
Towards Ecology and Economy Harmonization of

Tropical Forest Resources

Proceedings of the 6th International Wood Science Symposium
IPI - JSPS Core University Program in the Field of Wood Science

Luc

TOWARDS ECOLOGY AND ECONOMY HARMONIZATION OF TROPICAL FOREST RESOURCES

PROCEEDING OF THE 6TH INTERNATIONAL WOOD SCIENCE SYMPOSIUM LIPI – JSPS CORE UNIVERSITY PROGRAM IN THE FIELD OF WOOD SCIENCE

ORGANIZED BY

RESEARCH AND DEVELOPMENT UNIT FOR BIOMATERIALS INDONESIAN INSTITUTE OF SCIENCES - INDONESIA

RESEARCH INSTITUTE FOR SUSTAINABLE HUMANOSPHERE KYOTO UNIVERSITY

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

AUGUST 29 - 31, 2005 BALI, INDONESIA

EDITED BY

EDITOR

: WAHYU DWIANTO

SUPERVISOR

: EUIS HERMIATI

SUBYAKTO

SULAEMAN YUSUF

FORMATTED TEAM : FAIZATUL FALAH

YUSUP AMIN

FIR DA AULYA SYAMANI

HTRIA

IKA WAHYUNI TITIK KARTIKA TEGUH DARMAWAN

TOWARDS ECOLOGY AND ECONOMY HARMONIZATION OF TROPICAL FOREST RESOURCES

PROCEEDING OF THE 6TH INTERNATIONAL WOOD SCIENCE SYMPOSIUM

AUGUST 29 - 31, 2005, BALI, INDONESIA

LIPI - ISPS CORE UNIVERSITY PROGRAM IN THE FIELD OF WOOD SCIENCE

ORGANIZED BY

RESEARCH AND DEVELOPMENT UNIT FOR BIOMATERIALS INDONESIAN INSTITUTE OF SCIENCES

RESEARCH INSTITUTE FOR SUSTAINABLE HUMANOSPHERE KYOTO UNIVERSITY

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

ISBN 979-99842-0-3

Content

Preface

Keynote Papers

Research and Development on Forestry Sector Hadi Pasaribu	1
Development of Soil Conditioning Agent from Pulp and Paper Waste Liquor Gyosuke Meshitsuka and Dongxiang Wang	2
Introductory Papers	
Wood Material Science	
The Preparation of a High Strength Material from Bamboo Fiber Bundles Misate Norimoto. Akira Matsumoto, Masahiko Sasada, Masafumi Inoue, Takuro Mori. and Shuichi Kawai	7
Bamboo Bending Masafumi Inoue. Misato Norimoto, and Shuichi Kawai	8
Bambio as Space Truss Elements (A Preliminary Research) Gina Bachtian Surjono Surjokusumo, Yusuf Sudo Hadi, and Naresworo Nagraha	9
Effect of Time Period between the Harvesting and Soaking on the Mechanical Properties of Black Bamboo (Gigantochloa atroviolacea) Musrical Main and Andi Detti Yunianti.	12
Characterization of the Mechanical Properties of Plant Fiber Bundles Sasa Safran Munawar, Kenji Umemura, and Shuichi Kawai	13
Physical and Mechanical Properties of Teak Wood (Tectona grandis L.f.) on Various Age Class (I - VIII) Yoyo Suhaya, Atmawi Darwis, and Ihak Sumardi.	14
Physical Properties of Sukun Wood (Artocarphus communis FORST) Ground in Bantul Regency Yogyakarta Harry Feryanto and Sri Nugroho Marsoem.	15
Axial and Radial Variation on Physical and Mechanical Properties of 15 Years Old Acacia Wood (Acacia auriculiformis A. Cunn. ex. Benth.) Grown in Gunungkidul I.B. Maha Satwika and Sri Nugroho Marsoem	16
Reinforced-Matrix Theory - A Basic Concept of Wood Cell Wall Physics and Mechanics Hirovuki Yamamoto	17

Wood Strength Analysis Based on Non Destructive Testing Lina Karlinasari, Surjono Surjokusumo, Yusuf Sudo Hadi, and Naresworo Nugroho(19
Evaluation of the Aging of Wood as Perceived by Japanese Sculptors of Buddhist	
Statues Misao Yokoyama, Ken-ichiro Yano. Yuko Fujiwara, Yoshimasa Kishimoto, Yoshihisa Fujii and Shuichi Kawaii	20
On the Moisture Content of Wood at High Temperatures Teppei Asada and Toshiro Morooka	21
Affecting Factors on Recovery of Shrinkage in Dried Waterlogged Wood Hidio Kawata, Toshinari Kawada and Kazuya Minato	22
Temperature and Steam Pressure Dependency on the Fixation of Compressed Wood by Close System Compression Yusup Amin and Wahyu Dwianto	23
1252p Str. Casa manya Distanto	23
Performance of Pilot-scale Wood Bending Machine Teguh Durmanan, Jayadi, Sudijono, Yusup Amin, Ika Wahyuni, and Wahyu Dwianto	24
Priduction of Laminated Veneer Lumber (LVL) using Phenol Resorcinol Formaldehyde (PRF)	
Bambang Subipanto, Mohamad Gopar, Sadrah Devi, Yoyo Suhaya, and Kuniharu Yoko	25
Construction Durability of School Buildings - Case Study on Elementary School Buildings	
Sulaiman Surjenc Surjokusumo, and Naresworo Nugroho	26)
Comparison between Graveyard and Laboratory Tests on Rubber-Wood Acetylated Flakeboard Attacked by Macrotermes gilvus Subterranean Termite (An Intermediate Results IV)	
Rebesca E. Ibach. Craig M. Clemons, Yusuf Sudo Hadi, and Sulaeman Yasuf	27
Structural Changes of Sugar-Palm Tree Fibers and their Feasibility as a Physical Barrier against Subterranean Termites	20
Musrizal Muin and Astuti Arif	28
Potential of Gamma-Irradiation as a Termite Control Measure Noriaki Katsunata. Kawaguchi Seima. Yuliati Indrayani, Tsuyoshi Yoshimura, Saito Takeshi. and Yuji Imamura	29
Termite Control on the High Rise Building James Rilatupa and Surjono Surjokusumo	(30)
Synergistic Effects of Heartwood Extractives and Preservative Chemicals on Termite Resistance of Woods with Different Natural Durability	
Won-Joung Hwang, S. Nami Kartal, Yuji Imamura, and Katsumi Shinoda	31

