PENGEMBANGAN APLIKASI T-RFLP UNTUK PENCARIAN NAMA BAKTERI

RIMAYANTI

JURUSAN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2003
ABSTRAK

RIMAYANTI. Pengembangan Aplikasi TRFLP untuk Pencarian Nama Bakteri Dibimbing oleh YANI NURHADYANI dan ANTONIUS SUWANTO.

Salah satu kajian yang banyak diteliti didalam bioinformatika adalah menganalisis keragaman komunitas mikroba. Salah satu metode yang digunakan adalah TRFLP (Terminal Restriction Fragment Polymorphism). Dengan metode ini peneliti akan dapat mengetahui identitas bakteri yang belum diketahui, maka gen 16S rRNA dari bakteri tersebut diambil dan dipotong dengan enzym restriksi. Panjang potongan tersebut (T-RF) akan dibandingkan dengan panjang T-RF sekuen gen 16S rRNA dari bakteri yang sudah ada di database. Jika hanya menggunakan satu enzym restriksi maka akan terdapat banyak kemungkinan nama bakteri yang muncul, oleh sebab itu makin sedikit enzym restriksi yang digunakan, maka makin sedikit nama bakteri yang muncuk sehingga nama bakteri yang ditemukan menjadi lebih pasti.

Kesulitan yang dialami peneliti selama ini yaitu masih harus menggunakan cara manual untuk melakukan perbandingan tersebut. Untuk mengatasi kendala yang ada maka dikembangkan suatu sistem yang bernama TRFLP yang dapat mencari identitas bakteri dengan cara melakukan perbandingan secara otomatis.

Pembangunan sistem ini menggunakan metode SDLC yang terdiri dari fase analisis, fase desain, fase implementasi, fase pengujian dan fase pemeliharaan. Sistem ini dapat melakukan pencarian nama bakteri secara otomatis dengan input yang terdiri dari jumlah enzym restriksi, nama forward primer, nama reverse primer, nama enzym restriksi dan panjang T-RF. Proses pencarian terbagi tiga yaitu pencarian berdasarkan forward primer, pencarian berdasarkan reverse primer atau pencarian berdasarkan kedua-duanya. Selain itu sistem ini juga dapat melakukan proses updating dengan inputnya yaitu nama forward primer, bentuk forward primer, nama reverse primer, bentuk reverse primer, nama enzym restriksi dan bentuk enzym restriksi. Proses updating ini diperlukan karena database biologi berkembang dengan sangat cepat agar jika ditemukan nama bakteri baru maka data tersebut dapat dimasukkan kedalam database sehingga data yang ada menjadi lebih akurat setiap saat.

PENGEMBANGAN APLIKASI T-RFLP UNTUK PENCARIAN NAMA BAKTERI

RIMAYANTI

Skripsi
Sebagai salah satu syarat untuk memperoleh gelar
Sarjana Komputer
pada
Jurusan Ilmu Komputer

JURUSAN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2003
Judul Skripsi : Pengembangan Aplikasi TRFLP Untuk Pencarian Nama Bakteri
Nama : Rimayanti
NRP : G06498031
Program Studi : Ilmu Komputer

Menyetujui,

Yani Nurhidayani, S.Si., M.T. Prof. Dr. Ir. Antonius Suwanto, M.Sc.
Pembimbing I Pembimbing II

Ketua Program Studi Ketua Jurusan

Tanggal Lulus :
RIWAYAT HIDUP

<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>ix</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>ix</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan</td>
<td>1</td>
</tr>
<tr>
<td>TELAAH PUSTAKA</td>
<td>2</td>
</tr>
<tr>
<td>Bioinformatika</td>
<td>2</td>
</tr>
<tr>
<td>Sel</td>
<td>2</td>
</tr>
<tr>
<td>Gen</td>
<td>2</td>
</tr>
<tr>
<td>DNA</td>
<td>3</td>
</tr>
<tr>
<td>RNA</td>
<td>3</td>
</tr>
<tr>
<td>Gen 16S rRNA</td>
<td>3</td>
</tr>
<tr>
<td>Enzim Restriksi</td>
<td>4</td>
</tr>
<tr>
<td>daerah restriksi</td>
<td>4</td>
</tr>
<tr>
<td>Primer</td>
<td>4</td>
</tr>
<tr>
<td>Terminal Restriction Fragment Length Polymorphism (T-RFLP)</td>
<td>5</td>
</tr>
<tr>
<td>Database</td>
<td>5</td>
</tr>
<tr>
<td>Normalisasi</td>
<td>6</td>
</tr>
<tr>
<td>Bentuk Normal</td>
<td>6</td>
</tr>
<tr>
<td>METODOLOGI PENELITIAN</td>
<td>7</td>
</tr>
<tr>
<td>Analisis</td>
<td>7</td>
</tr>
<tr>
<td>Desain</td>
<td>7</td>
</tr>
<tr>
<td>Implementasi</td>
<td>7</td>
</tr>
<tr>
<td>Pengujian</td>
<td>7</td>
</tr>
<tr>
<td>Pemeliharaan</td>
<td>7</td>
</tr>
<tr>
<td>HASIL dan PEMBAHASAN</td>
<td>7</td>
</tr>
<tr>
<td>A. Analisis</td>
<td>8</td>
</tr>
<tr>
<td>A.1 Analisis Identifikasi Kebutuhan User</td>
<td>8</td>
</tr>
<tr>
<td>A.2 Analisis Identifikasi User</td>
<td>8</td>
</tr>
<tr>
<td>A.3 Analisis Teknik</td>
<td>8</td>
</tr>
<tr>
<td>A.4 Analisis Pemodelan Sistem</td>
<td>8</td>
</tr>
<tr>
<td>A.4.1 Analisis Input</td>
<td>8</td>
</tr>
<tr>
<td>A.4.2 Analisis Proses</td>
<td>9</td>
</tr>
<tr>
<td>A.4.2.1 Analisis Proses Pencarian</td>
<td>9</td>
</tr>
<tr>
<td>A.4.2.2 Analisis Proses Updating</td>
<td>9</td>
</tr>
<tr>
<td>A.4.2.3 Analisis Proses Tambah Admin</td>
<td>9</td>
</tr>
<tr>
<td>A.4.3 Analisis Output</td>
<td>10</td>
</tr>
<tr>
<td>A.4.4 Analisis Database</td>
<td>10</td>
</tr>
<tr>
<td>A.4.5 Data Flow Diagram</td>
<td>13</td>
</tr>
<tr>
<td>B. Desain</td>
<td>13</td>
</tr>
<tr>
<td>B.1 Desain Input</td>
<td>13</td>
</tr>
<tr>
<td>B.2 Desain Proses</td>
<td>14</td>
</tr>
<tr>
<td>B.3 Desain Output</td>
<td>17</td>
</tr>
<tr>
<td>B.4 Desain Database</td>
<td>17</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Gambar 1. DNA Double Helix ... 3
Gambar 2. Struktur sekunder sekuen gen 16S rRNA dari bakteri Escherichia coli 4
Gambar 3. Primer yang dipasang pada utas DNA ... 4
Gambar 4. Proses Annealing ... 4
Gambar 5. TRFLP setelah diamplifikasi ... 5
Gambar 6. Hasil Pemotongan Gen Menggunakan Enzim yang berbeda-beda 5
Gambar 7. Context Diagram .. 8
Gambar 8. Entity Relationship Antar Tabel pada Database TRFLP 12
Gambar 9. Desain Input Searching berdasarkan forward primer 13
Gambar 10. Desain Input Searching berdasarkan reverse primer 13
Gambar 11. Desain Input untuk Searching berdasarkan forward primer dan reverse primer 14
Gambar 12. Desain Input untuk Update ... 14
Gambar 13. Desain Tambah Admin .. 14
Gambar 14. Desain Password Admin ... 14
Gambar 15. Desain Output Untuk Searching .. 17
Gambar 16. DFD Level 1 ... 21
Gambar 17. DFD Level 2 Proses 1. Pencarian ... 21
Gambar 18. DFD Level 2 Proses 2. Update ... 22
Gambar 19. DFD Level 2 Proses 3. Tambah Admin .. 23
Gambar 20. DFD Level 3 Proses 1.1. Pencarian Berdasarkan Forward Primer 23
Gambar 21. DFD Level 3 Proses 1.2. Pencarian Berdasarkan Reverse Primer .. 24
Gambar 22. DFD Level 3 Proses 1.3 Pencarian Berdasarkan Forward Primer & Reverse Primer ... 24
Gambar 23. Bentuk disain Tabel Forward pada SQL Server 37
Gambar 24. Isi Tabel Forward .. 37
Gambar 25. Bentuk disain Tabel Reverse pada SQL Server 37
Gambar 26. Isi Tabel Reverse .. 37
Gambar 27. Bentuk disain Tabel Enzym pada SQL Server 37
Gambar 28. Isi Tabel Enzym ... 37
Gambar 29. Bentuk disain Tabel Kode pada SQL Server 38
Gambar 30. Isi Tabel Kode .. 38
Gambar 31. Bentuk disain Tabel Bakteri pada SQL Server 38
Gambar 32. Isi Tabel Bakteri .. 38
Gambar 33. Bentuk Tabel Password pada SQL Server 38
Gambar 34. Bentuk Tabel Update pada SQL Server ... 39

DAFTAR TABEL

Tabel 1. Struktur Tabel Forward ... 25
Tabel 2. Struktur Tabel Reverse ... 25
Tabel 3. Struktur Tabel Enzym ... 25
Tabel 4. Struktur Tabel Kode .. 25
Tabel 5. Struktur Tabel Bakteri ... 26
Tabel 6. Struktur Tabel Password .. 26
Tabel 7. Struktur Tabel Update ... 26
PENDAHULUAN

Latar Belakang

Perpaduan teknologi informasi dengan Ilmu Biologi telah menghasilkan banyak cabang ilmu baru diantaranya adalah Bioinformatika. Salah satu kajian yang menarik dan banyak diteliti didalam bioinformatika yaitu keragaman komunitas mikroba.

Banyaknya mikroba yang ada di dunia telah membuat para peneliti berusaha untuk mengklasifikasikannya agar dapat dikenali identitas dari mikroba tersebut. Dengan begitu dapat diketahui fungsi dari mikroba yang dimaksud sehingga dapat dimanfaatkan khususnya semaksimal mungkin dalam berbagai bidang seperti dalam bidang kedokteran. Jika mikroba yang ditemukan termasuk jenis mikroba yang merugikan manusia maka akan dibuat anti mikrobanya, akan tetapi jika mikroba tersebut termasuk jenis mikroba yang menguntungkan seperti bisa mengobati suatu penyakit maka mikroba tersebut akan dikembangkan lebih.

Salah satu cara yang digunakan untuk menganalisis keragaman komunitas mikroba adalah dengan metode T-RFLP (Terminal Restriction Fragment Length Polymorphism) berdasarkan panjang T-RF sekuen gen 16S rRNA dan nama enzim restriksiya. Saat ini terdapat kurang lebih 16.277 gen 16S rRNA yang telah berhasil diteliti dan disimpan kedalam public database (Shyu et al).

Dengan adanya metode ini, peneliti yang mempunyai sample bakteri dari suatu daerah yang belum diketahui identitasnya, akan dapat membandingkan gen 16S rRNA dari bakteri tersebut dengan gen 16S rRNA yang ada didatabase, sehingga dapat diketahui identitas dari bakteri yang dimaksud.

Cara lain yang digunakan adalah jika ada gen 16S rRNA dari bakteri yang belum diketahui identitasnya, maka gen tersebut akan dipotong menggunakan enzim restriksi. Profil DNA hasil pemotongan dengan enzim tersebut akan dilihat didalam database untuk diketahui namanya. Jika hanya menggunakan satu enzim restriksi maka akan ada banyak kemungkinan nama bakteri didalam database. Untuk mengurangi kemungkinan-kemungkinan tersebut, maka digunakan enzim restriksi yang lain. Makin banyak enzim restriksi yang dipakai maka makin sedikit kemungkinan nama bakteri yang ditemukan, sehingga nama bakteri dapat menjadi lebih pasti. Hal itu disebabkan karena hasil pemotongan dengan enzim yang satu akan dibandingkan dengan enzim yang lain sehingga didapat irisan nama bakteri dari hasil pemotongan tersebut. Irisan itulah yang merupakan perkiraan nama bakteri yang dimaksud.

