Carotenoid Bioavailability of Vegetables and Carbohydrate-containing Foods Measured by Retinol Accumulation in Rat Livers

Fransiska Zakaria-Rungkat¹, M. Djaelani, Setiana, E. Rumondang and Nurrochmah

Department of Food Technology and Human Nutrition, Bogor Agricultural University, Darmaga Campus, Bogor, 16002, Indonesia

Abstract

Cassava (Manihot esculenta), water convolvulus (Ipomea reptans) and brassica (Brassica juncea L) leaves, carrot (Daucus carota L), and sweet potato (Ipomea batata) were cooked imitating local household preparation while banana (Musa paradisiaca L) was freeze-dried. The prepared foods, each containing 180 μg β-carotene, were fed to vitamin A-depleted rats in addition to their vitamin A-depleted diet for 14 days. The positive control group received 13 μg retinol daily. After repletion, plasma retinol in treated groups increased slightly ranging from 0.03 to 0.34 μg/ml. The groups received boiled cassava leaves, boiled and simmered cassava leaves, boiled or simmered water convolvulus, boiled or simmered brassica, boiled carrots, boiled or fried sweet potatoes, or freeze-dried banana and accumulated retinol levels of, respectively, 77.98, 163.01, 59.537, 53.10, 151.15, 198.12, 312.25, 347.77, 385.14 and 194.43 μg/liver. The retinol accumulation factors (RAFs) proposed for the test foods are, respectively, 1/35.5, 1/16, 1/9.88, 1/47, 1/18.3, 1/13.5, 1/12, 1/7.4, 1/6.6 and 1/2.7. The RAF of synthetic vitamin A was 1/5.9, which indicates that 5.9 μg vitamin A is needed to accumulate 1 μg retinol in the liver. This study showed that both high-carbohydrate foods, sweet potatoes and banana have RAFs close to that of synthetic vitamin A or higher.

Author Keywords: carotenoids; bioavailability; retinol; green leafy vegetables; high-carbohydrate foods.

References

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cfc1f0156d
7. De Pee, S. 1996, Food-based approaches for controlling vitamin A deficiency: studies in breastfeeding women in Indonesia

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-158&user=67637428&coverDate=08%2F31%2F2000&rdoc=1&fmt=high&orig=search&sort=d&docanchor=&view=c&_origin=scholar.google&acct=0000705266&versio n=1&_urlVersion=0&_userid=67637428&md5=eb18aee3757923fc1cc8e50cf1f0156d
20. R. S. Parker, Bioavailability of carotenoids. *Eur. J. Clin. Nutr.* 51 (1997), pp. S86–S90. [View Record in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) | [Cited By in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) (47)

21. A. M. G. Pasatiempo, C. E. Taylor and A. C. Ross, Vitamin A status and the immune response to pneumococcal polysaccharide: effects of age and early stage of retinol deficiency in rats. *J. Nutr.* 121 (1991), pp. 556–562. [View Record in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) | [Cited By in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) (13)

24. J. D. Ribaya-Mercado, J. G. Fox, W. D. Rosenblad, M. C. Blanco and R. M. Russel, β - Carotene, retinol and retinyl ester concentrations in serum and selected tissues of ferrets fed β - carotene. *J. Nutr.* 122 (1992), pp. 1898–1903. [View Record in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) | [Cited By in Scopus](http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJH-45F4CY2-15&_user=6763742&_coverDate=08%2F31%2F2000&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1366490937&_rerunOrigin=scholar.google&_acct=C000070526&_version=1&_urlVersion=0&_userid=6763742&md5=eb18ae3757923fc1cc8e50cf1f0156d) (20)

