kanopi

Genotipe	Tinggi	Tinggi	Lebar
	Tanaman	Dikotomus	Kanopi
	(cm)	(cm)	(cm)
IPB CH1	92.89	25.17 ^b	75.86 ^b
IPB CH2	88.88	29.83 ^{cde}	78.21
IPB CH3	84.10 ^b	22.76^{abc}	76.05 ^b
IPB CH5	76.04 ^b	28.01 ^{bde}	70.11 ^b
IPB CH19	93.78	24.38^{ab}	81.04
IPB CH25	87.66	29.99 ^{cde}	86.47
IPB CH28	84.78 ^b	26.05 ^b	74.37 ^b
IPB CH50	89.97	24.31 ^{ab}	69.62 ^b
IPB CH51	84.41 ^b	23.30^{ab}	69.32 ^b
Adipati	93.88	28.03	75.03
Biola	107.01	32.09	94.78
Gada	79.95	25.90	76.05
Hot Beauty	87.36	24.51	83.41
Imperial	82.76	24.90	78.41

Keterangan: Angka yang diikuti dengan huruf a, b, c, d, dan e, berturutturut berbeda nyata dengan Adipati, Biola, Gada, Hot Beauty, dan Imperial berdasarkan uji Dunnett taraf 5%.

Bobot per Buah, Panjang buah, Diameter Buah, dan Tebal Kulit Buah

Tabel 4. Nilai Rataan Bobot per buah, Panjang Buah, Diameter Buah, dan Tebal Kulit Buah

Genotipe	Bobot	Panjang	Diameter	Tebal
	Buah	Buah	Buah	Kulit
	(g)	(cm)	(cm)	Buah (cm)
IPB CH1	10.53	18.06	1.50^{bde}	0.18
IPB CH2	10.63	17.92 ^c	1.60 ^{bcde}	0.18
IPB CH3	14.30 ^{bde}	20.65^{bd}	1.75 ^{abcde}	0.23^{bcde}
IPB CH5	5.83 abcde	14.46 ^{abce}	1.18 ^{ac}	0.14^{a}
IPB CH19	8.77 ^{ac}	16.86 ^c	1.43	0.15^{a}
IPB CH25	11.27	18.53	1.57 ^{bcde}	0.19
IPB CH28	13.37 ^{bde}	19.79 ^d	1.63 ^{bcde}	0.19
IPB CH50	12.03 ^{de}	20.47^{bd}	1.50^{bde}	0.20
IPB CH51	16.50 ^{abcde}	21.76 ^{abde}	1.56 ^{bcde}	0.22 ^{bcde}
Adipati	13.33	18.61	1.52	0.21
Biola	9.23	17.68	1.27	0.17
Gada	12.40	20.57	1.36	0.18
Hot				
Beauty	8.77	19.10	1.32	0.16
Imperial	8.87	16.70	1.28	0.16

Keterangan: Angka yang diikuti dengan huruf a, b, c, d, dan e, berturutturut berbeda nyata dengan Adipati, Biola, Gada, Hot Beauty, dan Imperial berdasarkan uji Dunnett taraf 5%. Hibrida IPB CH51 (16.50 g) memiliki bobot buah lebih besar dibandingkan dengan semua pembanding. Sedangkan IPB CH5 memiliki bobot yang lebih kecil bibandingkan dengan semua pembanding yaitu dengan bobot 5.83 g.

Seperti halnya bobot buah, IPB CH51 berbuah lebih panjang dibandingkan dengan semua pembanding kecuali Gada, dan IPB CH5 memiliki buah lebih pendek dari semua pembanding kecuali Hot Beauty. Adapun hibrida yang tidak berbeda nyata dengan semua pembanding adalah IPB CH1 dan IPB CH25.

Tabel 4 menunjukkan diameter IPB CH3 (1.75 cm) berbeda nyata lebih besar dibandingkan dengan semua pembanding. Sedangkan hibrida yang tidak berbeda nyata dengan semua pembanding adalah IPB CH19.

IPB CH5 dan IPB CH19 dengan tebal kulit yang lebih tipis. IPB CH3 dan IPB CH51 memiliki kulit buah yang lebih tebal dibandingkan Biola, Gada, Hot Beauty, dan Imperial (Tabel 4).

Bobot Buah Layak Pasar, Bobot Buah per Tanaman, dan Produktivitas

Seluruh hibrida tidak berbeda nyata dengan seluruh pembanding pada peubah bobot buah layak pasar kecuali IPB CH5. Hibrida IPB CH5 memiliki bobot layak pasar yang lebih rendah dibandingkan dengan Biola dengan bobot 260.00 g (Tabel 5).