Kesulitan yang dialami peneliti selama ini dalam melakukan pencarian nama bakteri baik itu menggunakan satu enzim atau lebih yaitu ma-a lagi menggunakan cara yang manual. Jika menggunakan lebih dari satu enzim maka peneliti harus mencari satu per satu nama bakteri dari enzim yang satu kemudian dibandingkan dengan nama-nama bakteri dari enzim lain sehingga didapat irisan nama bakteri. Jika enzim yang digunakan hanya satu maka kesulitan yang dihadapi peneliti adalah menemukan nama bakteri berdasarkan panjang T-RF nya karena peneliti harus mencari satu per satu nama bakteri yang sesuai dengan panjang T-RF yang dimaksud.

Berdasarkan kendala-kendala yang ada maka perlunya dibangun suatu program aplikasi yang dapat melakukan irisan nama-nama bakteri serta pencarian nama bakteri secara otomatis.

Tujuan

Tujuan dari penelitian ini adalah mengembangkan program aplikasi bernama sistem TRFLP yang dapat melakukan:
1. Proses pencarian nama bakteri berdasarkan jumlah enzim restriksi yang digunakan, *forward primer, reverse*
primer, atau kedua-duanya, panjang T-RF, dan nama enzim restriksi yang digunakan untuk mengelukarkan nama bakteri berdasarkan hasil irisan atau berdasarkan panjang T-RF secara otomatis.

2. Proses *updating* data. Proses ini diperlukan karena database biologi berkembang dengan sangat pesat sehingga jika ditemukan nama bakteri baru berdasarkan *forward primer*, *reverse primer* dan enzim restriksi yang baru maka data tersebut dapat dimasukkan sehingga data yang ada menjadi lebih mutakhir dan akurat setiap saat.

TELAAH PUSTAKA

Bioinformatika

Bioinformatika adalah ilmu yang menggunakan dan mengembangkan alat-alat komputasi dan algoritma untuk membantu memecahkan masalah-masalah yang berkaitan dengan biologi (Shui, 2001). Masalah-masalah yang dihadapi antara lain pencarian kesamaan dari DNA atau sekuen protein yang belum diketahui, perkiraan struktur tiga dimensi serta fungsi dari protein.

Bioinformatika umumnya ditujukan untuk mengorganisasikan dan menganalisis data kompleks yang meningkat yang dihasilkan dari biologi molekuler modern dan teknik biokimia.

Dengan bioinformatika, data-data tersebut disimpan kedalam *database* untuk kemudian dianalisis. Tugas dari orang-orang yang berkecimpung didalam bioinformatika tidak hanya mendisain dan mengembangkan *database* serta menganalisis informasi didalamnya, akan tetapi juga dapat mengembangkan suatu alat berupa *software* yang dapat menampilkan hasil analisis tersebut. (Degrave et al, 2002).

Sel

Sel adalah unit terkecil dari makhluk hidup. Setiap sel hidup mempunyai tiga bagian pokok, yaitu selaput plasma, sitoplasma dan organel-organel.

Untuk melaksanakan berbagai fungsi hidup, sel dilengkapi dengan berbagai organel. Organel terbesar adalah inti sel atau nukleus.

Sedangkan organel lainnya yaitu mitochondria, ribosom, lisosom, plastida, retikulum endoplasma, golgi kompleks, badan mikro dan mikrofilamen.

Nukleus merupakan organel yang amat vital bagi kehidupan karena berperan mengendalikan seluruh kegiatan sel. Nukleus terdiri dari selaput inti (karioteka), plasma inti (nukleoplasma) dan anak inti (nucleolus). Didalam nukleus terdapat benang-benang halus yang dapat menyerap warna. Benang-benang halus itu disebut dengan *kromatin* yang terdiri dari anta DNA. Pada saat sel akan membelah, benang-benang kromatin akan memendek, menembal dan mudah menyerap zat warna dan disebut dengan kromosom.

Sedangkan ribosom yang merupakan organel yang berperan dalam sintesis protein terdapat bebas di dalam sitoplasma maupun melekat atau menutupi membran retikulum endoplasma. Ribosom tersusun atas protein dan RNA dengan perbandingan sama banyak. Fungsi ribosom sebagai tempat sintesis protein dari asam amino. Pelaksana sintesis ini adalah RNA.

Gen

Gen terletak pada lokus (lokasi) tertentu dan menempati nomor tertentu didalam kromosom. Gen-gen yang ada di kromosom tidak memiliki batas-batas yang jelas sehingga tidak dapat ditentukan batas gen yang satu dengan yang lain. Saat ini orang telah dapat memetakan letak sebagian gen-gen tertentu dan mengetahui letak lokus dan nomor kromosom tempat terdapatnya gen.

Contoh sekuen DNA :

3' TACGAACAAATGCTACCCCGAACAAT
GCTTTAATCATAGCAATCTG 5'
DNA

DNA adalah pembawa sebagian besar atau seluruh sifat-sifat genetik yang tersimpan didalam kromosom. DNA merupakan senyawa yang tersusun atas gula deoksiribosa, fosfat dan basa nitrogen (Sarma et al, 2000). Basa nitrogen terdiri dari adenin (A), timin (T), guanin (G) dan cytosine (C). Bentuk DNA berpaspangan berpilin sejajar yang disebut dengan double helix seperti yang dapat dilihat pada gambar 1. Kedua molekul DNA yang berpasangan dan berpilin tersebut mempunyai hubungan lewat basanya dimana adenin dari molekul yang satu berkaitan dengan timin dari molekul pasangannya, dan guanin dari molekul yang satu berkaitan dengan cytosin dari molekul pasangannya, disingkat dengan A-T dan G-C.

DNA berfungsi sebagai pembawa informasi genetik yaitu sifat-sifat yang harus diwariskan kepada keturunannya.

Gambar 1. DNA Double Helix

RNA

Seperti halnya DNA, RNA juga merupakan polimer asam nukleotida dari empat macam ribonukleotida. Setiap ribonukleotida tersusun atas gula pentosa, gugusan fosfat dan basa N. Berbeda dengan jenis basa N pada DNA, basa N pada RNA tidak ditemukan adanya timin dan kedudukannya diganti dengan basa urasii (U).

RNA dibentuk oleh DNA didalam ini dan bertugas mensitisik protein didalam inti. Berdasarkan letak dan fungsiya, RNA dibedakan menjadi tiga yaitu:

1. RNA duta atau messenger RNA (mRNA)
 Merupakan RNA terbesar atau terpanjang. RNA ini bertindak sebagai pola cetakan untuk membentuk polipeptida. mRNA sering disebut kodon karena urutan basa N yang menyusunnya merupakan kode genetik untuk membentuk protein yang diperintahkan oleh DNA. mRNA dicetak oleh DNA didalam inti kemudian dikirim ke ribosom didalam sitoplasma. Disini mRNA berfungsi sebagai cetakan dalam sintesis protein. Macam RNA yang dicetak sesuai dengan macam protein yang akan disintesis.

2. RNA transfer (tRNA)
 Merupakan RNA yang ramentinya terpendek. RNA ini bertugas untuk memeremahkan kode-kode yang dibawa oleh mRNA.

3. RNA ribosom (rRNA)
 Merupakan RNA yang tersimpan didalam ribosom. RNA ini dibentuk oleh gen khusus yang terletak dibagian kromatin yang melekat pada nucleolus.

Gen 16S rRNA

Bagian DNA yang digunakan untuk mengidentifikasi bakteri adalah daerah yang mengkodekan ribosomal RNA 16S (16S rRNA). Daerah ini dinamakan dengan gen 16S rDNA. Setiap spesies bakteri yang berbeda mempunyai sekuen 16S rDNA yang unik. Pengidentifikasiannya didasarkan pada pencocokan sekuen sample dengan sekuen 16S rDNA yang ada di database.

Sekuen 16S rDNA ini digunakan untuk mengklasifikasikan mikroorganisme dengan beberapa alasan diantaranya yaitu ada beberapa posisi dari molekul gen ini yang secara evolusi lebih konservatif dibandingkan dengan yang lain sehingga ada daerah sekuen yang menunjukkan perbedaan pada setiap level taksonomi mulai dari spesies hingga kingdom (Woese, 1987, yang dikutip oleh Schramm & Amann). Struktur 16S ribosomal RNA (rRNA) dari bakteri Escherichia coli dapat dilihat pada gambar 2.
Segmen DNA setelah dipotong menggunakan enzim endonuklease Eco R1 (hanya memotong pada urutan sekuen DNA GAATTTC):

TCGGGAATTC GCG...
AGCGCTTAAG CGC...

daerah restriksi

Primer
Primer adalah sintesis oligonukleotida pendek yang digunakan dalam teknik molekuler untuk PCR dan men-sekuen-kan DNA. Primer terdiri dari forward primer dan reverse primer dimana forward primer akan dipasangkan pada salah satu utas DNA sedangkan reverse primer dipasangkan pada utas DNA lainnya (dapat dilihat pada gambar 3). PCR digunakan untuk mengamplifikasi daerah DNA yang berada diantara forward primer dan reverse primer.

Gambar 3. Primer yang dipasang pada utas DNA

Primer didesain dengan tujuan untuk mempunyai sekuen yang komplemen dari strain DNA yang akan diteliti sehingga diharapkan primer dapat melakukan annealing. Yang dimaksud dengan annealing adalah dua sekuen yang komplemen yang akan membentuk ikatan hydrogen diantara pasangan base-nya (G menjadi C, A menjadi T atau U) dan membentuk pasangan strain DNA yang stabil seperti yang ditunjukkan pada gambar 4.

Gambar 4. Proses Annealing
Terminal Restriction Fragment Length Polymorphism (T-RFLP)

T-RFLP adalah teknologi sidik jari (fingerprinting) DNA yang menggunakan amplifikasi PCR (Polymerase Chain Reaction) untuk gen yang ingin dikelola seperti bagian kecil dari gen rRNA untuk mempelajari struktur komunitas dan kedinamisan dari mikroba (Wie & Osborn, 2000).

Tahapan-tahapan yang digunakan dalam metode T-RFLP ini dimulai dari pengekstrakan semua DNA yang diambil sebagai sample yang akan diteliti. Setelah itu, gen 16S rRNA diamplifikasi atau diperbanyak oleh PCR dimana salah satu dari dua primer yang digunakan diberi label yang ber-fluorescent. Hasil PCR yang ber-fluorescent itu kemudian dipotong menggunakan beberapa jenis enzim restriksi, kemudian hasilnya dianalisis dengan standar resolusi tinggi dari gel electrophoresis dimana fragment pemotongan dipisahkan berdasarkan ukurannya. Hanya panjang dari terminal fragment yang ber-fluorescent (T-RF) yang dideteksi secara otomatis oleh alat sequencing atau dengan fluorimetry (Lihat gambar 5). (Liu et al., 1997, yang dikutip oleh Schramm & Amann). Cara TRFPL setelah diamplifikasi dapat dilihat pada gambar 5:

Gambar 5. T-RFLP setelah diamplifikasi

Keterangan:
1. Batang-batang yang berwarna menunjukkan sekuen gen 16S rRNA yang berbeda
2. Spiral merah mengindikasikan label yang ber-fluorescent
3. Lingkaran persegii panjang dan bujur sangkar menunjukkan enzim restriksi yang berbeda

Pada gambar 6 ditunjukkan hasil pemotongan masing-masing sekuen menggunakan enzim yang berbeda. Angka yang ada menunjukkan panjang potongan sekuen gen 16S rRNA sedangkan grafik menunjukkan frekuensi jumlah populasi bakteri yang ada di dalam sample penelitian.

Gambar 6. Hasil Pemotongan Gen
Menggunakan Enzim yang berbeda-beda

Database

Database adalah satu koleksi terorganisasi dari data terstruktur, yang disimpan dengan duplikasi item data yang minimum guna memberikan kolom pokok data yang konsisten dan teknis (Sumin, Soeparko, 1993). Database biasa didasarkan pada model atau pendekatan pengorganisasinya. Model-model database terdiri dari model hierarkis, model jaringan dan model relasional.

