

CHARACTERIZATION OF THE CHEMICAL CONSTITUENTS AND ANTIOXIDANT CAPACITY OF GREEN AND OOLONG TEAS (Camellia sinensis) MANUFACTURED IN THAILAND

MANUSCRIPT

ATIKA LUTHFIYYAH F24070137

FACULTY OF AGRICULTURAL ENGINEERING AND TECHNOLOGY BOGOR AGRICULTURAL UNIVERSITY BOGOR 2012

Atika Luthfiyyah¹, Sukarno¹, and Theerapong Theppakorn²

¹Departement of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, IPB Darmaga Campus, PO Box 220, Bogor, West Java, Indonesia ²Major of Food Technology, School of Agro-Industry, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand.

Phone 62 852 8286 2225, e-mail : atika_luthfiyyah_ipb@yahoo.co.id

ABSTRACT

Tea in Thailand most manufactured in northern area, especially Chiang Rai, Chiang Mai, Nan, and Mai Hang Son province. The aim of this study was to determine and compare the chemical compositions and antioxidant capacity of 4 important Thai tea products. A total of 13 of green teas of 2 major cultivars, assamicaand cv. oolong no.12 (chin hsuan oolong) and 26 of oolong tea of 2 major varieties, cv. oolong no. 12 and cv. oolong no. 17 (chin shin oolong) were collected from 18 factories in Chiang Rai province in 2011. The total polyphenol content was determined according to International Organization for Standardization (ISO 14502-1). For antioxidant capacity, DPPH radical scavenging activity assay and ferric reducing antioxidant power assay were determined. The catechins content and caffeine content were determined using HPLC by ISO method (ISO-14502-2). Results showed that about 95% of the 39 tea samples manufactured in Thailand had moisture content below 7%, 5% of tea samples being above 7%. The total polyphenol content in green tea was found to vary from 11.86 to 21.19%GAE, while in oolong tea was found in a range of 10.22 to 17.57%GAE. The caffeine content in green tea samples were in a range of 1.69 to 3.7 %, while in oolong tea samples were in a range of 1.61 to 3.26%. The catechin content in green tea samples were in a range of 8.31-14.08 %, while in oolong tea samples were in a range of 6.81-12.46%. The antioxidant capacity in green tea samples was 164.01 mmole TE/100 g dry basis, while in oolong tea samples was about 132.73mmole TE/100 g dry basis. This study provided useful information for the tea industry in Thailand and other countries in processing and selecting a good-quality tea.

Keywords: antioxidant capacity, Camellia sinensis, green tea, oolong tea, Thailand

ATIKA LUTHFIYYAH. F24070137. Characterization of the Chemical Constituents and Antioxidant Capacity of Green and Oolong Teas (*Camellia sinensis*) Manufactured in Thailand. Supervised by Sukarno and Theerapong Theppakorn. 2012.

SUMMARY

In Thailand, tea is cultivated in the north part of the country in the provinces of Chiang Rai and Chiang Mai. About 30% of the productions are commercialized in the domestic, whereas the remaining 70% are exported. Commercially grown teas in Thailand are the Assam tea (*Camellia sinensis*var.*assamica*) and the Chinese tea (*Camellia sinensis*var.*sinensis*). Two major Chinese teas are jing shuan oolong (cv. oolong no. 12) and chin shin oolong (cv. oolong no. 17).

The amount of tea polyphenols has been regarded as a quality indicator of tea. Information based on parameters, chemical standardization, and biological assays are complementary indicators of the quality of tea, regarding its biological activities. The growing popularity of tea in recent years on the basis of beneficial health effects requires additional data of chemical constituents and biological activities. The level of chemical constituents including, total polyphenols and catechins in commercially Thai teas so far has not been determined.

The objectives of this research were to determine the chemical compositions and antioxidant capacity of 4 important Thai tea products, compare the chemical compositions between tea groups, and explore the relationship between chemical components and antioxidant capacity. This study provided useful information for the tea industry in Thailand and other countries in processing and selecting a good-quality tea. A total of 13 of green teas of 2 major cultivars, *assamica* or v. oolong no.12 (chin hsuan oolong) and 26 of oolong teas of 2 major varieties, cv. oolong no. 12 and cv. oolong no. 17 (chin shin oolong) were collected from 18 factories in Chiang Rai province in 2011.