Analyze of the Infection of Canker Fungi on Light Red Meranti (<i>Shorea smithiana</i>): A Scanning Electron Microscopic Study Erwin, Won-Joung Hwang, and Yuji Imamura	32
Wood Preferences of Dry-wood Termite Incisitermes minor (Hagen) (Isoptera: Kalotermitidae) to Japanese and U.S. timbers Yuliati Indrayani, Tsuyoshi Yoshimura, and Yuji Imamura	33
Isolation of Microorganism (Yeast) from the Death Termites Body as Biological Control of Termites Attack Ikhsan Guswenrivo. Titik Kartika, Suciatmih, Arif Heru Prianto, Didi Tarmadi, and Sulaeman Yusuf	34
Assessment of Termite Assemblages of Different Forest Types using Standardized Sampling Protocol - Comparison between Disturbed Forest and Undisturbed Forest Yoko Takematsu. Tetsushi Inoue, Yupaporn Sornnuwat, and Charunee Vongkaluang	35
Field Habitat of an Alien Termite Reticulitermes kanmonensis (Isoptera, Rhinotermitidae) in Japan Kohei Kambara and Yoko Takematsu	36
Preparation and Property of Environmentally Friendly Plywood Bonded with Poly (lactic acid: Emulsion as Adhesive Bin Usami, Kyoko Fukui, Masahiro Takatani, and Tadashi Okamoto	37
Particle Board of Fiber from Oil Palm Empty Fruits Bunch and Adhesive from Gambir Anwar Kasim	39
The Effects of Synthesis Conditions on Bond Strength of Natural Rubber Latex - Styrene as Plywood Adhesive Euis Hermizzi. Widya Fatriasari, and Faizatul Falah	40
Color Change of UV Treated PMDI Kenji Umemura, Shuichi Kawai, Hidefumi Yamauchi, Masaaki Shibata, and Takeshi Ito	41
Binder-less Insulation Panel for Building Use Made from Wood Processing Residues and Agricultural Wastes Noboru Sekino	42
Manufacture of Core-Kenaf Particleboard Dede Hermawan	43
Quality of Core-Kenaf Particleboard at Several Paraffin Levels Dede Hermawan	44
Manufacture of Core-Kenaf Particleboard using Bamboo Matting Dede Hermawan	45
Manufacturing Technology of Laminated Particle Lumber using Core-Kenaf Particles	16

Panel Product from Long Fibers of Abaca (Musa textilis Nee) Firda Aulya Syamani, Ismail Budiman, Subyakto, and Bambang Subiyanto	47
Natural Fiber – Polypropylene Composites Myrtha Karina, Holia Onggo, Anung Syampurwadi and Tadashi Okamoto	48
New Method for the Production of Microfibrillated Cellulose A.N. Nakagaito, Lisman Suryanegara, Hiroyuki Yano, and N. Seiki	49
XPS and RAMAN Spectroscopy on Diamond/Graphite Composite from Carbonized	
Wood Toshimitsu Hata, Kengo Ishimaru. P. Bronsveld, M. Fujisawa, Fumio Kurosaki, H. Kikuchi, and Yuji Imamura	50
Effect of Pre-Heating and Flash-Heating on Microstructures of Carbonized Cellulose Fumio Kurosaki. Kengo Ishimaru. Toshimitsu Hata, Junji Sugiyama, and Yuji Imamura	51
Wood Biomass Science	
Bioconversion of Sugarcane Bagasse Into a Feed for Ruminants using White-rot Fungi	
Kanji Okano, Yuko Ilda, Muhammad Samsuri, Euis Hermiati, Tami Idiyanti, Bambang Praserya, and Takashi Watanabe	52
Pre-treatment of Japanese Cedar Wood by White-rot Fungi for the Production of Bioethanol and a Feed for Ruminants	
Takashi Watanabe, Kanji Okano, Yasunori Baba, Kenta Yano, Rudianto Amirta, Syafwina, Toshiaki Tanabe, Takahito Watanabe, and Yoichi Honda	53
Production of Compost from Wood Waste using Wood-Rotting Fungi M. Kuwahara, S. Hatakeyama, M. Oyadomari, and T. Takata	54
Seasonal and Height-Depending Changes of Starch and Free Glucose Contents in Moso Bamboo (Phyllostachys pubescens)	55
Yoko Okahisa, Tsuyoshi Yoshimura and Yuji Imamura	رر
Waste Utilization of Plywood Sandpapering Process Become Ethanol through Ferment Process Ahmad Jauhari	56
The Potential Usage of Mangrove Residues Cicilia M.E. Susanti. Yosias Gandhi. and Anom Indra A	57
Potential Biomass of Gewang (Corypha utan Lamk) for Biocomposites Subyakto, Kurnia Wiji Praseryo, Bambang Subiyanto, and B. Paul Naiola	58
Bio Sulphate Pulping of Gmelina Wood (Gmelina arborea) using White Rot Fungi Phanerochaete chrysosporium as Pre Treatment	
Errick Alberto, Sri Nugroho Marsoem, and Kuswanto	59

Bio Kraft Pulping of Sengon with Phanerocheate chrysosporium Fungi • N. Pujirahayu and Sri Nugroho Marsoem	60
Yield and Physical Properties Variation of Sulphate Pulp from Acacia auriculiformis a. Cunn. Ex. Benth Trunk Base for Different Age and Sulfidity Diah Ratna Susanti and Sri Nugroho Marsoem	61
Antifungal and Antioxidant Activities of Teak (Tectona grandis) Heart Wood Extractives on Propionibacterium acnes. Tohru Mitsunaga. Yumiko Kishimoto, Eriko Hatta, and Hideo Ohashi	62
Wood Bioscience	
Characteristic of Basswood (Ochroma bicolor Rowlee) Planted Indonesia Imam Wahyudi and Istie Sekartining Rahayu	63
Fibre Wall Layer in Stems of 14 and 25 Year-Old Oil Palm (Elaeis guineensis) Jacq. Mohd. Hamami Sahri and Shirley Marylinda Bakansing	65
Reorientation of Xylem Cells in Horizontal and Vertical Bridges after Girdling of Trunks in Acer pycnanthum (Aceraceae) Takao Itoh and Junichiroh Toyoda	66
Toward Understanding the Functional Difference of Short and Long Parenchyma Cells in Bamboo Culms Xin-Qiang He and Takao Itoh	67
Reinvestigation of Preferential Orientation of Cellulose Lattice Planes By Infrared Spectrometry Yoshiki Horikawa, Takao Itoh and Junji Sugiyama	68
Introduction to RISH Wood Diversity Database Junji Sugiyama and Takao Itoh	69
Callus Induction from Various Types of Explants in Sengon (Paraserianthes falcataria (L.) Nielsen) J. Eizawa, Y. Saito, S. Yokota, F. Ishiguri, K. Iizuka, N. Sumiasri, and N. Yoshizawa	70
The Influence of Aril on Germination Rate and the Shoot Formation from Axillary Buds Y. Saito. S. Yokota, J. Eizawa, F. Ishiguri, K. Iizuka, N. Sumiasri, and N. Yoshizawa	71
Control of the Fenton Reaction by Ceriporic Acid B, an Extracellular Metabolite of Ceriporiopsis subvermispora Possible Roles in Selective White Rot Yasunori Ohashi. Noor Rahmawati. Yoshihiko Kan, Takahito Watanabe, Yoichi Honda. and Takashi Watanabe.	72
The Functions of Carthamus tinctorius CoAOMT and AldOMT Tomoyuki Nakatsubo, Laigeng Li, Vincent L. Chiang, Mikio Shimada, and Toshiaki Umezawa	73