Model relasional merupakan model yang paling banyak digunakan saat ini. Model ini menggunakan sekumpulan tabel berdimensi dua (yang disebut relasi atau tabel), yang tersusun atas baris dan kolom (atribut). Tabel dirancang sedemikian rupa sehingga dapat menghilangkan duplikasi data dan menggunakan foreign key yaitu sembarang atribut yang menunjuk ke primary key (kunci yang mengidentifikasi baris dalam tabel) pada tabel lain, untuk hubungan dengan tabel lain.
Normalisasi

Istilah normalisasi berasal dari E.F.Codd, salah seorang perintis teknologi database.

Normalisasi adalah proses untuk mengubah suatu tabel yang memiliki masalah tertentu ke dalam dua buah tabel atau lebih yang tak memiliki masalah tersebut. Masalah yang dimaksud adalah anomali yang berarti proses pada database yang memberikan efek samping yang tidak diharapkan seperti menyebabkan ketidakkonsistenan data atau membuat data menjadi hilang ketika data lain dihapus.

Konsep dasar yang mendasari normalisasi adalah depdensi (ketergantungan). Depdensi menjelaskan hubungan antar atribut dimana suatu atribut menentukan nilai atribut lainnya.

Ada empat macam depedensi yaitu:
1. Depedensi fungsional
2. Depedensi sepenuhnya
3. Depedensi total
4. Depedensi transitif

Depedensi fungsional didefinisikan sebagai berikut:

Suatu atribut Y dikatakan mempunyai depedensi fungsional terhadap atribut X jika dan hanya jika setiap nilai X berhubungan dengan sebuah nilai Y.

definisi diatas dituangkan dalam bentuk notasi
\[X \rightarrow Y \]

Definisi Depedensi sepenuhnya sebagai berikut:

Suatu atribut Y mempunyai depedensi fungsional sepenuhnya terhadap atribut X jika:
1. Y mempunyai depedensi fungsional terhadap X
2. Y tidak memiliki depedensi terhadap bagian dari X

definisi diatas dituangkan dalam bentuk notasi
1. \[X \rightarrow Y \]
2. \[X,Z \rightarrow Y \]

Depedensi total didefinisikan sebagai berikut:

Suatu atribut Y mempunyai depedensi total terhadap atribut X jika
1. Y memiliki depedensi fungsional terhadap X

2. X mempunyai depedensi fungsional terhadap Y

definisi diatas dituangkan dalam bentuk notasi
\[X \leftrightarrow Y \]

Definisi Depedensi transitif sebagai berikut:

Atribut Z mempunyai depedensi transitif terhadap X bila:
1. Y memiliki depedensi fungsional terhadap X
2. Z memiliki depedensi fungsional terhadap Y

definisi diatas dituangkan dalam bentuk notasi
1. \[X \rightarrow Y \]
2. \[Y \rightarrow Z \]

Bentuk Normal

1. Bentuk normal pertama (1st NF)
2. Bentuk normal kedua (2nd NF)
3. Bentuk normal ketiga (3rd NF)
4. Bentuk normal Boyce-Codd (BCNF)
5. Bentuk normal keempat (4th NF)
6. Bentuk normal kelima (5th NF)

Bentuk normal pertama hingga ketiga merupakan bentuk normal yang umum dipakai. Artinya pada kebanyakan tabel, bila ketiga bentuk tersebut telah dipenuhi maka persosalan anomali tidak akan muncul lagi.

Bentuk normal pertama biasa dikenakan pada tabel yang belum ternormalisasi atau tabel yang memiliki nilai atribut yang berulang.

Definisi bentuk normal pertama adalah:
Suatu relasi dikatakan dalam bentuk normal pertama jika dan hanya jika setiap atribut bernilai tunggal untuk setiap baris.
Bentuk normal kedua didefinisikan sebagai berikut:
1. Berada pada bentuk normal pertama
2. Semua atribut bukan kunci memiliki ketergantungan sepenuhnya terhadap primary key.

Bentuk normal ketiga didefinisikan sebagai berikut:
1. Berada dalam bentuk normal kedua
2. Setiap atribut bukan kunci tidak memiliki depedensi transitif terhadap primary key

METODOLOGI PENELITIAN

Metode yang digunakan dalam penelitian ini adalah System Development Life Cycle (SDLC) yang terdiri dari fase analisis, fase desain, fase implementasi atau coding, fase pengujian dan fase pemeliharaan.

Analisis

Fase ini merupakan fase dimana dilakukan analisis tentang bagaimana bentuk sistem yang diinginkan oleh user dan bagaimana membangunya.

Langkah pertama yang dilakukan adalah melakukan pengidentifikasi kebutuhan user serta identifikasi user penggunanya dengan cara bertemu dengan user. Setelah itu dilakukan analisa teknik untuk mengetahui teknologi apa yang diperlukan untuk membangun sistem serta metode dan algoritma apa yang digunakan dalam membangun sistem.

Untuk mendapatkan gambaran yang lebih jelas mengenai sistem yang akan dibuat, maka dilakukan analisis pemodelan sistem untuk mengetahui apa yang menjadi input, bagaimana prosesnya dan apa yang akan menjadi output dari sistem. Pemodelan sistem digambarkan dalam bentuk ERD (Entity Relationship Diagram) untuk mengetahui hubungan antar data objek dan DFD (Data Flow Diagram) untuk mengetahui bagaimana data mengalir di dalam sistem.

Desain

Fase desain adalah proses dimana kebutuhan user ditranslasikan kedalam “blueprint” untuk membangun software. Pada fase ini dibentuk suatu model atau representasi dari entity yang akan dibuat dan digambarkan dalam bentuk system flow diagram.

Implementasi

Pada fase ini, hasil desain ditranslasikan kedalam mesin komputer dalam bentuk coding program dengan menggunakan bahasa pemrograman.

Pengujian

Proses pengujian difokuskan pada logika internal dari software, dengan asumsi bahwa semua statement telah diuji. Pada fungsi eksternal dilakukan pengujian untuk mengatasi kesalahan-kesalahan (errors) dan untuk memastikan bahwa input akan diperiksa untuk menghasilkan output yang diminta.

Metode yang digunakan dalam melakukan pengujian adalah metode black-box testing. Metode ini memfokuskan pada pengujian fungsi-fungsi dalam sistem sesuai dengan permintaan user. Metode ini digunakan untuk menemukan error pada beberapa kategori yaitu:
1. Kesalahan fungsi (Incorrect) atau fungsi yang hilang (missing function).
2. Kesalahan interface
3. Kesalahan pada struktur data atau pengaksesan database
4. Kesalahan performsa
5. Kesalahan inisialisasi dan kesalahan akhir (termination)

Pemeliharaan

Perubahan pada fungsi-fungsi yang ada pada sistem tidak mungkin dilakukan setelah diserahkan kepada user karena akan menyebabkan terjadinya error. Proses pemeliharaan sistem dilakukan oleh seorang administrator dengan melakukan pembaruan data sehingga data menjadi lebih mutakhir dan akurat setiap saat.

HASIL dan PEMBAHASAN

Sistem TRFLP merupakan sistem yang dapat melakukan pencarian nama bakteri berdasarkan jumlah enzim restriksi yang.
digunakan, forward primer, reverse primer, atau kedua-duanya, panjang T-RF, dan nama enzim restriksi yang digunakan untuk mengelakkan nama bakteri baik yang berupa hasil iris atau yang berdasarkan panjang T-RF nya secara otomatis. Sistem ini juga dapat melakukan proses updating data sehingga data yang ada menjadi lebih mutakhir dan akurat setiap saat.

Pada sistem ini, terdapat tiga komponen yang terdiri dari dua komponen utama yaitu searching untuk melakukan pencarian nama bakteri serta proses updating untuk melakukan update database dan satu komponen pendukung yaitu tambah admin.

A. Analisis

A.1 Analisis Identifikasi Kebutuhan User

Bentuk program yang diminta oleh user berupa stand alone dimana terdapat fungsi-fungsi:
1. Dapat meng-input jumlah enzim restriksi
2. Dapat meng-input nama forward primer, nama reverse primer, serta nama enzim restriksi dan panjang T-RF.
3. Dapat melakukan fungsi pencarian nama bakteri berdasarkan forward primer, reverse primer atau kedua-duanya baik berdasarkan panjang T-RF nya ataupun tidak
4. Dapat melakukan pengirisan nama bakteri berdasarkan input yang ada.
5. Dapat melakukan proses updating database
6. Dapat menampilkan output berupa nama bakteri hasil iris atau nama bakteri berdasarkan panjang T-RF nya.

A.2 Analisis Identifikasi User

User yang menggunakan sistem ini terbagi menjadi dua yaitu:

A.3 Analisis Teknik

Spekifikasi perangkat keras yang dibutuhkan dalam pembuatan program ini adalah komputer stand alone yang jerdari prosesor Pentium II 450 MHz dengan RAM 196 MB.

Spekifikasi perangkat lunak yang dibutuhkan yaitu sistem operasi Windows 98, Microsoft SQL Server 7.0 dan ADO 2.7

A.4 Analisis Pemodelan Sistem

A.4.1 Analisis Input

Input yang digunakan untuk proses pencarian terbagi tiga yaitu pencarian berdasarkan forward primer, reverse primer, atau bisa dilakukan berdasarkan kedua-duanya.

Input untuk pencarian berdasarkan forward primer adalah jumlah enzim yang digunakan, nama forward primer, nama enzim restriksi dan panjang T-RF. Sedangkan input untuk pencarian berdasarkan reverse primer yaitu jumlah enzim yang digunakan, nama reverse primer, nama enzim restriksi dan panjang T-RF. Untuk pencarian berdasarkan forward primer dan reverse primer, maka yang menjadi input adalah jumlah enzim yang digunakan, nama forward primer, nama reverse primer, nama enzim restriksi dan panjang T-RF. Jumlah Panjang T-RF sama dengan jumlah enzim restriksi yang digunakan. Panjang T-RF bersifat optional artinya tergantung user apakah ingin mengisi panjang T-RF atau tidak.

Untuk proses updating, yang menjadi inputnya adalah nama forward, bentuk forward, nama reverse, bentuk reverse, nama enzim dan bentuk enzim. Sedangkan untuk proses tambah admin yang menjadi inputnya adalah nama admin dan passwordnya. Context diagram untuk sistem ini dapat dilihat pada gambar 7.

Gambar 7. Context Diagram
A.4.2.2 Analisis Proses Pencarian

Pada proses pencarian, bentuk input harus dilihat apakah berasal dari proses pencarian berdasarkan forward primer, reverse primer atau berdasarkan kedua-duanya.

Cara kerja proses pencarian berdasarkan reverse primer prinsipnya sama dengan proses pencarian berdasarkan forward primer yaitu mengambil kode nama reverse dari tabel reverse dan kode nama enzym dari tabel enzym. Bedanya yaitu pada pencarian kode gabungan, karena yang akan diambil hanya semua reverse primer dan enzim reaksi yang sesuai dengan input, tanpa melihat forward primer-nya. Perbedaan lainnya adalah jika panjang T-RF dimasukkan maka panjang T-RF tersebut akan diambil dari field reverse yang ada pada tabel bakteri.

Untuk proses pencarian berdasarkan forward primer dan reverse primer, kode gabungannya terbentuk dari forward primer, reverse primer dan enzim reaksi yang sesuai dengan input. Jika panjang T-RF dimasukkan, maka panjang tersebut akan diambil dari field forward dan reverse yang ada pada tabel bakteri.

Setelah input untuk proses pencarian dimasukkan dan kode gabungan didapat maka informasi bakteri berdasarkan kode gabungan tersebut akan disimpan kedalam tabel sementara. Hal ini dimaksudkan agar proses pencarian menjadi lebih cepat dan juga untuk mempermudah proses pengisian nama bakteri jika enzim reaksi yang dimasukkan lebih dari satu. Untuk lebih jelasnya dapat dilihat pada DFD level 3 proses 1.1, 1.2 dan 1.3 yang ada pada lampiran 1.

Output yang didapat dari proses pencarian ini adalah nama-nama bakteri dan panjang T-RF-nya berdasarkan input yang dimasukkan.

A.4.2.2.2 Analisis Proses Updating

Proses updating data diperlukan agar jika ditemukan nama bakteri baru berdasarkan forward primer, reverse primer dan enzim reaksi yang baru maka data-data tersebut dapat dimasukkan sehingga data-data yang ada menjadi lebih mutakhir dan akurat setiap saat.