The total polyphenol content (TPC) was determined by spectrophotometry (ISO 14502-1). For antioxidant capacity, DPPH radical scavenging activity assay and reducing power activity assay were determined. The catechins content and caffeine content were determined using HPLC by ISO method (ISO-14502-2).

Results showed that about 95% of the 39 tea samples manufactured in Thailand have moisture content below 7%, but about 5% of tea samples being above 7%. The total polyphenol content in green tea was found to vary from 11.86 to 21.19% GAE, in oolong tea was also found varies from 10.22 to 17.57% GAE. The caffeine content in green tea samples were in a range of 1.69 to 3.71%, and in oolong tea samples were in a range of 1.61 to 3.26%. The catechin content in green tea samples were in a range of 8.31 to 14.08 %, and in oolong tea samples were in a range of 6.81 to 12.46%. The antioxidant capacity in green tea samples was 164.01 mmole TE/ 100 g dry basis, and in oolong tea samples was 132.73mmole TE/ 100 g dry basis.

CHARACTERIZATION OF THE CHEMICAL CONSTITUENTS AND ANTIOXIDANT CAPACITY OF GREEN AND OOLONG TEAS (*Camellia sinensis*) MANUFACTURED IN THAILAND

MANUSCRIPT

In the partial fulfillment of the requirement for SARJANA TEKNOLOGI PERTANIAN at Departement of Food Science and Technology Faculty of Agricultural Engineering and Technology Bogor Agricultural University

> By ATIKA LUTHFIYYAH F24070137

FACULTY OF AGRICULTURAL ENGINEERING AND TECHNOLOGY BOGOR AGRICULTURAL UNIVERSITY BOGOR 2012

IPB University	MINA	Title : Characterization of the Chemical Constituents and Antioxidant Capacity of Green and Oolong Teas (Camellia singusis) Manufactured in Thailand
		Name : Atika Luthfiyyah NIM : F24070137
		Approved by, Advisor,
		(Dr. Ir. Sukarno, M.Sc) NIP. 19601027 198703 1 003
		Acknowledged by, Head of Departement of Food Science and Technology,
		(Dr. Ir. Feri Kusnandar, M.Sc) NIP. 19680526 199303 1 004
		Date of examination: 24 th February, 2012

Annual Sal Wanter and

STATEMENT ABOUT MANUSCRIPT AND INFORMATION SOURCE

Hereby I state genuinely that the manuscript entitled **Characterization of the Chemical Constituents and Antioxidant Capacity of Green and Oolong Teas** (*Camellia sinensis*) **Manufactured in Thailand** is an authentic work of mine under supervision by academic advisors, and never be published in other university. All the information taken and quoted from published or unpublished works of other writers had been mentioned in the texts and attached in the bibliography at the end of this manuscript.

> Bogor, 24 February 2012 Author

Atika Luthfiyyah F24070137

PE Universit

BIOGRAPHY OF AUTHOR

Atika Luthfiyyah. Was born at Probolinggo, 6th of April, 1990 from Mr. Abdul Rochim and Mrs. Tsuaibatul Aslamiyyah (Almh), as the oldest daughter from two sibling. She also has step-mother, Mrs. Siti Khadijah, and 3 sisters and brother. The Author finished her high school at SMA Darul Ulum 2 BPP-Teknologi, Jombang on 2007 and in the same year she was accepted in Bogor Agricultural University (IPB) and got full scholarship (4.5 years) from Ministry of Religion Affair (BUD Kemenag). Author choose Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, as her major in university. She actively participated in some organizations during her study at university,

i.e.*UKM* FORCES (Forum for Scientific Studies), CSS MoRA, IKALUM, *Forum Indonesia Muda*(Youth Indonesian Forum)batch VII and became the volunteer in the Indonesia Menyala program cluster IPB.She also participated in some organizational events which were hold by HIMITEPA (Association of Food Science and Technology Students), such as became the commitee in the HACCP VII and PLASMA 2009. She has ever joined as the production staff of RUSNAS Corn Noodle program, SEAFAST Centre, for 1 year.