First cDNA Cloning of a Lignan O-methyltransferase Catalyzing a Regioselective Methylation of Matairesinol	
Toshiaki Umezawa, Laigeng Li, Norikazu Sakakibara, Tomoyuki Nakatsubo, Shohei Wada, Shiro Suzuki, and Vincent L. Chiang	75
cDNA Cloning of Asparagus officinalis Hinokiresinol Synthase Masaomi Yamamura, Shiro Suzuki, Tomoyuki Nakatsubo, Takefumi Hattori, Mikio Shimada, and Toshiaki Umezawa	76
Characterization of cDNA FPICL1 Encoding Isocitrate Lyase from Wood-rotting Basidiomycete Fomitopsis palustris Shunsuke Sakai. Tatsunori Nishide, Erman Munir, Takefumi Hattori, and Mikio Shimada	77
Fatty Acid Desaturases from Lignin-Degrading Basidiomycetes Takahito Watanabe. Saeko Tsuda. Taro Yoshida, Takeshi Ougi, Hiroshi Nishimura, Yuko Kawasaki. Yoichi Honda. and Takashi Watanabe	78
The Character of Cellulase from Aspergillus niger on Sengon (Paraserianthes falcataria) Sawdust Holocellulose Hydrolysis by NaOH Addition as a Pre Treatment Denny Irawati. Sri Nugroho Marsoem, and J.P. Gentur Sutapa	79
Environmental Science	
Physical Properties of Sawdust as an Artificial Soil Matrix from Primary and Secondary Forests in East Kalimantan Rizki Maharani and Minoru Terazawa	80
Preliminary Study of Forest Characteristics and Carbon Potential of Peat Swamp Forest Ecosystem in Ketapang West Kalimantan Dwi Astiari.	81
The Use of Rhizosphere Bacterial Isolates to Improve the Quality of Tailing in Mandor for Biological Reclamation Effort Wiwik Ekyastuti. Tri Rima Setyawati, and Rafdinal	82
Pioneer Plant as Phytosymbiont and Arbuscular Mycorrhizal Fungi as Mycosymbionts for Phytoremediation of Tailing in Landak West Kalimantan Hanna Artuti Ekamawanti and Dwi Astiani	83
Atmospheric Observations Over the Forest M. Shiotani, T. Nakamura, and J. Furumoto.	84
Strategy to Improvement Wood's Value Added on Plywood Industry with Ecoefficiency Yulia Nurendah. Gumbira Said, Anas Miftah Fauzy, Zahrial Coto, Muhammad Romli, Hartrisari Hardjomidjojo, and Sri Nugroho Marsoem	85
The Total Economic Value of the Gunung Walat Educational Forest and Its Contribution to the Welfare of the Surrounding Community Emi Roslinda	86

Full Papers

Wood Material Science

Mechanical Properties of Solid Bamboo (Dendrocalamus strictus Ness.) Yosias Gandhi	87
Selected Physical and Mechanical Properties at Four Hevea Species Grown in Malaysia Mohd. Hamami Sahri and Wong Kin Lip	93
Characterization of Fifteen Indonesian Wood Species from the Physical, Mechanical and Chemical Aspects Sulaeman Yusuf, Wahyu Dwianto, Sudijono, Yusuke Kawato, Ikuho Iida, and Kazuya Minato	98
Influence of NaOH Pre-treatment on Fixation of Compressed Wood Wahyu Dwianto, Ika Wahyuni. Yusup Amin and Teguh Darmawan	103
Non Destructive Testing on Six Tropical Woods using Ultrasonic Method Lina Karlinasari. Surjono Surjokusumo. Yusuf Sudo Hadi, and Naresworo Nugroho	109
Machining Properties of Sowang Wood (Xanthostemnon novaguinensis Val.) from Doyo Transad Village, Jayapura – Papua Yuyu Rahayu. Muhammad Makrus, and Abdurrahman Wasaraka	117
Shear Resistance of Thick Floor Panels Nailed to Wood Frame Floor Systems Shinjiro Takino. Kohei Komaisu. Yakni Idris, Bambang Subiyanto and Sutadji Yuwasdiki	120
Effect of Testing Methods on the Mechanical Behaviors of Wooden Plate Shear Walls Takuro Mori. Akihisa Kitamori. and Kohei Komatsu	126
Radial Stress in Glulam Frame Corner with Large Finger Joint (LFJ) Kohei Komatsu, Aki Nitta. Yasunobu Noda, and Takuro Mori	132
Beam-Column Joint of Acacia mangium-ilbizia falcataria Glulam with Bolt Fasteners Maryoko Hadi. Bambang Subiyanto. Anita Firmanti, Kohei Komatsu, and Sutadji Yuwasdiki.	138
Quality of Two Veneer Thicknesses Following Microwave Drying Wahyudi	145
The Combination of Solar Energy and Heating Stoves System for Drying Wood Efrida Basri and Karnita Yuniarti	151
Termite Resistance of Nine Indonesian and Compression Wood Didi Tarmadi, Yusup Amin. Arief Heru Prianto, Teguh Darmawan, Sulaeman Yusuf and Wahyu Dwianto	156