Proses updating hanya dapat dilakukan oleh seorang administrator yang telah melakukan login. Proses login ini diperlukan agar tidak sembarangan user yang dapat melakukan peng-update-an database.

Untuk melakukan updating data pada sistem TRFLP, maka semua input untuk proses update harus diisi, jika tidak maka proses ini tidak bisa dilakukan. Setelah input dimasukkan, akan dilihat apakah nama forward, nama reverse dan nama enzym sudah ada pada tabel forward, tabel reverse dan tabel enzym. Jika ada, data yang lama akan diganti dengan data yang baru.

Agar lebih jelas maka proses updating ini dapat dilihat pada DFD level 1.2 Update yang ada pada lampiran 1.

A.4.2.3 Analisis Proses Tambah Admin

Pada sistem ini terdapat proses tambah admin, hal ini dimaksudkan agar jumlah administrator yang berkaitan dalam melakukan proses peng-update-an database bisa lebih dari satu orang. Jika pada tabel password yang berisi informasi tentang admin, belum terdapat super admin, maka ketika sistem pertama kali
dijalankan, akan diminta nama dan password dari super admin untuk disimpan kedalam tabel password. Setelah itu super admin berhak melakukan penambahan, penghapusan dan peng-update-an admin baru dengan memasukkan nama admin dan passwordnya.

A.4.3 Analisis Output

A.4.4 Analisis Database
Program TRFLP memilki database yang bernama TRFLP. Database TRFLP terdiri dari tabel forward, tabel reverse, tabel enzim, tabel kode, tabel bakteri, tabel password dan tabel update.

A.4.4.1 Analisis Tabel
A.4.4.1.1 Tabel Forward
Tabel forward digunakan untuk menyimpan nama-nama forward, bentuknya dan kode forward. Bentuk tabel forward didefinisikan sebagai berikut :

TblForward (Kode Forward, Nama Forward, Bentuk Forward)

Ada tiga atribut pada tabel forward yaitu Nama Forward, Bentuk Forward dan Kode Forward. Primary key pada tabel forward adalah Kode Forward.

Proses pembentukan Kode Forward dilakukan dengan cara memberikan huruf ‘F’ sebagai huruf pertama dari kode forward dan diikuti dengan dua digit bilangan nominal. Hal ini dimaksudkan untuk mengantisisi banyaknya nama reverse baru yang akan ditemukan. Dengan dua digit nominal yang digunakan maka sistem ini dapat menampilkan nama reverse hingga sembilan puluh sembilan (99) buah. Hal ini karena pada kenyataannya, jumlah reverse yang biasa digunakan pada penelitian kurang dari dua puluh buah, sehingga jumlah reverse sebanyak sembilan puluh sembilan buah sudah dirasa cukup.

Jika ditemukan nama reverse baru maka pada proses peng-update-an, nilai kode forward yang baru adalah jumlah record nama forward yang ada didalam database ditambah satu.

Untuk lebih jelas mengenai struktur tabel forward dapat dilihat pada lampiran 2, tabel 1.

A.4.4.1.2 Tabel Reverse
Tabel reverse digunakan untuk menyimpan nama-nama reverse, bentuk reverse dan kodenya. Bentuk tabel reverse didefinisikan sebagai berikut :

TblReverse (Kode Reverse, Nama Reverse, Bentuk Reverse)

Tabel reverse mempunyai tiga atribut yaitu Nama Reverse, Bentuk Reverse dan Kode Reverse. Yang menjadi primary key pada tabel reverse adalah Kode Reverse.

Proses pembentukan Kode Reverse dilakukan dengan cara memberikan huruf ‘R’ sebagai huruf pertama dari kode reverse kemudian diikuti dengan dua digit bilangan nominal. Hal ini dimaksudkan untuk mengantisisi banyaknya nama reverse baru yang akan ditemukan. Dengan dua digit nominal yang digunakan maka sistem ini dapat menampilkan nama reverse hingga sembilan puluh sembilan (99) buah. Hal ini karena pada kenyataannya, jumlah reverse yang biasa digunakan pada penelitian kurang dari dua puluh buah, sehingga jumlah reverse sebanyak sembilan puluh sembilan buah sudah dirasa cukup.

Jika ditemukan nama reverse baru maka pada proses peng-update-an, nilai kode reverse yang baru adalah jumlah record nama reverse yang ada didalam database ditambah satu.

Struktur dari tabel dapat dilihat pada lampiran 2, tabel 2.

A.4.4.1.3 Tabel Enzym
Tabel Enzym digunakan untuk menyimpan nama-nama enzim, bentuknya dan kodenya. Bentuk dari tabel enzim dapat didefinisikan sebagai berikut :

TbIEnzym (Kode Enzym, Nama Enzym, Bentuk Enzym)

Attribut yang ada pada tabel enzym yaitu Nama Enzym, Bentuk Enzym dan Kode Enzym. Primary key pada tabel enzym adalah kode enzym.

Proses pembentukan Kode Enzym dilakukan dengan cara memberikan huruf 'E' sebagai huruf pertama dari kode enzym dan diikuti dengan tiga digit bilangan nominal. Hal ini dimaksudkan untuk mengantisipasi banyaknya nama enzym baru yang akan ditemukan. Dengan dua digit nominal yang digunakan maka sistem ini dapat menampung nama enzym hingga sembilan puluh sembilan (99) buah. Hal ini karena pada kenyataannya, jumlah enzym yang biasa digunakan pada penelitian kurang dari dua puluh buah, sehingga jumlah enzym sebanyak sembilan puluh sembilan buah sudah dirasa cukup.

Jika ditemukan nama enzym baru maka pada proses peng-update-an, nilai kode enzym yang baru adalah jumlah record nama enzym yang ada didalam database ditambah satu.

Struktur dari tabel dapat dilihat pada lampiran 2, tabel 3.

A.4.4.1.1 Tabel Kode

Tabel kode berisi kode-kode dari forward, reverse dan enzym. Kode-kode tersebut membentuk kode gabungan yang menjadi primary key pada tabel ini. Bentuk dari tabel kode didefinisikan sebagai berikut:

TbIKode (Kode Gabungan, Kode Forward, Kode Reverse, Kode Enzym)

A.4.4.1.5 Tabel Bakteri

Tabel bakteri merupakan file teks yang berasal dari http://hermes.campus.uidaho.edu dan telah dirubah kedalam bentuk SQL Server dan ditambah dengan dua field yaitu Kode Gabungan dan Nomor Urut sebagai primary key-nya. Field Kode Gabungan digunakan untuk menghubungkan tabel bakteri dengan tabel nama karena untuk membuka nama-bakteri diperlukan gabungan dari kode-kode forward, reverse dan enzim. Nomor Urut digunakan untuk mengetahui nama-nama bakteri berdasarkan Kode Gabungan. Sedangkan field-field yang berasal dari file teks yaitu field forward, reverse, Accession Number, Locus dan Nama Bakteri. Bentuk tabel bakteri didefinisikan sebagai berikut:

TbIBakteri (Kode Gabungan, No Urut, Forward, Reverse, Accession Number, Locus, Nama Bakteri)

Struktur dari tabel bakteri dapat dilihat pada lampiran 2, tabel 5.

A.4.4.1.6 Tabel Password

Tabel password digunakan untuk menyimpan nama admin dan passwordnya. Bentuk dari tabel password didefinisikan sebagai berikut:

TbIPassword (User Name,Password, Keterangan)

Attribut yang ada pada tabel password yaitu User Name, Password dan Keterangan, sedangkan yang bertindak sebagai Primary key-nya adalah User Name dan Password. Struktur tabel password dapat dilihat pada lampiran 2, tabel 6.

A.4.4.1.7 Tabel Update

Tabel update digunakan untuk menyimpan informasi peng-update-an terakhir yang telah dilakukan. Bentuk tabel update didefinisikan sebagai berikut:

TbIUpdate(No Urut, User_Name,Tanggal, Jam, Nama Forward, Nama Reverse, Nama Enzym)

Ada tujuh atribut pada tabel update yaitu No Urut sebagai primary key-nya, User Name, Tanggal, Jam, Nama Forward, Nama Reverse dan Nama Enzym. Struktur tabel update dapat dilihat pada lampiran 2, tabel 7.

A.4.4.2 Analisis Entity Relationship Diagram

Bentuk entity relationship diagram dari tabel-tabel yang ada dalam database TRFLP dapat dilihat pada gambar 8.
A.4.4.3 Analisis Normalisasi Database

Database ini telah memenuhi bentuk normalisasi pertama (1NF) dimana atribut pada setiap tabelnya telah berhak tunggal untuk setiap baris.

Database ini juga telah memenuhi bentuk normal kedua (2NF) karena telah memenuhi bentuk normal pertama dan setiap atribut bukan kunci pada setiap tabelnya memiliki ketergantungan sepenuhnya terhadap primary key. Ini dapat dilihat pada Tabel Forward (Kode Forward, Nama Forward, Bentuk Forward) dimana atribut Nama Forward dan Bentuk Forward memiliki ketergantungan sepenuhnya kepada Kode Forward sebagai primary key-nya.

Kode Forward \(\rightarrow\) (Nama Forward, Bentuk Forward)

Pada Tabel reverse (Kode Reverse, Nama Reverse, Bentuk Reverse), atribut Nama Reverse dan Bentuk Reverse memiliki ketergantungan sepenuhnya kepada Kode Reverse sebagai primary key-nya.

Kode Reverse \(\rightarrow\) (Nama Reverse, Bentuk Reverse)

Pada Tabel Enzym (Kode Enzym, Nama Enzym, Bentuk Enzym), atribut Nama Enzym dan Bentuk Enzym memiliki ketergantungan sepenuhnya kepada Kode Enzym sebagai primary key-nya.

Kode Enzym \(\rightarrow\) (Nama Enzym, Bentuk Enzym)

Pada Tabel Kode (Kode Gabungan, Kode Forward, Kode Reverse, Kode Enzym), atribut Kode Forward, Kode Reverse dan Kode Enzym memiliki ketergantungan sepenuhnya kepada Kode Gabungan sebagai primary key-nya.
Kode Gabungan → (Kode Forward, Kode Reverse, Kode Enzym)

Pada Tabel Bakteri (Kode Gabungan, No Urut, Forward, Reverse, Accession Number, Locus, Nama Bakteri), atribut Forward, Reverse, Accession Number, Locus dan Nama Bakteri memiliki ketergantungan sepenuhnya kepada Kode Gabungan dan No Urut sebagai primary key-nya.

(Kode Gabungan, No Urut) → (Forward, Reverse, Accession Number, Locus, Nama Bakteri)

Pada tabel Password (User Name, Password, Keterangan), atribut Keterangan memiliki ketergantungan sepenuhnya kepada User Name dan Password sebagai primary key-nya.

(User Name, Password) → (Keterangan)

Pada Tabel Update (No Urut, User Name, Tanggal, Jam, Nama Forward, Nama Reverse, Nama Enzym), atribut User Name, Tanggal, Jam, Nama Forward, Nama Reverse dan Nama Enzym memiliki ketergantungan sepenuhnya kepada No Urut sebagai primary key-nya.

(No Urut) → (User Name, Tanggal, Jam, Nama Forward, Nama Reverse, Nama Enzym)

Database TRFLP ini juga telah memenuhi bentuk normal ketiga (3rd NF) karena telah memenuhi bentuk normal kedua dan tidak ada atribut pada setiap tabelnya yang memiliki dependensi transitif kepada primary key-nya.

A.4.5 Data Flow Diagram

Data yang mengalir dalam sistem ini dapat dilihat pada DFD level 1, level 2 dan level 3 dapat dilihat pada lampiran 1.

B. Desain

B.1 Desain Input

Desain input untuk Searching baik berdasarkan forward primer, berdasarkan reverse primer atau berdasarkan kedua-duanya pada sistem TRFLP dapat dilihat pada gambar 9,10 dan 11, sedangkan untuk desain Update dapat dilihat pada gambar 12. Untuk desain tambah admin dapat dilihat pada gambar 13.
Gambar 11. Desain Input untuk Searching berdasarkan forward primer dan reverse primer

Ket: ER : Enzim Restriksi
 P.T-RF : Panjang T-RF

Gambar 12. Desain Input untuk Update

Gambar 13. Desain Tambah Admin

Gambar 14. Desain Password Admin

B.2 Desain Proses

Pada desain proses digunakan metode pencarian menggunakan structured query language (SQL) berdasarkan query dari tabel-tabel yang ada di dalam database.