There are some achievements that she got during her study at Bogor Agricultural University. On 2008, author was awarded as best student among grantees of BUD Kemenag from Bogor Agricultural University. Author and her team also have ever been funded in the Student Creativity Program about research entitled "Lactic Acid from Kubis Waste as the Preservative for Fish" (2009) and community service project entitled "Eco-Innovation Project : Green Campaign through Documentary Film about Eco-Enzyme Production in Induk Kemang-Bogor Traditional Market" (2010) by Directorate of Higher Education, Indonesia. On 2009, she and her team became the finalist of Alguran Scientific Writing National Competition in the National Scientific Fair, Malang. On 2010, her team paper entitled "Eco-Community Concept through Development of Eco-Enzyme to Process Organic Waste Completely at the Household Level" was accepted in Student Creativity Program-Written IdeaCluster 2010 and alsopresented in the SUSTAIN International Conference, Kyoto, Japan.In the same year, her team paper entitled "Dodol Zeya (Zea Mays - Soja Max) as Functional Emergency Food" got the 4th Place on Agroindustry and Agribussines Product Inovation Competition in Lampung Polytechnic School, and also bussines plan proposal entitled "La-Velva Shorbee : The New Way to Eat Fruit" became the 2nd Runner Up on Youth Agrotechnopreneurship Competition. On 2011, her team paper entitled "The Potential of Aceh Traditional Food in Aceh Development Post Tsunami" was presented in ADIC (Aceh Development International Conference) 2011, Bangi, Malaysia. In the same year, her team paper paper entitled "Determination of Antioxidant Activity of Indonesian Indigenous Plant Extract and Identification of High Antioxidant Activity from Its Bioactive Compound" was accepted in Student Creativity Program-Scientific Writing Cluster 2011. She also was registered as the 1st Winner of Word Smart Center Writing Competition and then the story was published in an Anthology Book entitled Kisah Kasih Ibu, by Dar!Mizan Press. She had a beautiful story in her last year at IPB by participated in student mobility program, credit transfer Malaysia-Indonesia-Thailand (MIT), to conduct final research entitled "Characterization of the Chemical Constituents and Antioxidant Capacities of Green and Oolong Teas (Camellia sinensis) Manufactured in Thailand" in Mae Fah Luang University, Chiang Rai, Thailand.

FOREWORD

Praise to Allah, the Most Glorius, for His Mercy to me. Peace be upon to Muhammad Rasulullah SAW who always be my inspiration in my whole life. The research entitled "Characterization of the Constituents and Antioxidant Capacity of Green and Oolong Teas (*Camellia sinensis*) Manufactured in Thailand" was conducted in Mae Fah Luang University, Chiang Rai, Thailand, from June to October 2011.

I would like to extend my best gratitude to :

My beloved parent, Mr.Abdul Rochim, Mrs.Tsuaibatul Aslamiyyah (*Almh*.) and my step mother Mrs.Siti Khadijah for their love and support. Also for my big family who always love me.

Dr.Sukarno as my academic advisor in Bogor Agricultural University,Dr.Theerapong Theppakorn as my research advisor in Mae Fah Luang University, and the committee in School of Agroindustry who has evaluated my research during presentations.