Pada peubah bobot buah per tanaman dan produktivitas, IPB CH3 (827.70 g) memiliki bobot lebih besar dibandingkan dengan semua pembanding, akan tetapi hanya berbeda nyata dengan Adipati, Gada dan Imperial dan tidak berbeda nyata dengan Biola dan Hot Beauty. Untuk hibrida cabai yang lainya tidak menujukan produktivitas yang berbeda nyata dengan semua pembanding (Tabel 5).

Hal yang sama juga terjadi pada penelitian Dirgantara (2007) di bogor yaitu 289.83 g/tanaman, Kaharjanti (2008) di Boyolali yaitu 476.17 g/tanaman dan Anggoro (2008) di Rembang yaitu 1 113 g/tanaman.

Tabel 5. Nilai Rataan Bobot Buah Layak Pasar, Bobot Buah per Tanaman, dan Produktivitas

Genotipe	Bobot Buah Layak	Bobot Buah per Tanaman	Produktivitas (ton/ha)
	Pasar (g)	(g)	
IPB CH1	404.33	592.10	15.16
IPB CH2	372.83	488.00	12.49
IPB CH3	674.87	827.70 ^{ace}	21.19 ^{ace}
IPB CH5	260.00^{b}	348.07	8.91
IPB CH19	452.03	610.43	15.63
IPB CH25	525.51	644.61	16.50
IPB CH28	427.93	673.57	17.24
IPB CH50	375.33	497.53	12.74
IPB CH51	331.87	460.90	11.80
Adipati	446.47	448.17	11.47
Biola	551.97	629.37	16.11
Gada	456.20	533.33	13.65
Hot Beauty	460.67	571.23	14.62
Imperial	469.40	525.83	13.46

Keterangan: Angka yang diikuti dengan huruf a, b, c, d, dan e, berturutturut berbeda nyata dengan Adipati, Biola, Gada, Hot Beauty, dan Imperial berdasarkan uji Dunnett taraf 5%.

Tabel 6. Peubah Kualitatif pada Batang, Habitus Tanaman dan Daun Cabai

Genotipe	Batang	Habitus Tanaman		Γ	Daun	
			Warna	Bentuk	Tepi	Ujung
IPB CH1	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH2	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH3	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH5	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH19	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH25	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH28	Hijau bergaris ungu	Menyamping	Hijau tua	Lanset	Rata	Meruncing
IPB CH50	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
IPB CH51	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
Adipati	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
Biola	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
Gada	Hijau bergaris ungu	Menyamping	Hijau tua	Lanset	Rata	Meruncing
Hot Beauty	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing
Imperial	Hijau bergaris ungu	Menyamping	Hijau	Lanset	Rata	Meruncing

Tabel 7. Pengamatan Peubah Kualitatif pada Bunga Cabai

Genotipe	Warna	Warna	Warna	Jumlah Helai	Warna Anther	Warna Kepala Putik
	Kelopak	Tangkai	Mahkota	Mahkota		
IPB CH1	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
IPB CH2	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
IPB CH3	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
IPB CH5	Hijau	Hijau	Putih	6	Ungu	Kekuningan
IPB CH19	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
IPB CH25	Hijau	Hijau	Putih	6 & 7	Ungu	Kekuningan
IPB CH28	Hijau	Hijau	Putih	5, 6 & 7	Ungu	Kekuningan
IPB CH50	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
IPB CH51	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
Adipati	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
Biola	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
Gada	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
Hot Beauty	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan
Imperial	Hijau	Hijau	Putih	5 & 6	Ungu	Kekuningan

Tabel 8. Pengamatan Peubah Kualitataif pada Buah Cabai

Genotipe	Permukaan Buah	Warna Buah Muda	Warna Buah Tua	Bentuk Buah
IPB CH1	Semi keriting	Hijau	Merah	Memanjang
IPB CH2	Semi keriting	Hijau	Merah	Memanjang
IPB CH3	Semi keriting	Hijau	Merah	Memanjang
IPB CH5	Semi keriting	Hijau	Merah	Memanjang
IPB CH19	Semi keriting	Hijau	Merah	Memanjang
IPB CH25	Semi keriting	Hijau	Merah	Memanjang
IPB CH28	Semi keriting	Hijau Tua	Merah	Memanjang
IPB CH50	Semi keriting	Hijau	Merah	Memanjang
IPB CH51	Semi keriting	Hijau	Merah	Memanjang
Adipati	Licin	Hijau	Merah	Memanjang
Biola	Licin	Hijau	Merah	Memanjang
Gada	Semi keriting	Hijau tua	Merah	Memanjang
Hot Beauty	Semi keriting	Hijau	Merah	Memanjang
Imperial	Semi keriting	Hijau	Merah	Memanjang