Query yang dilakukan untuk mencari nama forward didalam database adalah:

\[
SQL = \text{"select kode_forward from tblforward where bentuk_forward=\""} & \text{Trim(Right(cmb Forward.Text, Len(cmb Forward.Text) - (InStr(1, cmb Forward.Text, \"\") + 2)))} & \text{\"\"
}
\]

\[
fwd = x|kode_forward
\]

Query yang dilakukan untuk mencari nama reverse didalam database adalah:

\[
SQL = \text{"select kode_reverse from tblreverse where bentuk_reverse=\""} & \text{Trim(Right(cmb_reverse.Text, Len(cmb_reverse.Text) - (InStr(1, cmb_reverse.Text, \"\") + 2)))} & \text{\"\"
}
\]

\[
rvs = x|kode_reverse
\]
Sedangkan query yang dilakukan untuk mencari nama enzim didalam database adalah:

For z = 1 To CInt(jum_enzim)
SQL = "select kode_enzim from tblenzim where nama_enzim=" & Trim(Mid(ArrayInput(z, 0), 1, (Instr(1, ArrayInput(z, 0), "=") - 3))) & "," & " enz(z) = x1kode_enzim"
Next

Untuk pencarian nama bakteri berdasarkan forward primer, setelah kode forward dan kode enzim terambil maka akan dibentuk tabel sementara berdasarkan kode gabungannya. Query untuk pembentukan tabel sementara adalah:

For z = 1 To CInt(jum_enzim)
SQL = "create view x" & z - 1 & "," & * as select * from tblbakteri where kodegabungan like "%" & fwd & "," & " & enz(z) & ","
Next

Sedangkan untuk pencarian berdasarkan forward dan menggunakan panjang T-RF, query yang dilakukan adalah:

For z = 1 To CInt(jum_enzim)
SQL = "create view x" & z - 1 & "," & * as select * from tblbakteri where kodegabungan like "%" & fwd & "," & " & enz(z) & ","
Next

Query yang dilakukan untuk melakukan proses iris'an nama bakteri adalah:

SQL = "select x0.namabakteri"
Next

SQL = SQL & " from"
If z = 1 Then
SQL = SQL & " x" & z - 1
Else
For i = 0 To z - 2
SQL = SQL & " x" & i
If i <> 0 Then
End If
Next

End If

If z > 2 Then
SQL = SQL & " where"
For i = 0 To z - 3
SQL = SQL & " x" & i & ",x0.nourut=" & i - 1 & ",x0.nourut"
End If
If i < z - 2 Then
SQL = SQL & " inner join "
End If
Next
End If

Untuk pencarian berdasarkan reverse primer tanpa panjang T-RF, query yang dilakukan untuk pembentukan tabel sementara adalah:

For z = 1 To CInt(jum_enzim)
SQL = "create view x" & z - 1 & "," & * as select * from tblbakteri where kodegabungan like "%" & rvs & enz(z) & ","
Next

Sedangkan pencarian berdasarkan reverse dengan panjang T-RF, query yang dilakukan adalah:

For z = 1 To CInt(jum_enzim)
SQL = "create view x" & z - 1 & "," & * as select * from tblbakteri where kodegabungan like "%" & rvs & enz(z) & ","
Next

Query yang dilakukan untuk melakukan proses iris'an nama bakteri adalah:

SQL = "select x0.namabakteri"
For i = 0 To z - 2
SQL = SQL & ",x" & i & ",".reverse
Next
SQL = SQL & " from"

If z = 1 Then
 SQL = SQL & " x" & z - 1
Else
 For i = 0 To z - 2
 SQL = SQL & " x" & i &
 If i <> 0 Then
 SQL = SQL & " on x" & i & " nourut= x" & i - 1 &
 End If
 If i < z - 2 Then
 SQL = SQL & " inner join
 End If
 Next
End If

If z > 2 Then
 SQL = SQL & " where"
 For i = 0 To z - 3
 SQL = SQL & " x" & i &
 " namabakteri=x" & i + 1 & " namabakteri
 If i <> z - 3 Then
 SQL = SQL & " and
 End If
 Next
End If

SQL = SQL & " order by x0.reverse

Ungi pencarian berdasarkan forward dan reverse tanpa panjang T-RF, maka query yang dilakukan untuk pembentukan tabel sementara adalah :

For z = 1 To Clnt(jum_enzim)
 SQL = " create view x" & z - 1 & " as select kodedegubungan from tblkode where kodedegubungan = " & fwd & " and koredge = " & rvs & " and
 koredge = " & reverse & " and
 koredge = " & enz(z) & " in
next

Sedangkan query yang dilakukan untuk melakukan pencarian berdasarkan forward dan reverse dengan menggunakan panjang T-RF adalah :

For z = 1 To Clnt(jum_enzim)
 SQL = " create view x" & z - 1 & " as select kodedegubungan from tblkode where kodedegubungan = " & fwd & " and
 koredge = " & rvs & " and
 koredge = " & reverse & " and
 koredge = " & enz(z) & " in
next

Query yang dilakukan untuk melakukan proses irisan nama bakteri adalah :

SQL = "select x0.namebakteri
 For i = 0 To z - 2
 SQL = SQL & ", x" & i &
 Next

For i = 0 To z - 2
 SQL = SQL & ", x" & i &
Next

SQL = SQL & " from"
 If z = 1 Then
 SQL = SQL & " x" & z - 1
 Else
 For i = 0 To z - 2
 SQL = SQL & " x" & i &
 If i <> 0 Then
 SQL = SQL & " on x" & i &
 End If
 If i < z - 2 Then
 SQL = SQL & " inner join
 End If
 Next
End If

SQL = SQL & " order by x0.forward

Untuk proses-proses yang terjadi didalam sistem dapat dilihat pada system flow diagram yang ada pada lampiran 4.
B.3 Desain Output

Desain output untuk Pencarian pada sistem TRFLP dapat dilihat pada gambar 15.

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>Panjang 1</th>
<th>Panjang 2</th>
<th>Panjang 3</th>
<th>Panjang 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakteri 1</td>
<td>Panjang 1</td>
<td>Panjang 2</td>
<td>Panjang 3</td>
<td>Panjang 4</td>
</tr>
</tbody>
</table>

Gambar 15. Desain Output Untuk Searching

B.4 Desain Database

Hasil analisis database TRFLP yang telah dibuat ditunjukkan kedalam bentuk database sebenarnya dengan menggunakan software Microsoft SQL Server 7.0.

Database TRFLP terdiri dari tabel forward, tabel reverse, tabel enzyg, tabel kode, tabel bakteri, tabel password dan tabel update. Bentuk hubungan antar tabel (entity relationships) pada database TRFLP dapat dilihat pada gambar 8.

C. Implementasi

Hasil desain input, proses dan output yang telah dibuat diimplementasikan kedalam bentuk program menggunakan bahasa pemrograman Visual Basic 6.0, bentuk implementasi ini dapat dilihat pada lampiran 7. Hasil desain database yang telah dibuat diimplementasikan menggunakan Microsoft SQL Server 7.0 dan bentuk implementasi serta isi database-nya dapat dilihat pada lampiran 6. Data forward yang telah dimasukkan kedalam database TRFLP saat ini sebanyak 2 buah, data reverse sebanyak 1 buah dan data enzyg sebanyak 37 buah. Dengan mengkombinasikan data forward, reverse dan enzyg tersebut maka didapat nama-nama bakteri sebanyak 5992 buah pada database TRFLP.

D. Pengujian

Pengujian program dilakukan dengan menggunakan metode blackbox dimana user atau penguku akan membandingkan output yang dihasilkan dengan output yang diharapkan. Pengujian dilakukan oleh programmer dan user pengguna. Dengan menggunakan metode ini programmer menemukan kesalahan (error) sistem pada beberapa kategori yaitu:

1. Kesalahan pada struktur data

Desain database yang salah telah menyebabkan terjadinya kesalahan pada pengaksesan data nama bakteri didalam database.

2. Kesalahan performa

Kesalahan dalam melakukan query yang digunakan untuk melakukan proses pencarian nama bakteri menyebabkan proses pencarian tidak bisa dilakukan jika menggunakan enzyg restriksi lebih dari lima buah.

Sedangkan user pengguna melakukan pengujian untuk mengetahui apakah fungsi-fungsi yang ada pada sistem telah sesuai dengan tujuan pembuatan sistem. Pengujian dilakukan dalam beberapa kasus berdasarkan requirement yang ada. Setelah dilakukan pengujian, maka dapat disimpulkan bahwa fungsi-fungsi yang ada telah sesuai dengan tujuan pembuatan sistem. Bentuk pengujianya dapat dilihat pada lampiran 5.

User pengguna juga melakukan pengujian terhadap interface sistem dan terdapat kesalahan pada interface yaitu:

1. Adanya kesalahan dalam mendesain interface sistem menyebabkan sistem mengeluarkan nama enzyg dan nama bakteri dengan tidak teratur sehingga user pengguna mengalami kesulitan dalam melakukan pencarian nama bakteri.

2. Adanya kesalahan pemberian nama untuk panjang T-RF berdasarkan enzyg yang digunakan.

E. Pemeliharaan

Setelah sistem TRFLP selesai dibuat dan mulai digunakan, maka diperlukan pemeliharaan program agar sistem dapat berjalan dengan baik. Dua aspek yang perlu diperhatikan dalam pemeliharaan sistem yaitu:

2. Pengaturan user yang berhak untuk melakukan perubahan database.
Kelebihan Sistem

Kelebihan sistem TRFLP yang dikembangkan ini adalah:

1. Dapat melakukan proses pencarian nama bakteri berdasarkan forward primer, reverse primer atau berdasarkan kedua-duanya.
2. Dapat melakukan pencarian nama bakteri dengan menggunakan satu enzym restriksi atau dengan menggunakan perbandingan banyak enzim restriksi.
3. Dapat melakukan pencarian nama bakteri berdasarkan panjang TRF-nya.
4. Dapat melakukan proses updating sehingga administrator dapat dengan mudah meng-update nama-nama bakteri agar data-data yang ada akan menjadi lebih mutakhir dan akurat setiap saat.
5. Dapat melakukan penambahan admin hingga lima orang.
6. Tampilan sistem yang bersifat user-friendly sehingga mempermudah user dalam menggunakan.
7. Dapat mengetahui informasi tentang peng-update-an terakhir yang telah dilakukan.

Keterbatasan Sistem

Keterbatasan sistem TRFLP yang dikembangkan ini adalah administrator harus sering mengecek apakah ada penambahan data pada website http://hermes.campus.uidaho.edu tempat sumber file teks berada untuk mengatasi apakah ada data baru atau tidak.

KESIMPULAN DAN SARAN

Kesimpulan

Penelitian tentang pembuatan sistem TRFLP ini bertujuan untuk membuat suatu sistem yang dapat melakukan proses pencarian nama bakteri berdasarkan jumlah enzim restriksi yang ingin digunakan, forward primer, reverse primer, atau kedua-duanya, panjang T-RF dan nama enzim restriksi yang digunakan. Selain itu dapat juga dilakukan proses updating dengan tujuan jika ditemukan nama bakteri baru berdasarkan forward primer, reverse primer dan enzim restriksi yang baru maka data-data tersebut dapat dimasukkan kedalam database sehingga data-data yang ada menjadi lebih mutakhir dan akurat setiap saat.

Selama dalam penelitian banyak hal-hal yang dialami baik itu pengetahuan-pengetahuan baru ataupun kesulitan-kesulitan. Pengetahuan-pengetahuan baru tersebut adalah mempelajari teori-teori dasar tentang bioinformatika. Sedangkan kesulitan-kesulitan yang dialami adalah membuat database yang sesuai dengan aturan normalisasi serta merubah bentuk file teks kedalam bentuk SQL Server.

Sedangkan keterbatasan sistem TRFLP yaitu administrator harus sering mengecek website http://hermes.campus.uidaho.edu tempat sumber file teks berada untuk mengetahui apakah ada data baru atau tidak.

Sistem TRFLP ini dikembangkan menggunakan Microsoft Visual Basic 6.0 dan ADO 2.7 sebagai bahasa pemrogramannya, serta Microsoft SQL Server 7.0 sebagai database-nya.