- 3. Dr. Ir. Budi Nurtama and Dr. Didah Nurfaridah, STP, MSi as the examiner committee in oral exam.
- 4. Ministry of Religion Affair as my scholarship sponsor during my study at university, as well as Mr.Imam, Mr.Roni, Mr.Ruchman from Ministry of Religion Affair, Dr.Ibnul Qayyim (advisor of BUD Kemenag at IPB), BUD commitee, i.e Ms.Ani, Ms.Ribka, Ms.Imas, and Ms.Onya.
- 5. Directorate of Higher Education as my scholarship sponsor during MIT Exchange Program at Thailand.
- 6. All the stakeholder of Food Science and Technology Department and UPT Staff who always help my administration during my study at university. Also for all the technicians at ITP Laboratorium.
- 7. My organizations, i.e FORCES IPB, FIM, CSS MoRA, IKALUM and Indonesia Menyala that teach me how to become the leader for my self.
- 8. Dear friends at ITP 44 (Puji, Ais, Uswah, Ronald, Dati, Cipi, Bu Elmi, Ichank, Imel, Nene, Rini, Nida, Nurin, Ashari, Fitri, Amelia, Belinda, Kanov, Budel, Oni, Sisko, Nidya, Rina (*Almh.*),Pidud, Fiki, Kiki, Septiand others), FORCES (Aldian, mb'Ophie, Riska, Amin, Ayu, Ririn, Sep, Zimam, Grevi, Zia,Suci, K'Bowo, K'Roni, Mb'Sari, Mb'Sarah, Mb'Ai, etc), ITP 43, ITP45, Wisma Zulfa (Mb'Ari my lovely sister, Wira, T'Gege, and others), IKALUM (Indri, Suki, Gal, Upe, Farid, Paw, Dendy, Sony, Denny, Nurul, Indah, Mb'Sai, Rosi,Nia, etc).
- 9. Beloved people at Mae Fah Luang University. President University of MFU, Division of International Collaboration, P'Ngew, Aj.Ann, Aj.Oil, Aj.Kai, all MIT Students (Sari, Lailya, Alyn, Seri, As, Wani, Ana, Tqmee, Aida, Meegie, Chong, Tee, P'Dhimas, and P'Anis), friends in food technology major (Beam, Pom, Aom, Ben,Nuch, Bew, Ton, Peace, etc), friends in Moslem Society (KoRn, Yaya, Run, Zainuda, Fah, Matt, Najmah, Bang Yusuf family, etc), Aj.Palm and Thai Language classmates (Long and others). Also to my beloved P'Up and P'Teap as the laboratory assistant during my research and securities of S2 lab who have helped me when I worked at weekend in the laboratory.

Finally, I wish this manuscript is useful for everyone who read and interest in Food Science and Technology.

merughan hapanangan yang wapat 10% Lawananya. Man dan memberintakan tahunan utau selaruh kutwa tulis ito distant bisatuk utapatan tumpa biti 108 Lawanan

2.

Bogor, 24February, 2012

Atika Luthfiyyah

CONTENTS

Foreword
Content
List of tables
List of figures
List of appendix
List of abbreviation
I. Introduction
II. Literature review
2.1. Tea
2.2. Tea polyphenols
2.2. Pet polyphonois
2.3. Catchins
2.4. Antioxidant
2.5. Califolite
2.0. Tea moustry in mananta
11. Materials and methods
5.1 Materials and instruments
3.1.1 Materials
3.1.1.1 Samples
3.1.1.2. Chemical materials
3.1. 2 Instruments
3.2. Methods
3.2.1.Sample extraction
3.2.2. Determination of moisture contents
3.2.3. Determination of total polyphenol contents
3.2.4. Determination of catechins and caffeine contents
3.2.5. Determination of dpph radical scavenging activity (dpph assay)
3.2.6. Determination of ferric reducing antioxidant power activity (frap assay)
3.2.7. Statistical analysis
IV. Results and discussions
4.1 Chemical compositions and antioxidant capacity of green tea, and oolong tea
4.1.1 Moisture content
4.1.2 Total polyphenol content
A = 1.3 Antioxidant canacity
4.1.1.2. Antionidant capacity
4.1.4. Canonic content
4.1.J. Cattolini Content
4.2 Comparison between arean too year and singuistic and singuisti
4.2.1. Comparison between green tea var. assamica and sinensis (cv. oolong no. 12)
4.2.2. Comparison between <i>Camellia sinensis</i> var. <i>sinensis</i> (cv. oolong no. 12) and <i>Camellia</i>
sinensis var. sinensis (cv. oolong no. 1/)
4.2.3. Comparison between green tea and oolong tea
4.3 Relationship between chemical composition and antioxidant capacity
4.4. Chemical characteristic profile of tea samples by pca (principal component analysis)
4.4.1. Principal component of green tea var. assamica
4.4.2. Principal component of green tea var. <i>sinensis</i> (cv. oolong no. 12)
4.4.3. Principal component of oolong tea var. sinensis (cv. oolong no. 12)
4.4.4. Principal component of oolong tea var. sinensis (cv. oolong no. 17)
V. Conclusion and recommendation
References
Appendix
11

LIST OF TABLES

Page

Table 1	The taxonomy of tea	3
Table 2	Tea production rank by country in 2010	12
Table 3	Sample code	13
Table 4	Total polyphenol content of different sources	20
Table 5	Correlation coefficients of chemical compound with antioxidant capacity in tea	30
	samples	