Feasibility of Several Particulate Materials as a Physical Barrier against Termites Yoshiyuki Yanase, Yoshihisa Fujii, Shogo Okumura, Tsuyoshi Yoshimura, Yuji Imamura, Hirotoshi Kawaguchi and Toshinobu Okumura	160
Tropical Termite Resistance of Wood-Mineral Composites using the Colloidal Silica Solution System Takeshi Furuno, Takashi Goto, and Sulaeman Yusuf	165
Feasibility the Application of Fusarium sp. as Pathogenic Fungi to Coptotermes sp. Titik Kartika. Suciatmih, Ikhsan Guswenrivo, Didi Tarmadi, Arief Heru Prianto, and Sulaeman Yusuf	173
The Entomopathogenic Fungus from Various Host in Nature: Physiological Characterization and their Pathogenicity to Subterranean Termites Coptotermes sp. Desyanti, Yusuf Sudo Hadi, Sulaeman Yusuf, and Teguh Santoso	178
An Application of the Stable Isotope Analysis to Wood Preservation Tomoe Nakayama, Tsuyoshi Yoshimura, and Yoko Fujikawa	185
The Resistance of Wood Plastic Composites with Ultra-Violet Stabilizer to Dry Wood Termite	
Husnah Latifah. Yusuf Sudo Hadi, Fauzi Febrianto, and Myrtha Karina	189
Durability of Sawdust and Recycled Polypropylene Composite with UV Stabilizer to Weathering Iwan Risnasari. Yusuf Sudo Hadi. Fauzi Febrianto. and Myrtha Karina	194
Energy Gas Production from Wood Biomasses by Termites - A Preliminary Result Seima Kawaguchi. Tsuyoshi Yoshimura. Yuji Imamura, Masahiro Miura, Yoshiyuki Yanase. Yoshihisa Fujii. Shogo Okumura. and Kengo Suzuki	198
A Survey of Marine Borers on Several Coasts of North Java and South Sulawesi Mohammad Muslich and Ginuk Sumarni	204
Combination of Chitosan and Starch as Natural Wood Adhesive Kurnia Wiji Prasetiyo, Subyakto, and Faizatul Falah	211
Quality Changes of Wood Adhesive Made of Natural Rubber Latex-Styrene during	211
Storage Faizatul Falah. Widya Fatriasari, and Euis Hermiati	215
Bond Quality of Indonesian and Malaysian Fast-growing Tree Species Eka Mulya Alamsyah, Masaaki Yamada, and Kinji Taki	220
A Preliminary Research on Performance of Particleboard Made of Albizia retusa BENTH Bonded by Water-Based Polymer Isocyanate (WBPI) Adhesive Erniwati and Muh Yusram Massijaya	228
Determination of the Optimum Adhesive Distribution in Composite Board Production Made of Wood Waste and Corrugated Carton	
Muh. Yusram Massijaya, Yusuf Sudo Hadi, and Danang Ari Raditya	234

	The Effect of Face and Back Layer Types on Composite Board Quality • Suhasman, Muh. Yusram Massijaya, and Yusuf Sudo Hadi	241
	Properties of Composites of Wood Fluor and Natural Rubber (CIS-1,4-Isoprene Rubber)	
	Fauzi Febrianto, M. Yoshioka, M. Mihara, and N. Shiraishi	248
	Study on Natural Fiber Reinforced Polypropylene Ismariny	254
	Mechanical Properties of Natural Fibre-Reinforced Epoxy Composites Agus Hadi Santosa Wargadipura	259
	Environmentally Degradable Polymer (EDP) Based on Tapioca-Starch and Polyolefins Lies A. Wisojodharmo	268
	Wood Biomass Science	
	Cellulose-Hemicellulose Present in Hydrocolloids from Salvia spp. Rike Yudianti. Lucia Indrarti, Jun-ichi Azuma, and Masahiko Sakamoto	273
	Hemicellulosic Polysaccharide Present in the Cellulosic Hydrogel of Oscimum Seed Lucia Indrarti. Jun-ichi Azuma, Rike Yudianti and Masahiko Sakamoto	278
	Biodiesel Manufature from Curcas Oil Using Estrans Process R. Sudradjat. I. Jaya. and Dadang Setiawan	284
	Pre-treatments for Ethanol Production from Bagasse by Simultaneous Saccharification and Fermentation	
	Muhammad Samsuri. Bambang Prasetya, Euis Hermiati, Tami Idiyanti, Kanji Okano, Syafwina. Yoichi Honda. and Takashi Watanabe	288
	Solid State Fermentation of Dyes –Adsorbed Agricultural Residue Yanni Sudiyani. Vera Barlianti, and Edi Iswanto Wiloso	295
	Lignin Degradation Content in Rice Straw Pre-treated by White-Rot Fungi Riksfardini Annisa Ermawar, Dede Heri Yuli Yanto, Fitria, and Euis Hermiati	300
,	The Influence of Soaking in Sodium Hydroxide to the Mechanical Properties of Pineapple Leaf Fiber Holia Onggo and J. Triastuti	305
	Effect of Different Harvesting Time and Stem Height on Kenaf Bast Fiber Characteristics Wiwin Suwinarti and Kazuhiko Sameshima	311
	Soda-Ethanol Pulping of Dadap (<i>Erythrina variegata</i> L) – The Properties of Pulp Obtained from Bark and Wood Components	<i>5</i> 11
	Nyoman Wistara	317

Utilization of Bark Extractives from Some Tropical Hardwoods as Natural Wood Preservatives – Termitidical Activities of Extractives from Bark of Some Tropical Hardwoods	
Syamsul Falah, Takeshi Katayama, and Mulyaningrum	323
Extractives of Tanjung Wood, Akar Kuning and Gimbul Wood and their Antioxidant and Antifungal Activities	
Takeshi Katayama, Mami Maeda, Toshisada Suzuki, Wasrin Syafii, and Sipon Muladi	329
Investigation of Brine Shrimp Lethal and Termiticidal Extractives of Jack Fruit (Artocarpus heterophylla Lam.) Heartwood Koichi Ogiyama, Masato Watanabe, Nobuhiro Sekine, Masako Kano, Nyoman J.	224
Wistara, and Wasrin Syafii	334
Bioactivities of Water and Ethanol Extracts of Jackfruit (Artocarpus heterophyllus) Wood, Bark and Leaves and Its Mistletoe (Macrosolen cochinchinensis)	
Nina Artanti, Indra Yudistira, Muhammad Hanafi, Enos Tangke Arung, Kuniyoshi Shimizu, and Ryuichiro Kondo	340
Bioactive Compounds from Ethyl Acetate Extract of Teakwood (Tectona grandis L.f.) Ganis Lukmandaru and Koichi Ogiyama	346
Study on the Utilization of Active Component in Leaves and Bark of Neem (Azadirachta indica A.Juss) as Anti-Termites Arief Heru Prianto, Ikhsan Guswenrivo, Titik Kartika, Didi Tarmadi, and Sulaeman	
Yusuf	351
Potential of Indonesian Medicinal Plant of Tropical Forest I. Novel Cytotoxic Compounds Polyisoprenylbenzophenone Derivative from Garcinia picrorrhiza Mig. Muhammad Hanafi Atiek Soemiati. Soleh Kosela, Marissa Angelina, and Leslie J.	
Harrison	356
Potential of Indonesian Medicinal Plant of Tropical Forest II. Structure Elucidation and Cytotoxic L1210 Bioassay of Prenylated Pyranoxanthonoids from Garcinia dulcis Muhammad Hanafi. Marissa Angelina, Atiek Soemiati, Soleh Kosela, and Leslie J.	
Harrison	362
Wood Bioscience	
Anatomical Changes of Oil Palm Stem (Elais guineensis Jacq.) during Microwave Heating	260
Krisdianto	368
Isoprene Emission from Trees. A Benefit for Plants or for Human? Kazufumi Yazaki, Kanako Sasaki. Kazuaki Ohara, and Takuya Saito	375
The Application of Medium and Growth Regulators on Calli Induction from Different Explants of Mangium (Acacia mangium Willd.) and Sengon (Paraserianthes falcataria (L.) Nielsen)	
Nurul Sumiasri, Dody Priadi, S. Yokota, and N. Yoshizawa	382

