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RINGKASAN 

BAIGO HAMUNA. Pemetaan Habitat Bentik Perairan Dangkal: Komparasi dan 
Kombinasi Teknologi Hidroakustik dan Penginderaan Jauh Optik. Dibimbing oleh 
SRI PUJIYATI, JONSON LUMBAN GAOL dan TOTOK HESTIRIANOTO. 
 

Informasi spasial habitat bentik pada skala spasial yang tepat dan relevan 
merupakan prasyarat mendasar memahami dan mengelola ekosistem di perairan 
dangkal dan menjadi langkah penting untuk memantau kesehatan dan evolusinya. 
Namun, sering kali terhambat oleh kurangnya informasi spasial habitat bentik yang 
komprehensif. Perkembangan teknologi penginderaan jauh, baik hidroakustik 
maupun penginderaan jauh optik telah memudahkan dalam melakukan survei 
pemetaan habitat bentik. Pada berbagai survei hidroakustik, salah satu kelemahan 
sistem single-beam echosounder (SBES) adalah keterbatasan parameter-parameter 
akustik yang digunakan sebagai input dalam proses klasifikasi yang hanya terbatas 
pada echo pertama dan echo kedua. Di sisi lain, meskipun citra satelit memiliki 
banyak kelebihan, namun gelombang elekromagnetik dari sensor satelit memiliki 
keterbatasan penetrasi terhadap kolom air. 

Tujuan penelitian antara lain: (1) menganalisis karakteristik hambur balik 
akustik beberapa tipe bentik yang mencakup parameter akustik di echo pertama 
hingga ketiga; (2) menentukan kombinasi parameter akustik dan algoritma machine 
learning agar menghasilkan peta habitat bentik yang akurat dari dataset SBES; (3) 
memetakan habitat bentik dari citra SPOT-6 dan Sentinel-2A menggunakan metode 
dan algoritma klasifikasi yang berbeda-beda; dan (4) menganalisis perbandingan 
tingkat akurasi dan kemiripan peta habitat bentik dari dataset SBES dengan citra 
satelit (SPOT-6 dan Sentinel-2A), serta mengkombinasikannya agar menghasilkan 
peta habitat bentik yang komprehensif. Penelitian ini dilakukan di Atol Kapota, 
Kabupaten Wakatobi. SBES Simrad EK15 digunakan untuk perekaman data 
hidroakustik secara stasioner dengan target delapan tipe bentik: pasir (PS1 dan PS2), 
pasir+lamun (PsL1 dan PsL2), rubble (RB), Acropora tabulate (ACT), Acropora 
branching (ACB), Coral massive (CM), Coral foliose (CF) dan soft coral (SC); 
serta perekaman sepanjang lintasan survei akustik. Pengolahan data hambur balik 
akustik menggunakan perangkat lunak Sonar5-Pro. Proses klasifikasi dataset SBES 
menggunakan enam algoritma klasifikasi. Adapun citra SPOT-6 dan Sentinel-2A 
diolah menggunakan perangkat lunak ArcMap 10.8.1, dengan menerapkan dua 
metode klasifikasi (berbasis objek dan piksel) dan dua algoritma klasifikasi. 

Hasil penelitian menemukan bahwa energi hambur balik akustik, seperti 
bottom detection (BD), bottom peak pertama (BP1), AttackSv1, DecaySv1, 
AttDecSv1, bottom peak kedua (BP2), AttackSv2, DecaySv2, AttDecSv2, bottom 
peak ketiga (BP3), AttackSv3, DecaySv3, dan AttDecSv3 dari beberapa tipe dasar 
laut berbeda signifikan, walaupun beberapa diantaranya tidak berbeda signifikan. 
Di ketiga echo dasar laut, ditemukan bahwa pasir (PS1 dan PS2) yang relatif datar 
memiliki energi BP dan AttackSv yang lebih tinggi dari tipe bentik lainnya, 
sedangkan karang CM memiliki energi DecaySv yang lebih tinggi. Pasir yang 
relatif datar membentuk kurva yang lebih tajam dan lebih sempit di fase decay, 
sedangkan karang keras (CM, ACB, ACT) dan SC membentuk kurva yang lebih 
lebar. Karang CM membentuk kurva fase decay yang lebar dekat puncak echo, 
sedangkan ACT dan ACB di bagian bawah (bagian akhir) fase decay. 



Kombinasi delapan parameter akustik (kedalaman/D, BD, BP1, AttackSv1, 
DecaySv1, AttDecSv1, AttDecSv2 dan AttDecSv3) sebagai parameter input 
klasifikasi menghasilkan peta habitat bentik (karang, lamun dan pasir) dengan 
akurasi maksimum 79,33% dengan menggunakan algoritma Random Forest (RF). 
Akurasi tersebut lebih tinggi secara signifikan dibandingkan kombinasi parameter 
akustik utama SBES dalam sistem RoxAnn (E1/DecSv1 dan E2/AttDecSv2). 
Penambahan dua atau lebih parameter akustik secara bersamaan dapat 
meningkatkan akurasi peta secara signifikan. Urutan kepentingan delapan 
parameter akustik dalam proses klasifikasi: AttDecSv2>D>DecaySv1>BD> 
AttDecSv3>AttackSv1>AttDecSv1>BP1. 