LIST OF FIGURES

		Page
Figure 1	Various types of dry tea; a) green tea; b) oolong tea; c) black tea	3
Figure 2	Phenol structure	5
Figure 3	Plant-derived polyphenol, tannic acid, formed by esterification of ten	5
	equivalents of the phenylpropanoid-derived gallic acid to a	
	monosaccharide (glucose) core from primary metabolism.	
Figure 4	Scheme of the mechanism of PPO and POD to catalyze the reactions of	6
	polyphenols	
Figure 5	Various types of catechines	7
Figure 6	Reaction of antioxidants with radicals	8
Figure 7	Caffeine structure	9
Figure 8	Graph of export quantity of tea in Thailand, 1961-2008	11
Figure 9	Graph of import quantity of tea in Thailand, 1961-2008	11
Figure 10	Blender	14
Figure 11	Hot tea for extraction	14
Figure 12	Tea extract	14
Figure 13	Hot air oven (for TPC, DPPH, and FRAP assay)	15
Figure 14	Desicator	15
Figure 15	Spectrophotometer	15
Figure 16	Sample for injection	16
Figure 17	Vacuum pump for mobile phase preparation	16
Figure 18	Reverse phase - HPLC	17
Figure 19	Cetrifuge	18
Figure 20	Comparison of moisture content, total polyphenol content, total catechins	25
	content, and caffeine between green tea var. assamica and var. sinensis	
Figure 21	Comparison of antioxidant capacity by DPPH and FRAP-assay between	25
	green tea var. assamica and var. sinensis	
Figure 22	Comparison of single catechins between green tea var. assamica and var.	25
	sinensis	
Figure 23	Comparison of moisture content, total polyphenol content, total catechins	26
	content, and caffeine between oolong no. 12 and no. 17	
Figure 24	Comparison of antioxidant capacity by DPPH and FRAP-assay between	26
	oolong no. 12 and no. 17	
Figure 25	Comparison of single catechins between oolong no. 12 and no. 17	27
Figure 26	Comparison of moisture content, total polyphenol content, total catechins	29
	content, and caffeine between green tea and oolong tea	
Figure 27	Comparison of antioxidant capacity by DPPH and FRAP-assay between	29
	green tea and oolong tea	
Figure 28	Comparison of single catechins between green tea and oolong tea	29
Figure 29	Biplot graph of sample green tea var. assamica	29
Figure 30	Biplot graph of green tea var. sinensis (cv. oolong no. 12)	30
Figure 31	Biplot graph of oolong tea from cv. oolong no. 12	31
Figure 32	Biplot graph of oolong tea from cv. oolong no. 17	32

LIST OF APPENDIX

Appendix 1 Appendix 2	Tea samples Contents of moisture in green tea from var. <i>assamica</i> , green tea from var.	43 44
	sinensis/cv. oolong no. 12, oolong tea from var. sinensis/cv. oolong no.	
	12, and oolong tea from var. <i>sinensis</i> /oolong no. 17	
Appendix 3	Contents of total polyphenol in green tea from var. <i>assamica</i> , green tea from var. <i>sinensis</i> /cv. oolong no. 12, oolong tea from var. <i>sinensis</i> /cv. oolong no. 12, and oolong tea from var. <i>sinensis</i> /oolong no. 17	46
Appendix 4	Antioxidant capacity in green tea from var. <i>assamica</i> , green tea from var. <i>sinensis</i> /cv. oolong no. 12, oolong tea from var. <i>sinensis</i> /cv. oolong no. 12, and oolong tea from var. <i>sinensis</i> /oolong no. 17	48
Appendix 5	Content of caffeine in green tea from var. <i>assamica</i> , green tea from var. <i>sinensis/</i> cv. oolong no. 12, oolong tea from var. <i>sinensis/</i> cv. oolong no. 12, and oolong tea from var. <i>sinensis/</i> colong no. 17	50
Appendix 6	Content of total catechins and single catechins in green tea from var. assamica, green tea from var. sinensis/cv. oolong no. 12, oolong tea from var. sinensis/cv. oolong no. 12, and oolong tea from var. sinensis/oolong no. 17	52
Appendix 7	Moisture content raw data in dry basis and wet basis	56
Appendix 8	Gallic acid calibration curve	59
Appendix 9	DPPH assay calibration curve	60
Appendix 10	Standard curve for ferric reducing antioxidant power	61
Appendix 11	Data of concentration caffeine & catechins in mix standard	63
Appendix 12	Data and curve of Gallocatechin standard	63
Appendix 13	Data and curve of Epigallocatechin standard	64
Appendix 14	Data and curve of Catechin standard	65
Appendix 15	Data and curve of Epicatechin standard	66
Appendix 16	Data and curve of Epigallocatechin gallate standard	67
Appendix 17	Data and curve of Gallocatechin gallate standard	68
Appendix 18	Data and curve of Epicatechin gallate standard	69
Appendix 19	Data and curve of Catechin gallate standard	70
Appendix 20	Data and curve of Caffeine standard	71
Appendix 21	Grubb test	72
Appendix 22	Example of calculation of catechin and caffeine	73
Appendix 23	ANOVA and posthoc test of sample A-GT	79
Appendix 24	ANOVA and posthoc test of sample O12-GT	84
Appendix 25	ANOVA and posthoc test of sample O12-OT	90
Appendix 26	ANOVA and posthoc test of sample O17-OT	90
Appendix 27	Comparison of chemical content	104
Appendix 28	T-test resuts of green tea var. <i>sinensis</i> and var. <i>assamica</i>	106
Appendix 29	T-test resuts of oolong tea no. 12 and no. 17	109
Appendix 30	T-test results of green tea and oolong tea	112
Appendix 31	Correlation analysis by Minitab	115
Appendix 32	Principal component analysis	120