Saran

Berdasarkan keterbatasan sistem yang ada, maka perlu dilakukan suatu hal pada pembangunan sistem ini selanjutnya sehingga sistem ini dapat menjadi lebih baik. Hal tersebut
Prawirohartono, Slamet, Suhargono Hadisumarto, Sains Biologi3A, PT.Bumi Aksara, Jakarta, 1999

Schramm, Andreas, Rudolf Amann, 5 Nucleic Acid-Based Techniques for Analyzing the Diversity, Structure, and Dynamics of Microbial Communities in Wastewater Treatment, http://www.wiley.com/legacy/legacy.html/pdfla_nuc.pdf

Shyu, C. J.A. Foster, K.X. Liao, S.J. Bent, K. Sales, L.J. Forney, T. Soule, Microbial Community Analysis (MiCA): Web-Based Computational Tools for the Analysis of Microbial Community Structure and Composition Based on Terminal Restriction Fragment Length Polymorphism (T-RFLP) of 16S DNA Genes (R-18), http://hermes.campus.uidaho.edu/docs/MiC_A%20Poster.pdf

Sumin, Agus, Soepono Soepratman, Pengantar Ilmu Komputer, Gunadarma, 1995

LAMPIRAN
Lampiran 1. Data Flow Diagram

Simbol:

- **External Entity**: Merepresentasikan eksternal input atau sebagai terminator
- **Process**: Merepresentasikan proses data
- **Data Objek**: Data Objek, Tanda panah menunjukkan arah dari aliran data
- **Data Store**: Tempat penyimpanan data

Gambar 16. DFD Level 1

Gambar 17. DFD Level 2 Proses 1. Pencarian
Lanjutan

Gambar 18. DFD Level 2 Proses 2. Update
Gambar 19. DFD Level 2 Proses 3. Tambah Admin

Gambar 20. DFD Level 3 Proses 1.1. Pencarian Berdasarkan Forward Primer
Gambar 21. DFD Level 3 Proses 1.2. Pencarian Berdasarkan Reverse Primer

Gambar 22. DFD Level 3 Proses 1.3. Pencarian Berdasarkan Forward Primer & Reverse Primer
Lampiran 2. Struktur Tabel-tabel pada Database TRFLP

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Forward</td>
<td>Char</td>
<td>30</td>
<td>Menyimpan nama-nama forward</td>
</tr>
<tr>
<td>Bentuk Enzim</td>
<td>Char</td>
<td>30</td>
<td>Menyimpan bentuk dari reverse</td>
</tr>
<tr>
<td>Kode Forward (PK)</td>
<td>Char</td>
<td>3</td>
<td>Menyimpan kode forward</td>
</tr>
</tbody>
</table>

Tabel 1. Struktur Tabel Forward

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Reverse</td>
<td>Char</td>
<td>30</td>
<td>Menyimpan nama-nama reverse</td>
</tr>
<tr>
<td>Bentuk Reverse</td>
<td>Char</td>
<td>30</td>
<td>Menyimpan bentuk dari reverse</td>
</tr>
<tr>
<td>Kode Reverse (PK)</td>
<td>Char</td>
<td>3</td>
<td>Menyimpan kode reverse</td>
</tr>
</tbody>
</table>

Tabel 2. Struktur Tabel Reverse

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Enzim</td>
<td>Char</td>
<td>30</td>
<td>Menyimpan nama-nama enzim</td>
</tr>
<tr>
<td>Bentuk Enzim</td>
<td>Char</td>
<td>10</td>
<td>Menyimpan bentuk dari enzim</td>
</tr>
<tr>
<td>Kode Enzim (PK)</td>
<td>Char</td>
<td>3</td>
<td>Menyimpan kode Enzim</td>
</tr>
</tbody>
</table>

Tabel 3. Struktur Tabel Enzim

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kode Forward</td>
<td>Char</td>
<td>3</td>
<td>Berisi kode forward</td>
</tr>
<tr>
<td>Kode Reverse</td>
<td>Char</td>
<td>3</td>
<td>Berisi kode reverse</td>
</tr>
<tr>
<td>Kode Enzim</td>
<td>Char</td>
<td>3</td>
<td>Berisi kode enzim</td>
</tr>
<tr>
<td>Kode Gabungan (PK)</td>
<td>Char</td>
<td>9</td>
<td>Berisi gabungan dari kode forward, reverse dan enzim</td>
</tr>
</tbody>
</table>

Tabel 4. Struktur Tabel Kode
Lanjutan

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kode Gabungan (PK)</td>
<td>Char</td>
<td>9</td>
<td>Berisi gabungan dari kode forward, reverse dan enzim</td>
</tr>
<tr>
<td>No Urut (PK)</td>
<td>Numeric</td>
<td>9</td>
<td>Menyimpan nomor urut nama-nama bakteri berdasarkan Kode Nama</td>
</tr>
<tr>
<td>Forward</td>
<td>Numeric</td>
<td>9</td>
<td>Menyimpan hasil pemotongan dari forward yang digunakan</td>
</tr>
<tr>
<td>Reverse</td>
<td>Numeric</td>
<td>9</td>
<td>Menyimpan hasil pemotongan dari reverse yang digunakan</td>
</tr>
<tr>
<td>Accession Number</td>
<td>Char</td>
<td>100</td>
<td>Identitas bakteri</td>
</tr>
<tr>
<td>Locus</td>
<td>Char</td>
<td>100</td>
<td>Menyimpan nama lokasi DNA bakteri ketika dilakukan restriksi</td>
</tr>
<tr>
<td>Nama Bakteri</td>
<td>Char</td>
<td>100</td>
<td>Menyimpan nama-nama bakteri</td>
</tr>
</tbody>
</table>

Tabel 5. Struktur Tabel Bakteri

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>Nvarchar</td>
<td>50</td>
<td>Menyimpan Nama admin</td>
</tr>
<tr>
<td>Password</td>
<td>Char</td>
<td>10</td>
<td>Menyimpan password admin</td>
</tr>
<tr>
<td>Keterangan</td>
<td>Char</td>
<td>2</td>
<td>Menyimpan Keterangan apakah admin adalah super admin atau admin biasa</td>
</tr>
</tbody>
</table>

Tabel 6. Struktur Tabel Password

<table>
<thead>
<tr>
<th>Field</th>
<th>Tipe</th>
<th>Lebar</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Urut</td>
<td>numeric</td>
<td>9</td>
<td>Sebagai Primary Key</td>
</tr>
<tr>
<td>User Name</td>
<td>Nvarchar</td>
<td>50</td>
<td>Menyimpan Nama Admin Yang Bertanggung Jawab Melakukan Update</td>
</tr>
<tr>
<td>Tanggal</td>
<td>Char</td>
<td>10</td>
<td>Menyimpan informasi tanggal terakhir peng-update-an</td>
</tr>
<tr>
<td>Jam</td>
<td>Char</td>
<td>10</td>
<td>Menyimpan informasi waktu terakhir peng-update-an</td>
</tr>
<tr>
<td>Nama Forward</td>
<td>Nvarchar</td>
<td>50</td>
<td>Menyimpan Nama Forward Yang Telah di Update terakhir kali</td>
</tr>
<tr>
<td>Nama Reverse</td>
<td>Nvarchar</td>
<td>50</td>
<td>Menyimpan Nama Reverse Yang Telah di Update terakhir kali</td>
</tr>
<tr>
<td>Nama Enzym</td>
<td>Nvarchar</td>
<td>50</td>
<td>Menyimpan Nama Enzym Yang Telah di Update terakhir kali</td>
</tr>
</tbody>
</table>

Tabel 7. Struktur Tabel Update
Lampiran 3. Contoh Bentuk File Teks dengan Forward Primer=ARC-112F,
Reverse Primer=ARC-533R dan Enzym Restrikai=ACC II

University of Idaho
Initiative for Bioinformatics and Evolutionary Studies (IBEST)
Department of Biological Science
Department of Computer Science
Forward Primer: GCTACGTAACACGTGG
Reverse Primer: TTACCACGGCGCGTGGCA
Enzyme: CG•CG

Forward,"Reverse","Accession Number","Locus","Bacteria Name"
36,132,"U17593|g8941690","Har.vallis","Haloarcula vallismortis ATCC 29715 (T)."
36,132,"D50851|g1902934","Har.valli2","Haloarcula vallismortis."
36,132,"AB010964|g4115512","AB010964","Haloarcula sp. str. 801030/1.
36,132,"U68539|g1655952","Har.hispian","Haloarcula hispanica str. Y27 ATCC 33960 (T)."
36,132,"U68537|g1655948","U68537","Haloarcula sp. str. EI1."
36,132,"U68539|g1655950","U68539","Haloarcula sp. str. E2."
36,132,"AB000563|g1805355","AB000563","Haloarcula aidiensis str. B-2."
36,132,"D50849|g1877021","Har.argentii","Haloarcula argentiniensis."
36,132,"D28872|g517106","Har.japonii","Haloarcula japonica str. TR-1 JCM 7785 (T)."
36,132,"D14130|g5332827","Har.sinaiz","Haloarcula sinaizensis ATCC 33800."
36,132,"D14129|g5332826","Har.sinaiz","Haloarcula sinaizensis ATCC 33800."
36,132,"X61688","Har.marisol","Haloarcula marisolitri str. clone HC8 [gene=rnA operon]."
36,132,"AF034619|g3377778","AF034619","Haloarcula marisolitri."
36,132,"AB010965|g4115513","AB010965","Haloarcula sp. str. 801030/1."
36,132,"D43628|g1109639","Ntc.amyli","Natriococcus amylovitiostr str. Ah-36 JCM 9655 (T)."
66,132,"AF002984|g3598782","Hg.borinqueti","Halogeometricium borinquense str. PR 3 ATCC 700274 (T)."
80,132,"AF069950|g3293535","AF069950","Halofex D1227 str. D1227."
93,132,"Z28378|g4353999","Ntc.occult","Natronococcus occultus ATCC 43101 (T)."
94,127,"AB019758|g5821224","AB019758","clone pISA16."
94,126,"AB019759|g5821225","AB019759","clone pISA14."
99,113,"AB009624|g4579721","AB009624","Halobacterium sp. str. arg-4."
99,112,"AF027738|g2827913","AF027738","Halorubrum trapanicum NCMB 784."
99,112,"D14125|g532828","Hr.trapani","Halorubrum trapanicum NCMB 767."
148,112,"AB019717|g5821183","AB019717","clone pMCA256."
166,131,"M88077","env.SBAR16","Santa Barbara Channel bacterioplankton DNA clone SBAR16."
177,131,"AF052951|g3426293","AF052951","clone FF619."
177,131,"AF121990|g6049058","AF121990","str. DCM53231."
177,131,"AF052944|g3426286","AF052944","clone TS10C294."
177,130,"U11042|g551496","env.OARB","coastal surface waters picoplankton DNA from Oregon clone OARB."
177,132,"M88074","env.SBAR1A","Santa Barbara Channel bacterioplankton DNA clone SBAR1A."
177,131,"U46677|g1208626","env.PVA1","Pele's Vents Archaea DNA clone PVA1."
177,131,"U11044|g551498","env.ANT5","clone ANTARCTIC5."
Lampiran 5. Bentuk Form Pengujian

Form Pengujian Interface

<table>
<thead>
<tr>
<th>Form Pencairan</th>
<th>Sangat Bagus</th>
<th>Bagus</th>
<th>Tidak Bagus</th>
<th>Sangat Tidak Bagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pemilihan Warna Form Dalam Sistem</td>
<td>Sangat Mudah Dibaca</td>
<td>Mudah Dibaca</td>
<td>Sulit Dibaca</td>
<td>Sangat Sulit Dibaca</td>
</tr>
<tr>
<td>2. Tulisan Dalam Sistem</td>
<td>Sangat Mudah</td>
<td>Mudah</td>
<td>Sulit</td>
<td>Sangat Sulit</td>
</tr>
<tr>
<td>3. Pemasukan Input</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>4. Peletakan Tombol</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>5. Pemberian Nama Untuk Input</td>
<td>Terlalu Besar</td>
<td>Besar</td>
<td>Kecil</td>
<td>Terlalu Kecil</td>
</tr>
<tr>
<td>6. Bentuk Form</td>
<td>Tepat di Tengah</td>
<td>Terlalu ke Pinggir</td>
<td>Terlalu ke Atas</td>
<td>Terlalu ke Bawah</td>
</tr>
<tr>
<td>7. Letak Form</td>
<td>Sangat Bagus</td>
<td>Bagus</td>
<td>Tidak Bagus</td>
<td>Sangat Tidak Bagus</td>
</tr>
</tbody>
</table>