Citra SPOT-6 dan Sentinel-2A menghasilkan memetakan sembilan kelas 
bentik, antara lain pasir, karang hidup, karang mati, rubble, lamun padat, campuran 
rubble dan pasir, campuran lamun sedang dan pasir, campuran pasir dan lamun 
jarang, serta campuran rubble, karang mati dan lamun jarang. Citra SPOT-6 
menghasilkan peta habitat bentik dengan akurasi berkisar 66,67–75,23%, 
sedangkan citra Sentinel-2A berkisar 63,51–66,22%. Penerapan klasifikasi berbasis 
objek dapat meningkatkan akurasi peta habitat bentik hingga 2,71% (citra Sentinel-
2A) dan 8,56% (SPOT-6) dibandingkan menggunakan klasifikasi berbasis piksel. 
Adapun algoritma Support Vector Machine menghasilkan peta habitat bentik 
dengan akurasi tinggi ketika diterapkan pada klasifikasi berbasis objek. Sebaliknya, 
algoritma RF lebih baik bila diterapkan pada klasifikasi berbasis piksel. 

Dataset SBES dan citra setelit memiliki kelebihan dan kekurangan dalam 
memetakan habitat bentik. Jumlah kelas habitat bentik yang terpetakan dari citra 
satelit (SPOT-6 dan Sentinel-2A) lebih banyak dibandingkan dataset SBES di area 
yang sama. Begitupun akurasi peta habitat bentik dari citra satelit lebih tinggi 
dibandingkan dataset SBES pada jumlah kelas bentik yang sama (karang, lamun 
dan pasir), kecuali akurasi peta dari citra Sentinel-2A berbasis piksel. Namun, citra 
satelit hanya mampu memetakan habitat bentik dengan baik hingga kedalaman 15 
m dan akurasi yang tinggi dibatasi pada kedalaman 10 m. Pada kedalaman >10, 
kelas karang dan pasir yang terpetakan oleh SBES dominan terpetakan sebagai 
kelas badan air ketika menggunakan citra satelit. Hal ini sangat dipengaruhi oleh 
kemampuan gelombang elektromagnetik dalam menembus kolom air. Berdasarkan 
kelebihan masing-masing sumber data, maka kombinasi peta habitat bentik dari 
citra SPOT-6 (hingga 10 m) dan SBES (>10 m) menghasilkan peta habitat bentik 
dengan akurasi yang sangat tinggi (90,67%) untuk tiga kelas bentik (karang, lamun 
dan pasir). Kombinasi dataset SBES dan citra SPOT-6 dapat memetakan habitat 
bentik yang lebih komprehensif dan resolusi yang tinggi (sepuluh kelas bentik). 

Sebagai upaya untuk meningkatkan akurasi peta habitat bentik dari dataset 
SBES, penambahan parameter turunan data kedalaman (slope dan rugosity) juga 
perlu dipertimbangkan sebagai parameter input klasifikasi dengan menerapkan 
metode dan klasifikasi yang berbeda (penerapan algoritma deep learning). Terakhir, 
diperlukan lebih banyak penelitian terkait komparatif dataset hidroakustik (SBES, 
MBES atau side scan sonar) dan citra penginderaan jauh optik (multispektral atau 
hiperspektral) dengan menerapkan teknik dan metode klasifikasi yang lainnya. 

 
Kata kunci: akurasi pemetaan, Atol Kapota, citra SPOT-6/Sentinel-2A, dataset 
SBES, hambur balik akustik. 

  



SUMMARY 

BAIGO HAMUNA. Mapping of Shallow Water Benthic Habitats: Comparison and 
Combination of Hydroacoustic Technology and Optical Remote Sensing. 
Supervised by SRI PUJIYATI, JONSON LUMBAN GAOL, and TOTOK 
HESTIRIANOTO.  

 
Spatial information of benthic habitats at appropriate and relevant spatial 

scales is a fundamental prerequisite for understanding and managing shallow water 
ecosystems. It is an important step in monitoring their health and evolution. 
However, the lack of comprehensive spatial information on benthic habitats often 
hampered it. The development of remote sensing technology, both hydroacoustic 
and optical remote sensing, has made it easier to conduct benthic habitat mapping 
surveys. In various hydroacoustic surveys, one of the weaknesses of the single-
beam echosounder (SBES) system is the limitation of acoustic parameters used as 
input in the classification process, which is limited to the first and second echoes. 
On the other hand, although satellite imagery has many advantages, 
electromagnetic waves from satellite sensors have limited penetration into the water 
column.  