No	Abbreviation	Meaning
1	A-GT	Assamica-Green tea
2	O12-GT	Oolong no. 12 – Green tea
3	O12-OT	Oolong no. 12 – Oolong tea
4	O17-OT	Oolong no. 17 - Oolong tea
5	Var.	Variety
6	Cv.	Cultivar
7	MC	Moisture content
8	TPC	Total polyphenol content
9	CF	Caffeine
10	TCC	Total catechins content
11	GC	Gallocatechin
12	EGC	Epigallo catechin
13	С	Catechin
14	EC	Epicatechin
15	EGCG	Epigallocatechin gallate
16	GCG	Gallocatechin gallate
17	ECG	Epicatechin gallate
18	CG	Catechin gallate
19	DPPH	2,2-diphenyl-1- picryhydrazyl
20	FRAP	Ferric reducing antioxidant power
21	GAE	Gallic acid equivalent
22	TE	Trolox equivalent
23	AA	Ascorbic acid
24	db	Dry basis
25	w/w	Weight per weight

I. INTRODUCTION

1.1. Background

Tea is made from the young tender shoots (flushes) of *Camellia sinensis* (L.) O. Kuntze and is the most widely consumed drink after water, due to its refreshing and mildly stimulant effects. Freshly harvested tea leaves are processed differently to produce specific types of tea (green, oolong, and black tea). Green tea is heated to avoid enzymatic oxidation. Oolong tea is semi-fermented to permit a moderate level of enzymatic oxidation during processing and then dried. Black tea is the most thoroughly oxidized enzymatically. Worldwide, 78% of the tea consumed is black tea, which is also the most popular drink in Europe, North America, and North Africa (except Morocco), whereas green tea (20%) is drunk throughout Asia (20%). The remaining 2% is oolong tea production, which is mainly consumed in southeastern China and Taiwan (FAO 1998).

The predominant constituents of tea leaves, accounting for up to 35% of the dry weight, are the polyphenols, which include flavonols, flavones, and flavan-3-ols. Of these, 60–80% are the flavan-3-ols commonly known as catechins. Some studies support that among all tea types, green teas containthe highest amount of catechins (Lin *et al.* 2003). The major catechins include (–) -epicatechin (EC), (–)-epigallocatechin (EGC), (–)-epicatechin-3-gallate (ECG), and (–)-epigallocatechin-3-gallate (EGCG). These compounds are primarily responsible for many of the health protective properties associated with tea including anti-obesity (Thielecke and Boschmann 2009; Sae *et al.* 2011; Rains *et al.* 2011), cancer prevention (Ju *et al.* 2007; Yang *et al.* 2007; Lambert and Elias 2010; Yuan *et al.* 2011), and cardiovascular diseases prevention (Hodgson and Croft 2010; Deka and Vita 2011).Studies have shown that the quality of tea is influenced by many factors such as the cultivars, harvest season, age of the plant, climate, environmental conditions and processing conditions (Lin *et al.* 2003; Cooper *et al.* 2005; Owuor *et al.* 2008).