	Expression of Cellulase Gene in Paraserianthes falcataria Enny Sudarmonowati, Sri Hartati, Retna Hartati, Yong Woo Park, and Takahisa	388
323	Hayashi	
	Agrobacterium-Mediated Genetic Transformation of Acacia mangium Bearing Xyloglucanase Gene Sri Hartati, Yong Woo Park, Enny Sudarmonowati, and Takahisha Hayashi	395
329	Sri Harian, Tong woo Fark, Enny Sudarmonowan, and Takamsha Hayasm	373
, <u>-</u> ,	Melanin Biosynthesis Inhibitory Activity of Chlorophorin and Its Derivative Enos Tangke Arung, Kuniyoshi Shimizu, and Ryuichiro Kondo	400
334	An Inhibitory Effect of Acetate Added to the Culture on Growth of Wood Rotting Basidiomycetes	
	Erman Munir and Mikio Shimada	405
340	Subcellular Localization of Glyoxylate Cycle Key Enzymes Involved n Oxalate Biosynthesis of Wood-Destroying Basidiomycete Fomitopsis palustris Grown on Glucose	
740	Shunsuke Sakai. Tatsunori Nishide, Erman Munir, Kei'ichi Baba, Hiroshi Inui, Yoshihisa Nakano. Takefumi Hattori, and Mikio Shimada	411
346		
4	Preliminary Assessment of the Novel Strain <i>Penicillium</i> sp. for Ceilulase Production in Cil Palin Punches. Paddy Strains and Sandart	
	in Oil Palm Bunches, Paddy Straws and Sawdust Bodhi Dharma, Rachmawaty, and Anthoni Agustien	418
351	Anti-Androgenic and Estrogen-Like Activities of Ganoderma lucidum Kuniyoshi Shimizu. Jie Liu. Ichiko Miyamoto, and Ryuichiro Kondo	424
	Ganoderic Acid Content of Several Ganoderma Cultures Grown on Palm Oil Mill Fiber	
356	M. Ahkam Subroso. Henny Rayu Sundary, Sharly Asril, and Partomuan Simanjuntak	429
	Environmental Science	
	Forestry and Forestry Production in Vietnam	
362	Do Thi Ngọc Bich	434
	Appreiring of Tran Unight by Unight Curve Equation Everyheter Joshunta DI	
	Appraising of Tree Height by Height Curve Equation Eucalyptus deglupta BI Oman Sunerman	440
368	Acacia mangium Papers	
-	Introductory Papers	
375	A Case Study on the Carbon Flow Analysis in Large-scale Plantation Forest of Acacia mangium	
	Emi Tanaka, Anita Firmanti, and Shuichi Kawai	448
	Wood Properties and Utilization of Angels were in Will de Indonesia	
382	Wood Properties and Utilization of Acacia mangium Willd. in Indonesia Sri Nugroho Marsoem	440

Wax Emulsion on the Board Properties Mohamad Gopar, Ismail Budiman, Subyakto, and Bambang Subiyanto	450
Full Papers	
The Development of Sawlog Plantation of Acacia mangium at PT Musi Hutan Persada, South Sumatra	
Eko B. Hardiyanto and Bambang Supriyadi	451
Possibility of using Acacia mangium as Structural Timber Indah Sulistyawati, Surjono Surjokusumo, A. Muhar Husin	457
A Series of Studies on the Utilization of Acacia mangium Timber as Structural Materials	
Anita Firmanti and Shuichi Kawai	463
Effect of Growth Rate on Specific Gravity and Selected Mechanical Properties in Mangium Wood	
Imam Wahyudi	474
Appendix	
First to 5th International Wood Science Symposium Papers	

I

H Is

d.

le.

lS

al

1

e

t,

S

ď

η

f

li

٦f

n

t

Non-Destructive Testing on Six Tropical Woods using Ultrasonic Method

Lina Karlinasari, Surjono Surjokusumo, Yusuf S. Hadi, and Naresworo Nugroho

Department of Forest Products, Faculty of Forestry, Bogor Agricultural University E-mail: <u>karlinasari@ipb.ac.id</u>

Non destructive testing (NDT) using ultrasonic method was carried out on six supplical wood species consisting of four hardwood species, Sengon (Paraserianthes indicataria), Meranti (Shorea sp.), Manii (Maesopsis eminii) and Mangium (Acacia mangium), and two softwood species. Agathis (Agathis loranthifolia) and Pine (Pinus merkusii). The ultrasonic velocities propagation was measured to determine the dynamic modulus of elasticity (MOEd). Static modulus of elasticity (MOEs) and modulus of rupture (MOR) were also observed.

The objective of this study was to obtain correlations between dynamic test by ultrasonic (MOEd) and static bending test (MOEs and MOR) on small clear wood specimens.

Results showed that softwoods have higher velocities value and better reproducibility than those hardwoods. Poor correlation was found between ultrasonic velocities value and MOEs for each species. Meanwhile, MOEd has 50% higher value than that of static MOE (MOEs). However, there were significant correlation ($\alpha = 0.05$) between MOEd and MOEs, as well as between MOEd and MOR for all wood tested, except for Meranti and Manii wood species. The compared data for ultrasonic velocity and bending strength between hardwoods and softwood species denoted that for all parameters developed were highly statistically significant ($\alpha = 0.05$), except for relationship between ultrasonic velocity and MOEs in hardwood was non significant.