Komentar:

Form Update

<table>
<thead>
<tr>
<th>Form Pencairan</th>
<th>Sangat Bagus</th>
<th>Bagus</th>
<th>Tidak Bagus</th>
<th>Sangat Tidak Bagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pemilihan Warna Form Dalam Sistem</td>
<td>Sangat Mudah Dibaca</td>
<td>Mudah Dibaca</td>
<td>Sulit Dibaca</td>
<td>Sangat Sulit Dibaca</td>
</tr>
<tr>
<td>2. Tulisan Dalam Sistem</td>
<td>Sangat Mudah</td>
<td>Mudah</td>
<td>Sulit</td>
<td>Sangat Sulit</td>
</tr>
<tr>
<td>3. Pemasukan Input</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>4. Peletakan Tombol</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>5. Pemberian Nama Untuk Input</td>
<td>Terlalu Besar</td>
<td>Besar</td>
<td>Kecil</td>
<td>Terlalu Kecil</td>
</tr>
<tr>
<td>6. Bentuk Form</td>
<td>Tepat di Tengah</td>
<td>Terlalu ke Pinggir</td>
<td>Terlalu ke Atas</td>
<td>Terlalu ke Bawah</td>
</tr>
<tr>
<td>7. Letak Form</td>
<td>Sangat Bagus</td>
<td>Bagus</td>
<td>Tidak Bagus</td>
<td>Sangat Tidak Bagus</td>
</tr>
</tbody>
</table>

Komentar:
Lanjutan

Form Tambah Admin

<table>
<thead>
<tr>
<th>No.</th>
<th>Deskripsi</th>
<th>Sangat Bagus</th>
<th>Bagus</th>
<th>Tidak Bagus</th>
<th>Sangat Tidak Bagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pemilihan Warna Form Dalam Sistem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tulisan Dalam Sistem</td>
<td>Sangat Mudah Dibaca</td>
<td>Mudah Dibaca</td>
<td>Sulit Dibaca</td>
<td>Sangat Sulit Dibaca</td>
</tr>
<tr>
<td>3</td>
<td>Pemasukan Input</td>
<td>Sangat Mudah</td>
<td>Mudah</td>
<td>Sulit</td>
<td>Sangat Sulit</td>
</tr>
<tr>
<td>4</td>
<td>Peletakkan Tombol</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>5</td>
<td>Pemberian Nama Untuk Input</td>
<td>Sangat Sesuai</td>
<td>Sesuai</td>
<td>Tidak Sesuai</td>
<td>Sangat Tidak Sesuai</td>
</tr>
<tr>
<td>6</td>
<td>Bentuk Form</td>
<td>Terlalu Besar</td>
<td>Besar</td>
<td>Kecil</td>
<td>Terlalu Kecil</td>
</tr>
<tr>
<td>7</td>
<td>Letak Form</td>
<td>Tepat di Tengah</td>
<td>Terlalu ke Pinggir</td>
<td>Terlalu ke Atas</td>
<td>Terlalu ke Bawah</td>
</tr>
</tbody>
</table>

Keterangan:
<table>
<thead>
<tr>
<th>No.</th>
<th>Fungsi</th>
<th>Kausus</th>
<th>Input</th>
<th>Benar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 1 NE tanpa P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AG*CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 2 NE tanpa P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AG*CT, NE 2=DPN II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 2 NE berdasarkan 1 P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AG*CT, P.T-RF=384, NE 2=DPN II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 3 NE tanpa P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AGCT, NE 2=DPN II, NE 3=HPYCH41V ~ ACGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Mencari nama-nama bakteri yang sama berdasarkan FP, RP dan 3 NE yang berbeda dan 2 P.T-RF</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AGCT, P.T-RF=85 NE 2=BSH1236 I ~ CGCG, P.T-RF=256 NE 3=BSTU I ~ CG*CG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 4 NE tanpa P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AGCT, NE 2=DPN II, NE 3=HPYCH41V ~ ACGT, NE 4=HINP11 I ~ G*CG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Mencari nama-nama bakteri yang sama berdasarkan FP, RP dan 4 NE yang berbeda berdasarkan 3 P.T-RF</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=CF0 I ~ GGG NE 2=MVN I ~ CGCG, P.T-RF=259 NE 3=HAE III ~ GGCC, P.T-RF=238 NE 4=HHA I ~ GGCC, P.T-RF=119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Mencari nama-nama bakteri berdasarkan FP, RP dan 5 NE tanpa P.T-RF yang dimasukkan</td>
<td>FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGGGCGGCCTGGCA NE=ALU I ~ AGCT, NE 2=DPN II, NE 3=HPYCH41V ~ ACGT, NE 4=HINP11 I ~ GCG NE 5=CF0 I ~ GGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanjutan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9 Mencah nama-nama bakteri yang sama berdasarkan FP, RP dan 5 NE yang berbeda berdasarkan 5 P.T-RF</td>
<td>FP=ARC-109F ~ ACGGTCAGTAACACGT, RP=ARC-533R ~ TTACCGCGCGCGCGCGCTGGCA NE 1=DPN II ~ ^GATC, P.T-RF=129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NE 2=HSP92 II ~ CATG^, P.T-RF=384, NE 3=MNV I ~ CG^CG, P.T-RF=259, NE 4=HAP II ~ C^CGG, P.T-RF=48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NE 5=MAE I ~ C^TAG, P.T-RF=171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Update nama bakteri Jika Tidak Ada FP, RP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dan NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Update nama bakteri Jika Ada Salah Satu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input yang Tidak Dimasukkan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Update nama bakteri berdasarkan FP, RP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dan NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Update nama bakteri berdasarkan FP, RP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dan NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
FP=Forward Primer
RP=Reverse Primer
NE=Nama Enzym
P.T-RF=Panjang T-RF
Kasus No. 1.1
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGCGGCGGTACGCA, NE=ALU 1 ~ AG^CT

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>str. Aglo120</td>
<td>296</td>
</tr>
<tr>
<td>Methanobacterium thermoautotrophicum str. KHT-2</td>
<td>343</td>
</tr>
<tr>
<td>Methanobrevibacter smithii str. B181 DSM 11975</td>
<td>341</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. NT7</td>
<td>341</td>
</tr>
<tr>
<td>Methanobrevibacter unidentified methanogen ARC15</td>
<td>320</td>
</tr>
<tr>
<td>Methanobrevibacter unidentified methanogen ARC41</td>
<td>341</td>
</tr>
<tr>
<td>Methanosarcina acetivorans str. C2A DSM 2834 (T)</td>
<td>388</td>
</tr>
<tr>
<td>Methanofollis tationis DSM 2702 (T)</td>
<td>381</td>
</tr>
<tr>
<td>Methanothermus sp</td>
<td>85</td>
</tr>
<tr>
<td>clone 2C300X</td>
<td>108</td>
</tr>
</tbody>
</table>

Kasus No. 1.2
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGCGGCGGTACGCA, NE 1=ALU 1 ~ AG^CT, NE 2 = DPN II ~ ^GATC

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU 1</th>
<th>DPN II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanoaeromobacter defluvii str. ADZ VKM B-1962</td>
<td>342</td>
<td>174</td>
</tr>
<tr>
<td>Methanoaeromobacter thermoflex str. IDZ VKM B-1963</td>
<td>337</td>
<td>176</td>
</tr>
<tr>
<td>Methanoaeromobacter thermophilus str. M VKM B-1786</td>
<td>338</td>
<td>180</td>
</tr>
<tr>
<td>Methanothermus fervidus str. V 24 S DSM 2088 (T)</td>
<td>343</td>
<td>180</td>
</tr>
<tr>
<td>Methanothermus fervidus</td>
<td>344</td>
<td>180</td>
</tr>
<tr>
<td>Methanothermus sociabilis str. K11-F1</td>
<td>344</td>
<td>388</td>
</tr>
<tr>
<td>Santa Barbara Channel bacterioplankton DNA clone SBAR16</td>
<td>374</td>
<td>283</td>
</tr>
<tr>
<td>Santa Barbara Channel bacterioplankton DNA clone SBAR1A</td>
<td>386</td>
<td>386</td>
</tr>
<tr>
<td>str. Aglo120</td>
<td>296</td>
<td>388</td>
</tr>
<tr>
<td>str. GS1-A</td>
<td>388</td>
<td>144</td>
</tr>
</tbody>
</table>

Kasus No. 1.3
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCGCGGCGGTACGCA, NE 1=ALU 1 ~ AG^CT, P,T-RF=384, NE 2 = DPN II ~ ^GATC

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU 1</th>
<th>DPN II</th>
</tr>
</thead>
<tbody>
<tr>
<td>clone KTK 18A</td>
<td>384</td>
<td>291</td>
</tr>
<tr>
<td>clone KTK 4A</td>
<td>384</td>
<td>214</td>
</tr>
<tr>
<td>clone SJC-125a</td>
<td>384</td>
<td>74</td>
</tr>
<tr>
<td>coastal surface waters picoplankton DNA from Oregon clone OAR</td>
<td>384</td>
<td>384</td>
</tr>
</tbody>
</table>
Lanjutan

Kasus No. 1.4
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCAGCGCGGCTGGCA, NE 1=ALU 1 ~ AG°CCT, NE 2 =DPN II ~ ^GATC, NE 3= HPYCH4IV ~ A°C G

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU1</th>
<th>DPN II</th>
<th>HPYCH4IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanobacterium thermagnesium OCM 141 (T).</td>
<td>343</td>
<td>176</td>
<td>388</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. CW4C DSM 11995.</td>
<td>341</td>
<td>177</td>
<td>386</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. HO DSM 11977.</td>
<td>321</td>
<td>177</td>
<td>386</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. NT7.</td>
<td>341</td>
<td>177</td>
<td>386</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. PG DSM 11978.</td>
<td>321</td>
<td>177</td>
<td>386</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. SH DSM 11976.</td>
<td>321</td>
<td>292</td>
<td>386</td>
</tr>
<tr>
<td>Methanobrevibacter sp. str. SM9.</td>
<td>341</td>
<td>177</td>
<td>386</td>
</tr>
<tr>
<td>Methanocalculus halotolerans SEBR 4845.</td>
<td>381</td>
<td>176</td>
<td>381</td>
</tr>
<tr>
<td>Methanococcusides burtonii DSM 6242 (T).</td>
<td>387</td>
<td>99</td>
<td>161</td>
</tr>
<tr>
<td>Methanococcusides methylocutes str. TMA-10 DSM 2657 (T).</td>
<td>351</td>
<td>128</td>
<td>387</td>
</tr>
</tbody>
</table>

Kasus No. 1.5
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCAGCGCGGCTGGCA, NE 1=ALU 1 ~ AG°CCT, P.T-RF=85
NE 2 =BSH1236 1 ~ CG°CG, P.T-RF=256 NE 3= BSTU 1 ~ CG°CG

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU1</th>
<th>BSH1236</th>
<th>BSTU 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanoculleus sp.</td>
<td>85</td>
<td>256</td>
<td>256</td>
</tr>
</tbody>
</table>

Kasus No. 1.6
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT, RP=ARC-533R ~ TTACCAGCGCGGCTGGCA, NE 1=ALU 1 ~ AG°CCT, P.T-RF=85
NE 2 DPN II ~ ^GATC, P.T-RF=256 NE 3= HPYCH4IV ~ A°C G, NE 4= HINP1 1 ~ G°CG