Peubah Kualitatif Hibrida Cabai

Secara umum cabai yang ditanam di Indonesia memiliki habitus tanaman menyamping. Hal yang sama juga ditunjukkan oleh semua hibrida yang dievaluasi. Semua hibrida mempunyai kesamaan baik dalam hal habitus tanaman maupun warna batang yaitu habitus tanaman menyamping dengan batang berwarna hijau bergaris ungu. Seperti halnya habitus tanaman dan warna batang, pada daun juga terdapat kesamaan yaitu berbentuk lanset, tepi daun yang rata dan ujung daun yang meruncing. Pada warna daun IPB CH28 dan Gada memiliki daun yang berwarna lebih gelap dibandingkan dengan hibrida lainya (Tabel 6).

Beberapa peubah kualitatif lainnya yang menunjukkan kesamaan antar hibrida adalah warna kelopak bunga, warna tangkai bunga, warna mahkota bunga, warna anther dan warna kepala putik. Perbedaan peubah bunga hanya terdapat pada jumlah helai mahkota yaitu IPB H28 memiliki lima sampai tujuh helai, sedangkan hibrida yang lainya memilki lima dan enam helai (Tabel 7).

Buah cabai yang menunjukkan persamaan peubah adalah warna merah untuk buah tua dengan bentuk buah yang memanjang. Perbedaan terlihat pada permukaan buah dan warna buah muda. Adipati dan Biola memiliki permukaan licin sedangkan hibrida yang lainnya memiliki permukaan semi keriting. Buah muda IPB CH28 dan Gada berwarna hijau tua sedangkan hibrida lainya memiliki warna hijau (Tabel 8).

KESIMPULAN DAN SARAN

Kesimpulan

Terdapat perbedaan yang nyata antara hibrida yang dievaluasi dengan varietas pembanding kecuali pada peubah lebar daun. Peubah kualitatif semua hibrida tidak menunjukkan perbedaan kecuali pada peubah warna daun (hijau, hijau tua), warna buah muda (hijau, hijau tua), permukaan buah (semi keriting, licin), dan jumlah helai mahkota (5, 6 dan 7 helai).

Pada peubah umur panen, hibrida IPB CH3, IPB CH5, dan IPB CH 19 memiliki umur panen yang lebih cepat dibandingkan Biola dan Hot Beauty. Berdasarkan bobot buah per tanaman hibrida cabai IPB CH3, memiliki hasil yang lebih tinggi dari varietas pembanding, yaitu 827.70 g.

Saran

Hibrida IPB CH3 dapat dilepas sebagai varietas hibrida cabai dataran rendah.

DAFTAR PUSTAKA

- Dirjen Bina Produksi Hortikultura. 2006. Pusat Data dan Informasi Pertanian Departemen Pertanian 2006. http://www.litbang.go.id.
- Direktorat Jendral Hortikultura. 2008. Luas Panen, Produksi, Rata-rata Hasil Tanaman Sayuran Indonesia. http://www.hortikultura.deptan.go.id. [12 Sep 08].
- ______. 2008. Upaya Perbaikan Industri Benih Hortikultura untuk Mengurangi Impor Benih serta Pengembangan Sentra Produksi Benih Hortikultura.
 - http://www.hortikultura.deptan.go.id/eksporimpor%20benih. [16 Sep 08].
- Gomez, K. A. dan A. A. Gomez. 1995. Prosedur Statistik untuk Penelitian Pertanian. (Terjemahan). E.

- Sjamsudin dan J. S. Baharsjah. Penerbit UI press. 698 hal.
- Kalloo. 1986. Vegetable Breeding Volume 1. CRC press. Boca Raton, Florida. 239 p.
- Prajnanta, F. 1999. Kiat Sukses Bertanam Cabai di Musim hujan. Penebar Swadaya. Jakarta.
- Suwandi, N., Suwarni, dan F.A. Bahar. 2006. Aspek Agronomi Cabai *dalam* A. Santika (*Ed*). Agribisnis Cabai. Penebar Swadaya. Jakarta.