Key words: non-destructive testing, ultrasonic velocity, dynamic MOE (MOEd), static MOE (MOEs), MOR

Introduction

Non-destructive testing or evaluation is defined as the science of identifying the physical and mechanical properties of an element of a given material without altering its final application capacity (Ross et al., 1998). Non-destructive testing method has been extensively used for sorting or grading of wood products. Examples include visual grading and machining stress rating (MSR) of lumber. Dynamic modulus of elasticity (MOEd) and ultrasonic method also have been used for the same purpose. Ultrasonic stress wave is similar to the sonic stress wave approach except that is applied at higher frequencies. Ultrasonic is a high frequency sound at the inaudible frequency range. The ultrasonic method is very popular with homogenous, nonporous materials for detection of flaws (Bodig, 2000). In case of wood the frequency is between 20 kHz-500 kHz. The two most frequently used methods are the through transmission and the pulse-echo methods (Zombori, 2001). The through transmission method requires two piezoelectric transducers (mainly quartz crystals) on each side of the subject being inspected. In case

6th IWSS Wood Material

of pulse-echo method, only one transducer is used. It serves both the transmitter and receiver function, therefore only the reflected pulse is measured.

Several wood and wood based materials, including small clear wood specimens, lumber, veneer, and wood composites, have been investigated. The studies have shown a good relationship (R²= 0.4-0.85) between stress wave based (both sonic and ultrasonic stress) modulus of elasticity (MOEd) and the static modulus of elasticity (MOEs) (Bostrom, 1994; Wang et al. 2001; Ayarkwa, et al. 2001; Olievera et al. 2002a).

The factors that influence the propagation of ultrasonic waves in wood are physical properties of the substrate, geometrical characteristics of the species (macroand micro structures), conditions of the medium (temperature, moisture content) and the procedure utilized to take the measurements (frequency and sensitivity of the transducers, their size, the position and dynamic characteristics of the equipment) (Olievera et al. 2002b)

The objective of this study was to obtain correlations between dynamic test by ultrasonic (MOEd) and static bending test (MOEs and MOR) on small clear wood specimens.

Materials and Methods

Materials. The species studied were consisted of four hardwood species, Sengon (Paraserianthes falcataria). Meranti (Shorea sp.), Manii (Maesopsis eminii) and Mangium (Acacia mangium), and two softwood species, Agathis (Agathis loranthifolia) and Pine (Pinus merkusii). The pieces were small clear wood specimens conditioned to achieve equilibrium moisture content (EMC) about 15-18%. The dimension of small clear wood specimens tested was determined in accordance with BS 373-1957 for bending test (2 x 2 x 30) cm.

Ultrasonic wave propagation and dynamic MOE test. The ultrasonic wave propagation was measured by ultrasonic device Sylvatest Duo (f=22kHz). The application and measurement consists of positioning two accelerometer transducers on the material to be evaluated. The ultrasonic wave is introduced into the material by one transducer (transmitter) and picked up by the other transducer (receiver), with the time reading – in microseconds- performed by the ultrasonic instrument it self. The recorded times are used to calculate the ultrasonic velocity and dynamic modulus of elasticity, based on Equation (1, 2).

$$v = \frac{d}{t} \tag{1}$$

Where, d is the distance between the two transducers (cm), and t is propagation time of the pulse from transmitting transducer to the receiving transducer (μ s).

The ultrasonic velocity was used to express the dynamic modulus of elasticity (MOEd). The MOEd was calculated by the following equations:

$$MOEd = \frac{\rho \times Vu^2}{g}$$
 (2)

Where, MOEd is dynamic Modulus of Elasticity (kg/cm²), ñ is density (kg/m³), Vu is ultrasonic wave velocity (m/s) and g is gravitational constantan (9.81 m/s²).

Static bending test. Bending strength property test for the specimens were performed by one point loading method in universal testing machine (UTM, Instron with loading expacity \pm 5 ton). Each specimen was tested to destruction to determine the static modulus of elasticity (MOEs) and modulus of rupture (MOR).

Wood density and Moisture content (MC). The density of each specimen was determined in accordance with British Standard (BS). The MC was measured using gravimetry method.

Results and Discussions

Table 1 shows the mean values, and coefficient variation of the physical (MC, density, ultrasonic velocity) and mechanical properties (MOEd, MOEs, MOR).

Table 1. Mean values and coefficient variation of physical and mechanical properties of 6 tropical woods

01.0	tropical wo	ous	·				
Wood		MC	Density	Ultrasonic	MOEd	MOEs	MOR
Species		(%)	(kg/m³)	velocity	(kg/cm²)	(kg/cm ²)	(kg/cm ²)
(n=24)				(m/s)			
Hardwood							
1. Sengon	Mean	13.54	261	6559	115819	32416	363
	CV(%)	2.5	20.8	6.4	36.9	41.9	33.0
2. Meranti	Mean	14.74	433	5044	112522	52253	513
	CV+%)	3.8	4.4	6.8	11.8	10.4	11.5
3. Manii	Mean	14.19	50~	5665	161008	70204	754
	CV(%)	10.7	17.4	5.6	11.8	9.3	10.6
4. Mangium	Mean	19.27	631	6213	246544	80081	885
	CV (%)	6.5	6.5	4.0	8.1	14.5	10.2
Softwood							
5. Agathis	Mean	15.93	512	6159	198476	85666	713.4
	CV(Fe)	3.1	8.7	10.8	21.3	10.8	10.5
6. Pine	Mean	15.33	635	6850	295997	105969	838.2
	CV (%)	2.1	16.3	5.5	13.4	10.0	8.7

CV: coefficient of variation

The mean values of ultrasonic velocity of Sengon, Meranti, Manii, and Mangium were 6561 m/s. 5070 m/s, 5668 m/s. and 6225 m/s, respectively. Meanwhile, for softwood the mean values of ultrasonic velocity of Agathis and Pine were 6159 m/s and 6850 m/s, respectively. The mean values of ultrasonic velocity showed that softwoods have higher values and better reproducibility than those hardwoods. These are compatible with previous study in Olievera et al. (2002a) and Bucur (1995). Some factors influences of ultrasonic velocity are (1) Fiber lengths and direction; ultrasonic velocity is greater in the long fiber and longitudinal direction (propagation through the fibers). It is slower in radial direction (propagation through the rays) and tangential direction (disoriented propagation); (2) Density, ultrasonic velocity is greater in high density, (3) Moisture content, when the moisture content of wood is low the ultrasonic velocity is faster.

