

Organic geochemistry of lacustrine sediments: a record of the changing trophic status of Rostherne Mere, U.K.

Tri Pratono^{1,2} and George A. Wolff^{1,*}

¹ Environmental Organic Chemistry and Geochemistry Group, Oceanography Labs, Department of Earth Sciences, University of Liverpool Liverpool, L69 3BX U.K.; ² Laboratorium Oseanography, Fakultas Perikanan dan Kelautan, Institut Pertanian Bogor Darmaga, Bogor 16610 Indonesia

Received 7 November 1996; revised 18 February 1997; accepted 30 January 1998; Available online 22 September 1998.

Abstract

The elemental, molecular (lipid) and isotopic ($\delta^{13}\text{C}/\delta^{12}\text{C}$) composition of organic matter in samples from the eutrophic lake, Rostherne Mere, U.K. were examined at high resolution in a single sediment core from a deep part of the lake. The distributions of lipids indicate an important contribution of allochthonous organic matter to the Rostherne sediments. However, increases in concentrations of unsaturated and branched chain fatty acids, phytol and C₂₇ and C₂₈ sterols toward the surficial sediments, and changing carbon isotope composition and C/N ratios, suggest that the autochthonous contribution to sedimentary OM has increased as a result of recent eutrophication. The elevated supply of labile OM to the sediments has influenced some key diagenetic processes, notably those of phytol degradation and higher plant triterpenoid degradation and aromatisation.

Author Keywords: lipids; biological markers; lake sediments; eutrophication; diagenesis; Rostherne Mere

Index Terms: Analytical geochemistry; Sediments; Molecular structure; Composition; Organic compounds; Lakes; Eutrophication; Sedimentary rocks; Degradation; Aromatization; Environmental impact; Biomarkers; Diagenesis; Lacustrine sediments; Trophic status