The objectives of the study include: (1) analyzing the acoustic backscatter 
characteristics of several types of benthic including acoustic parameters in the first 
to third echoes; (2) determining the combination of acoustic parameters and 
machine learning algorithms to produce accurate benthic habitat maps from the 
SBES dataset; (3) mapping benthic habitats from SPOT-6 and Sentinel-2A images 
using different classification methods and algorithms; and (4) analyzing the 
comparative level of accuracy and similarity of benthic habitat maps from SBES 
datasets with satellite images (SPOT-6 and Sentinel-2A), and combining them to 
produce a comprehensive benthic habitat map. This research was conducted in 
Kapota Atoll, Wakatobi Regency. SBES Simrad EK15 was used for stationary 
hydroacoustic data recording with eight benthic types as targets: sand (PS1 and 
PS2), sand+seagrass (PsL1 and PsL2), rubble (RB), Acropora tabulate (ACT), 
Acropora branching (ACB), Coral massive (CM), Coral foliose (CF) and soft coral 
(SC); and recording along the acoustic survey line. Acoustic backscatter data 
processing used Sonar5-Pro software—the SBES dataset classification process 
used six classification algorithms. The SPOT-6 and Sentinel-2A images were 
processed using ArcMap 10.8.1 software by applying two classification methods 
(object- and pixel-based) and two classification algorithms.  

The results of the study found that acoustic backscatter energy, such as 
bottom detection (BD), first bottom peak (BP1), AttackSv1, DecaySv1, AttDecSv1, 
second bottom peak (BP2), AttackSv2, DecaySv2, AttDecSv2, third bottom peak 
(BP3), AttackSv3, DecaySv3, and AttDecSv3 from several types of seabeds were 
significantly different. However, some of them were not significantly different. In 
the three seabed echoes, it was found that relatively flat sand (PS1 and PS2) had 
higher BP and AttackSv energy than other benthic types, while CM coral had higher 
DecaySv energy. Relatively flat sand formed a sharper and narrower curve in the 
decay phase, while hard corals (CM, ACB, ACT) and SC formed wider curves. CM 
coral formed a wide decay phase curve near the echo peak, while ACT and ACB 
were at the bottom (end) of the decay phase. 



The combination of eight acoustic parameters (depth/D, BD, BP1, AttackSv1, 
DecaySv1, AttDecSv1, AttDecSv2, and AttDecSv3) as classification input 
parameters produces a benthic habitat map (coral, seagrass, and sand) with a 
maximum accuracy of 79.33% using the Random Forest (RF) algorithm. This 
accuracy is significantly higher than the combination of the main SBES acoustic 
parameters in the RoxAnn system (E1/DecSv1 and E2/AttDecSv2). Adding two or 
more acoustic parameters simultaneously can significantly increase the accuracy of 
the map. The order of importance of the eight acoustic parameters in the 
classification process: AttDecSv2>D>DecaySv1>BD>AttDecSv3>AttackSv1> 
AttDecSv1>BP1. SPOT-6 and Sentinel-2A images produced nine benthic classes, 
including sand, live coral, dead coral, rubble, dense seagrass, a mixture of rubble 
and sand, a mixture of medium seagrass and sand, a mix of sand and sparse seagrass, 
and a mixture of rubble, dead coral, and sparse seagrass. SPOT-6 images produced 
benthic habitat maps with an accuracy ranging from 66.67% to 75.23%, while 
Sentinel-2A images ranged from 63.51% to 66.22%. Object-based classification 
can increase the accuracy of benthic habitat maps by up to 2.71% (Sentinel-2A 
images) and 8.56% (SPOT-6) compared to pixel-based classification. When applied 
to object-based classification, the Support Vector Machine algorithm produces 
benthic habitat maps with high accuracy. Conversely, the RF algorithm is better 
when applied to pixel-based classification.  

SBES datasets and satellite imagery have advantages and disadvantages in 
mapping benthic habitats. The number of benthic habitat classes mapped from 
satellite imagery (SPOT-6 and Sentinel-2A) exceeds the SBES dataset in the same 
area. Likewise, the accuracy of benthic habitat maps from satellite imagery is higher 
than the SBES dataset for the same number of benthic classes (coral, seagrass, and 
sand), except for the accuracy of maps from pixel-based Sentinel-2A images. 
However, satellite imagery can only map benthic habitats up to a depth of 15 m, 
and high accuracy is limited to 10 m. At depths >10, the coral and sand classes 
mapped by SBES are predominantly mapped as water body classes when using 
satellite imagery. This is greatly influenced by the ability of electromagnetic waves 
to penetrate the water column. Based on the advantages of each data source, the 
combination of benthic habitat maps from SPOT-6 imagery (up to 10 m) and SBES 
(>10 m) produces benthic habitat maps with very high accuracy (90.67%) for three 
benthic classes (coral, seagrass, and sand). Combining the SBES dataset and SPOT-
6 imagery can map more comprehensive benthic habitats and high-resolution (ten 
benthic classes).  

To improve the accuracy of benthic habitat maps from SBES datasets, adding 
depth data-derived parameters (slope and rugosity) must also be considered as 
classification input parameters by applying different methods and classifications 
(application of deep learning algorithms). Finally, more research is needed on the 
comparative hydroacoustic datasets (SBES, MBES, or side scan sonar) and optical 
remote sensing imagery (multi- or hyper-spectral) by applying other classification 
techniques and methods. 

Keywords: acoustic backscatter, Kapota Atoll, mapping accuracy, SBES dataset, 
SPOT-6/Sentinel-2A imagery. 
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