The results of MOEd values were 50 percent higher than those MOEs values. It is considered to because of micro structural characteristic and viscoelatic properties of wood. The accuracy of the determination of MOE of wood by dynamic test is said to be higher than that static test. The difference may be due to the rate of loading in static test in which creep effects influence the measured static deflection and also may be related to viscoelastic nature of wood (Bodig, 1982). Wood is highly impact-absorbermaterial. In the vibration of wood species, the restored elastic force is proportional to the velocity. Therefore, when force is applied for a short time, the material shows a solid elastic behavior, with longer application of force, its behavior is equal to that of a viscous liquid. This behavior is more evident in static bending test (long duration) than in ultrasonic test. Thus, the modulus of elasticity determined by the ultrasonic method is usually greater than that obtained in static deflection (Olievera et al. 2002b). According to Bodig and Javne (1982) and Tsoumis (1991), MOE obtained by vibration test proved to be 5-15 percent higher than static test. Meanwhile, Bucur (1995) reported that the value of MOE determined from dynamic was about 10 percent higher than static test for spruce and beech. Olievera, et al. (2002a,b) used ultrasonic method and obtained 17-20 percent higher values than static test values for

Brazilians wood species.

Least squares regression analysis method has been used in the field of wood properties, because mechanical properties of wood are in linearly related (Bodig and Jayne, 1982; Bucur, 1995). Regression parameters and statistical analysis are presented in Table 2. Figure 1, 2, 3, 4, 5 and 6 show relationship between MOEd-MOEs; and MOEd-MOR for each species.

Statistical analyses are developed with the purpose to verifying the existence of relations among the variables under study (ultrasonic velocity, MOEd, MOEs and MOR) and the levels of significance of the parameters obtained.

Correlation generally seemed slightly better for MOEd and MOEs for each species compared to ultrasonic velocity values and MOEds. The regression model developed seemed highly significant ($\dot{a}=0.05$) for MOEd and MOEs. Close correlation of MOEd and MOEs for solid clear wood was reported by stress wave mode (Ross and Pellerin. 1991). The statistically high correlation coefficient and the significant regression models developed indicate that MOEd may be good predictor of the MOEs, however, for some species (except Meranti and Manii wood) MOEd also as good indicator of the MOR. Even though for some species were statistically significant ($\dot{a}=0.05$), the correlations values obtained were relatively low (r<0.5). This fact seems that these might be due to the small sample size (n=24). Another study with large sample is needed as comparing data.

The regression models shown that for all parameters developed were highly statistically significant ($\acute{a}=0.05$) both softwoods and hardwoods, except for relationship between ultrasonic velocity and MOEs in hardwood was non significant.

Conclusion

Non-destructive testing using ultrasonic waves method was carried out for six tropical small, clear wood species.

Results showed that softwoods have higher velocities value and better reproducibilities than those hardwoods. The compared data for ultrasonic velocity and bending strength between hardwoods and softwood species denoted that for all or O

d

parameters developed were highly statically significant ($\alpha = 0.05$), except for relationship between ultrasonic velocity and MOEs in hardwood was non significant.

Table 2. Summary of regression parameters of 6 tropical woods for relationship between ultrasonic velocity, MOEd, MOEs and MOR

Wood	Parameter	Regression model	r	R^2	Significance				
species	(x and y)				of model				
					$(\alpha = 0.05)$				
Hardwood									
1. Sengon	V and MOEs	y = -7.2977x + 80280	0.228	0.052	0.282 ^{ns}				
	MOEd and MOEs	y = 0.4339x - 14846	0.772	0.596	9.8E-06**				
	MOEd and MOR	y = 0.0041x - 88.789	0.836	0.699	3.63E-07**				
	MOEs and MOR	y = 0.0077x + 114.62	0.867	0.752	4.03E-08**				
2. Meranti	V and MOEs	y = 10.565x - 1042.9	0.635	0.403	**000.0				
	MOEd and MOEs	y = 0.2601x + 22992	0.634	0.402	0.000**				
	MOEd and MOR	y = 0.0016x + 339.31	0.355	0.126	$0.088^{ m ns}$				
	MOEs and MOR	y = 0.005x + 256.83	0.458	0.210	0.024243*				
3. Manii	V and MOEs	y = 7.9884x + 24949	0.397	0.158	0.054 ^{ns}				
	MOEd and MOEs	y = 0.1549x + 45266	0.454	0.206	0.025*				
	MOEd and MOR	y = 0.0014x + 522.8	0.342	0.116	0.101^{ns}				
	MOEs and MOR	y = 0.0104x + 23.941	0.843	0.712	2.21E-07**				
4. Mangium	V and MOEs	y = 0.2738x + 78380	0.006	3.35	0.978 ^{ns}				
_				E-05					
	MOEd and MOEs	y = 0.2682x + 13964	0.458	0.21	0.024*				
	MOEd and MOR	y = 0.0028x + 183.32	0.627	0.39	0.001**				
	MOEs and MOR	$y = 0.0062x \pm 390.78$	0.795	0.63	3.43E-0**				
Hardwood	V and MOEs	y = -4.091x + 82755	0.131	0.017	0.202 ^{ns}				
	MOEd and MOEs	y = 0.2869x + 13622	0.817	0.668	3.00E-24**				
	MOEd and MOR	y = 0.0033x + 113.57	0.873	0.762	4.72E-31**				
	MOEs and MOR	y = 0.0102x + 30.453	0.952	0.906	3.44E-50**				
Softwood				***************************************					
5. Agathis	V and MOEs	y = 7.3171x + 40603	0.524	0.274	0.008**				
	MOEd and MOEs	y = 0.1529x + 55319	0.699	0.488	0.000**				
	MOEd and MOR	y = 0.0008x + 549.35	0.463	0.214	0.022*				
	MOEs and MOR	y = 0.0067x + 142.57	0.816	0.666	1.16E-06**				
6. Pinus	V and MOEs	y = 11.352x + 28212	0.401	0.161	0.052 ^{ns}				
	MOEd and MOEs	y = 0.1716x + 55170	0.638	0.408	0.000**				
	MOEd and MOR	y = 0.0013x + 453.95	0.699	0.489	0.000**				
	MOEs and MOR	y = 0.0057x + 236.42	0.823	0.677	8.07E-07**				
Softwood	V and MOEs	y = 14.621x + 721.73	0.654	0.428	4.48E-07**				
-	MOEd and MOEs	y = 0.1894x + 48997	0.849	0.720	2.51E-14**				
	MOEd and MOR	y = 0.0012x + 482.7	0.779	0.607	6.67E-11**				
	MOEs and MOR	y = 0.0061x + 188.88	0.898	0.807	4.51E-18**				
	MOEs and MOR	y = 0.0061x + 188.88	0.898	0.807	4.51				

r coefficient correlation : R² coefficient determination; ns = no significance; * significance; ** very significance

Poor correlation was found between ultrasonic velocities value and MOEs for each species. Meanwhile, MOEd has 50% higher value than that of static MOE (MOEs). However, there was significant correlation ($\alpha = 0.05$) both between MOEd and MOEs, and between MOEd and MOR for all wood tested, except for Meranti and Manii wood species.