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU1</th>
<th>BSH1236</th>
<th>HPYCH4IV</th>
<th>HINP1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanobrevibacter unidentified methanogen ARC66.</td>
<td>341</td>
<td>177</td>
<td>386</td>
<td>246</td>
</tr>
<tr>
<td>Methanocalculus halotolerans SEBR 4845.</td>
<td>381</td>
<td>176</td>
<td>381</td>
<td>245</td>
</tr>
<tr>
<td>Methanococcusides burtonii DSM 6242 (T).</td>
<td>387</td>
<td>99</td>
<td>161</td>
<td>247</td>
</tr>
<tr>
<td>Methanococcusides methylocutes str. TMA-10 DSM 2657 (T).</td>
<td>351</td>
<td>128</td>
<td>387</td>
<td>247</td>
</tr>
<tr>
<td>Methanocorpusculum bavaricum str. SZSXXZ DSM 4179 (T).</td>
<td>381</td>
<td>107</td>
<td>381</td>
<td>254</td>
</tr>
<tr>
<td>Methanocorpusculum bavaricum str. SZSXXZ DSM 4179 (T).</td>
<td>381</td>
<td>107</td>
<td>381</td>
<td>254</td>
</tr>
<tr>
<td>Methanocorpusculum labreum str. Z ATCC 43576 (T).</td>
<td>381</td>
<td>107</td>
<td>381</td>
<td>245</td>
</tr>
<tr>
<td>Methanocorpusculum labreum str. Z DSM 4855 (T).</td>
<td>381</td>
<td>107</td>
<td>381</td>
<td>245</td>
</tr>
<tr>
<td>Methanocorpusculum pervum str. XII ATCC 43721 (T).</td>
<td>381</td>
<td>107</td>
<td>381</td>
<td>245</td>
</tr>
<tr>
<td>Methanobulus taylorii str. GS-16.</td>
<td>385</td>
<td>385</td>
<td>385</td>
<td>114</td>
</tr>
</tbody>
</table>
Lanjutan

Kasus No. 1.7
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT,
RP=ARC-533R ~ TTACCGCGGGCGCTGCGCA, NE 1=CFO 1 ~ GCG°C,NE 2=MVN 1 ~ CG°CG
P.T-RF=259, NE 3= HAE III ~ GCG°C, P.T-RF=238, NE 4=HHA 1 ~ GCG°C, P.T-RF=119

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>CFO 1</th>
<th>MVN 1</th>
<th>HAE III</th>
<th>HHA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanobacterium palustre str. F DSM 3108 (T)</td>
<td>119</td>
<td>259</td>
<td>238</td>
<td>119</td>
</tr>
<tr>
<td>Methanobacterium palustre str. F DSM 3108 (T)</td>
<td>119</td>
<td>259</td>
<td>238</td>
<td>119</td>
</tr>
</tbody>
</table>

Kasus No. 1.8
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT,
RP=ARC-533R ~ TTACCGCGCGGCGTGGCA, NE 1=ALU 1 ~ AG°CT,
NE 2=DPN II ~ ^GATC
NE 3= HPYCH4IV ~ A°CGT, NE 4=HINP11 ~ G°CGC, NE 5=CFO 1 ~ GCG°C

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ALU 1</th>
<th>DPN II</th>
<th>HPYCH4IV</th>
<th>HINP11</th>
<th>CFO 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>clone 1MT325</td>
<td>108</td>
<td>99</td>
<td>385</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>clone 2C100</td>
<td>108</td>
<td>99</td>
<td>385</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>clone 2C25</td>
<td>320</td>
<td>385</td>
<td>308</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>clone 2C300X</td>
<td>108</td>
<td>385</td>
<td>385</td>
<td>114</td>
<td>116</td>
</tr>
<tr>
<td>clone 2C84</td>
<td>320</td>
<td>385</td>
<td>308</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>clone 2C87</td>
<td>381</td>
<td>126</td>
<td>381</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>clone 2C9</td>
<td>108</td>
<td>385</td>
<td>385</td>
<td>114</td>
<td>116</td>
</tr>
<tr>
<td>clone 2MT120</td>
<td>381</td>
<td>126</td>
<td>381</td>
<td>114</td>
<td>116</td>
</tr>
<tr>
<td>clone 2MT53</td>
<td>108</td>
<td>385</td>
<td>385</td>
<td>114</td>
<td>116</td>
</tr>
<tr>
<td>clone 2MT7</td>
<td>108</td>
<td>74</td>
<td>159</td>
<td>114</td>
<td>116</td>
</tr>
</tbody>
</table>

Kasus No. 1.9
Mencari Nama Bakteri Berdasarkan FP=ARC-109F ~ ACKGCTCAGTAACACGT,
RP=ARC-533R ~ TTACCGCGGGCGGCTGCGCA, NE 1=DPN II ~ ^GATC,P.T-RF=129,
NE 2=HSP92 II ~ CATG°, P.T-RF=384 NE 3=MVN 1 ~ CG°CG, P.T-RF=259,
NE 4=HAP II ~ C°CGG,P.T-RF=48, NE 5=MAE 1 ~ C°TAG, P.T-RF=171

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>DPN II</th>
<th>HSP92 II</th>
<th>MVN 1</th>
<th>HAP II</th>
<th>MAE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>clone BURTON24 A</td>
<td>129</td>
<td>384</td>
<td>259</td>
<td>48</td>
<td>171</td>
</tr>
</tbody>
</table>

Fungsi : Update

Kasus No.2.1
Mengupdate Nama Bakteri Jika Tidak Ada Input yang Dimasukkan
FP= -, RP= -, NE= -
Lanjutan

Kasus No.2.2
Mengupdate Nama Bakteri Jika Ada Salah Satu Input yang Tidak Dimasukkan
FP=ARC-112f~GCTCAGTAACACGTGG, RP=ARC-533R~TTACCGCGCGGCCTGGCA, NE=CC

Anda Harus Mengisi Kotak Input Terlebih Dahulu

OK

Kasus No.2.3
Mengupdate Nama Bakteri Berdasarkan FP=ARC-112f~GCTCAGTAACACGTGG
RP=ARC-533R~TTACCGCGCGGCCTGGCA, NE=ACC II~CG^CG

<table>
<thead>
<tr>
<th>Nama Bakteri</th>
<th>ACC II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloarcule sp. str. E11</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule sp. str. E2</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule acidimensis str. B-2</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule argentimensis</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule japonica str. TR-1 JCM 7785 (T)</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule saltimicis ATCC 33380</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule marismortui str. clone HC8 [gene=mA operon]</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule marismortui</td>
<td>36</td>
</tr>
<tr>
<td>Haloarcule sp. str. 801030/1</td>
<td>36</td>
</tr>
<tr>
<td>Natronococcus occultus ATCC 43101 (T)</td>
<td>93</td>
</tr>
</tbody>
</table>

Kasus No.2.4
Mengupdate Nama Bakteri Berdasarkan FP=ARC-112f~GCTCAGTAACACGTGG
RP=ARC-533R~TTACCGCGCGGCCTGGCA, NE=ACC II~CG^CG

Data Sudah Ada, Apa Ingin Di Replace

Yes No
Lampiran 6. Bentuk Tabel dan Isi Tabel Pada Database TRFLP dalam SQL Server

Gambar 23. Bentuk disain Tabel Forward pada SQL Server

Gambar 24. Isi Tabel Forward

Gambar 25. Bentuk disain Tabel Reverse pada SQL Server

Gambar 26. Isi Tabel Reverse

Gambar 27. Bentuk disain Tabel Enzym pada SQL Server

Gambar 28. Isi Tabel Enzym
Lanjutan

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Database</th>
<th>Length</th>
<th>Precision</th>
<th>Scale</th>
<th>Allow Nulls</th>
<th>Default Value</th>
<th>Identity</th>
<th>Identity Seed</th>
<th>Identity Increment</th>
<th>Is RowGuid</th>
</tr>
</thead>
<tbody>
<tr>
<td>kode_forward</td>
<td>char</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kode_reverse</td>
<td>char</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kode_reversa</td>
<td>char</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kode_bakteri</td>
<td>char</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 29. Bentuk dan Tabel Kode pada SQL Server

<table>
<thead>
<tr>
<th>kode</th>
<th>PO1</th>
<th>PO1</th>
<th>PO1</th>
<th>PO1</th>
<th>PO1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R01</td>
<td>R01</td>
<td>R01</td>
<td>R01</td>
<td>R01</td>
</tr>
<tr>
<td></td>
<td>E02</td>
<td>E03</td>
<td>E04</td>
<td>E05</td>
<td>E06</td>
</tr>
<tr>
<td>kode_reverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 30. Isi Tabel Kode

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Database</th>
<th>Length</th>
<th>Precision</th>
<th>Scale</th>
<th>Allow Nulls</th>
<th>Default Value</th>
<th>Identity</th>
<th>Identity Seed</th>
<th>Identity Increment</th>
<th>Is RowGuid</th>
</tr>
</thead>
<tbody>
<tr>
<td>kode_bakteri</td>
<td>varchar</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>forward</td>
<td>numeric</td>
<td>9</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reverse</td>
<td>varchar</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>varchar</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>locus</td>
<td>varchar</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jenis_bakteri</td>
<td>varchar</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 31. Bentuk dan Tabel Bakteri pada SQL Server

<table>
<thead>
<tr>
<th>kode_bakteri</th>
<th>PO1R01ED1</th>
<th>PO1R01ED1</th>
<th>PO1R01ED1</th>
<th>PO1R01ED1</th>
<th>PO1R01ED1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Locus</td>
<td>100</td>
<td>100</td>
<td>320</td>
<td>100</td>
<td>320</td>
</tr>
<tr>
<td>Name_bakteri</td>
<td>AF015965</td>
<td>AF015965</td>
<td>AF015971</td>
<td>AF015973</td>
<td>AF015978</td>
</tr>
</tbody>
</table>

Gambar 32. Isi Tabel Bakteri

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Database</th>
<th>Length</th>
<th>Precision</th>
<th>Scale</th>
<th>Allow Nulls</th>
<th>Default Value</th>
<th>Identity</th>
<th>Identity Seed</th>
<th>Identity Increment</th>
<th>Is RowGuid</th>
</tr>
</thead>
<tbody>
<tr>
<td>User_Name</td>
<td>nvarchar</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>char</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>latengan</td>
<td>char</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 33. Bentuk Tabel Password pada SQL Server
Lanjutan

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Datatype</th>
<th>Length</th>
<th>Precision</th>
<th>Scale</th>
<th>Allow Nulls</th>
<th>Default Value</th>
<th>Identity</th>
<th>Identity Seed</th>
<th>Identity Increment</th>
<th>IsRowGuid</th>
</tr>
</thead>
<tbody>
<tr>
<td>No_Jkn</td>
<td>numeric</td>
<td>9</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User_Name</td>
<td>nvarchar</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanggal</td>
<td>char</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jam</td>
<td>char</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name_Forward</td>
<td>nvarchar</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name_Reverse</td>
<td>nvarchar</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name_Ereyn</td>
<td>nvarchar</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 34. Bentuk Tabel Update pada SQL Server
Lampiran 7. Bentuk Tampilan Sistem

Bentuk Tampilan Sistem Pada Menu Pencarian

Bentuk Tampilan Sistem Pada Menu Pencarian dengan Forward primer, 3 jumlah Enzim Restriksi dan 1 Panjang T-RF
Bentuk Tampilan Sistem Pada Menu Pencarian dengan *Reverse primer* dan 1 jumlah Enzim Restriksi tanpa Panjang T-RF
<table>
<thead>
<tr>
<th>Name</th>
<th>AuI Forward</th>
<th>AuI Reverse</th>
<th>C0I Forward</th>
<th>C0I Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>clone A</td>
<td>123</td>
<td>456</td>
<td>789</td>
<td>1012</td>
</tr>
<tr>
<td>clone B</td>
<td>234</td>
<td>567</td>
<td>890</td>
<td>1112</td>
</tr>
<tr>
<td>clone C</td>
<td>345</td>
<td>678</td>
<td>901</td>
<td>1213</td>
</tr>
<tr>
<td>clone D</td>
<td>456</td>
<td>789</td>
<td>1012</td>
<td>1314</td>
</tr>
</tbody>
</table>

Bentuk Tampilan Sistem Pada Menu Pencarian dengan Forward primer, Reverse primer dan 2 jumlah
Enzim Restriksi dengan 1 Panjang T-RF
Lanjutan

Update

Input
- **Nama Forward**:
- **Bentuk Forward**:
ex: ACGTCTCAGTAAACGCT

Reverse
- **Nama Reverse**:
- **Bentuk Reverse**:
ex: AGAGCGATGCAAGCCT

Enzym
- **Nama Enzym**:
- **Bentuk Enzym**:
ex: Alu I
ex: AG^CT

Bentuk Tampilan Sistem untuk input Proses Update