The compared data of ultrasonic velocity and bending strength between hardwoods and softwood species shown that for all parameters developed were highly statistically significant ($\alpha = 0.05$), except for relationship between ultrasonic velocity and MOEs in hardwood was non significant.

References

- 1. Ayarkwa, J., Y. Hirashima and Y. Sasaki. 2001. Predicting Modulus of Rupture of Solid and Finger Jointed Tropical African Hardwoods Using Longitudinal Vibration. Forest Products Journal. Vol. 51(1): 85-92.
- 2. Bodig, J. and B.A. Jayne, 1982, Mechanics of Wood and Wood Composites, Van Nostrand Reihold, New York, Pp. 247-269, 645-650.
- 3. Bodig, J. 2000. The Process of NDE Research for Wood and Wood Composites. In Proceeding: 12th International Symposium on Nondestructive Testing of Wood. 13-15 September 2000. University of Western Hungary, Sopron. Hungary. Pp. 7-22
- 4. Bostrom, L. 1994. A Comparison between Four Different Timber Strength Grading Machines. In Proceeding: 9th International Symposium on Nondestructive Testing of Wood. 22-24 September 1993. Washington State University, USA. Pp. 157-167
- 5. Bueur, V. 1995. Acoustic of Wood. CRC Press Inc, Boca Raton. Pp. 105-106, 120-123
- 6. Oliveira, F.G.R., J.A.O. de Campos, and A. Sales, 2002a. Ultrasonic Measurements in Brazilian Hardwoods. Material Research Journal. Vol. 5 No 1. Pp. 51-55.
- 7. Olievera, F.G.R., J.A.O. de Campos, E. Pletz and A. Sales. 2002b. Assessment of Mechanical Properties of Wood Using an Ultrasonic Technique. In Proceeding: 13" International Symposium on Nondestructive Testing of Wood. 19-21 August 2002. University of California, Berkeley Campus, California, USA. Pp. 75-78.
- 8. Ross, R.J. and R.F.Pellerin.1991.NDEof green material with stress wave. Preliminary results using dimension lumber. Forest Products Journal. Vol.41 (6): 57-59.
- 9. Ross, R.J., B.K. Brashaw, and R.F. Pellerin, 1998. Nondestructive Evaluation of Wood. Forest Products Journal. Vol. 48:1. Pp. 14-19.
- 10. Tsoumis, G. 1991. Science and Technology of Wood. Structure, Properties, Utilization, Van Nostrand Reihold, New York. Pp. 327-361
- 11. Wang, X., R.J. Ross, M. McCellan, R.J. Barbour, J.R. Erickson, J.W. Forsman, and G.D. McGinnis. 2001. Nondestructive Evaluation of Standing Trees With A Stress Wave Method. Wood and Fiber Science. 33(4): Pp. 522-533.
- 12. Zombory, B. 2001. "In Situ" Nondestructive Testing of Built in Wooden Members. NDT.net. March 2001, Vol. 6 No. 3, (05/27/2005)

een ghly city

e o: inal

Van

ites. ood.

). 7-

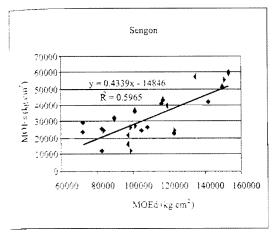
gth tive Pp.

06.

nic

of ng:

rust ve.


-6):

of.

es,

an.

.en

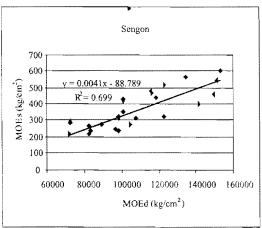
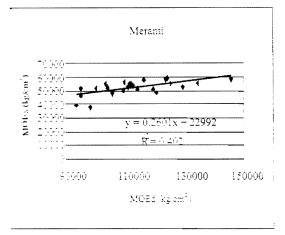



Figure 1. Relationship between MOEd and MOEs; MOEd and MOR on Sengon species

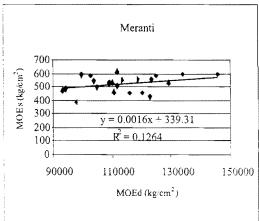
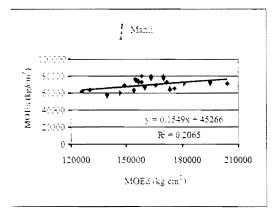



Figure 2. Relationship between MOEd and MOEs; MOEd and MOR on Meranti species

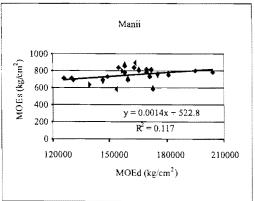
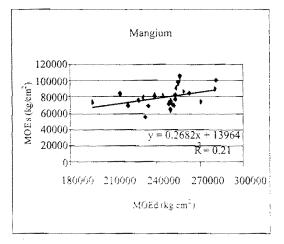



Figure 3. Relationship between MOEd and MOEs; MOEd and MOR on Manii species

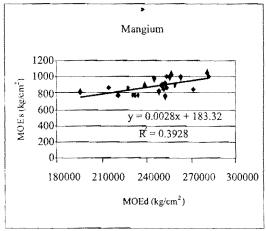
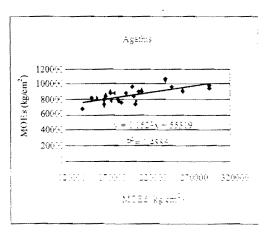



Figure 4. Relationship between MOEd and MOEs; MOEd and MOR on Mangium species

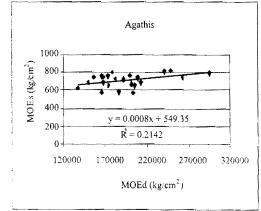
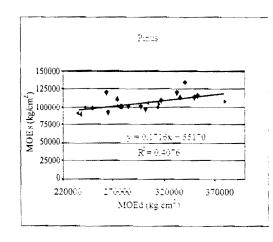



Figure 5. Relationship between MOEd and MOEs; MOEd and MOR on Agathis species

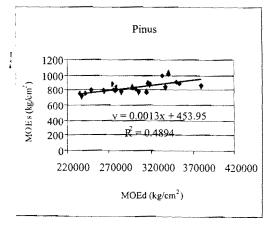


Figure 6. Relationship between MOEd and MOEs; MOEd and MOR on Pinus species