In Thailand, tea is cultivated in the north part of the country in the provinces of Chiang Rai and Chiang Mai (account for 85% of tea growing areas and 93% of tea production in Thailand). About 30% of the production is commercialized in the domestic, whereas the remaining 70% is exported. In 2010, Chinese Taipei, United States of America, Netherlands and Cambodia make up a great proportion of the Thai Tea export. The exported quantity and value was 2,380 tons and 4,851 USD thousand with the annual growth rate (2006-2010) 15% and 11% respectively (International Trade Center 2011). Commercially grown teas in Thailand are the Assam tea (*Camellia sinensis*var.*assamica*) and the Chinese tea (*Camellia sinensis*var.*sinensis*). Two major Chinese teas are jing shuan oolong (cv. oolong no. 12) and chin shin oolong (cv. oolong no. 17). Assam cultivar is normally used to produce green and black teas, whereas Chinese cultivars are used as raw materials for oolong tea. However, green tea produced from jing shuan oolong (cv. oolong no. 12) can also be found in Thailand.

The amount of tea polyphenols has been regarded as a quality indicator of tea (Obanda *et al.* 1997). Information based on chemical standardization and biological assays are complementary indicators of the quality of tea, regarding its biological activities. The growing popularity of tea in recent years on the basis of beneficial health effects requires additional data of chemical constituents and biological activities. The level of chemical constituents including, total polyphenols and catechins in commercially Thai teas has not been determined so far. This study will provide useful information for the tea industry in Thailand and other countries in processing and selecting a good-quality tea.

1.2. Objectives

The objectives of this research were :

- to determine the chemical compositions and antioxidant capacity of 4 important Thai • tea products
- to compare the chemical compositions and antioxidant capacity between tea groups
- to explore the correlation between chemical components and antioxidant capacity.

2

II. LITERATURE REVIEW

2.1. Tea

Tea is made by processing the leaves of the tea tree *Camellia sinensis*, which originated in the southern areas of Yunnan province in China, and now spread throughout the world. This plant has been used as medicine for 5,000 years (Harbowy and Balentine 1997). The taxonomy of tea is shown in the Table 1 below.

Table 1. The taxonomy of tea		
Common name	Tea	
Kingdom	Plantae	
Division	Spermatophyta	
Subdivision	Angiospermae	
Class	Dicolydone	
Ordo	Guttiferales	
Family	Theaceae	
Genus	Camellia	
Species	Camellia sinensis	
$\Gamma_{1} = \Gamma_{1} + \Gamma_{2} + \Gamma_{2$		

Source : Fitri (2009)

Most commercial teas are derived from the young leaf buds of the tea plant, which are plucked and treated in one of several ways to convert them into the appropriate form for the tea markets. The bulk of the leaf is processed by one of three distinctly different methods, depending upon the characteristics of the end product (Lin 2009).

According to the different ways of processing, especially the extent of fermentation, tea is usually divided into three basic types: green tea (non fermented), oolong tea (semi fermented) and black tea (fully fermented) (Figure 1). Alternatively, with the combination of the ways of processing and the characteristic quality of manufactured tea, tea is classified into six types. They are green tea, yellow tea, dark tea (containing brick tea and pu-erh tea), white tea, oolong tea, black tea (Wan*et al.* 2009) and GABA tea as the new type of specialized tea with high content of γ -amino butyric acid (GABA) (Ou*et al.* 2009).

Most tea leaves are used for the manufacture of green or black teas, but a smaller, though still significant, quantity is processed to yield oolong tea (Wong *et al.* 2009). Tea is processed differently in different parts of the world to give green (20%), black (78%), oolong tea (2%) (Kuroda & Hara 1998).

In green tea manufacture, catechin oxidation by polyphenol oxidase is prevented by steaming (Japan) or by panning (China) (Graham 1999). The leaves retain their green colour and almost all of their original polyphenol content. Oolong tea is allowed to ferment to a limited extent and contains a mixture of catechins, theaflavins and thearubigins (Wheeler & Wheeler 2004). Black tea is produced from fully fermented leaves and has a characteristic colour and taste.

Figure 1 Various types of dry tea; a) green tea; b) oolong tea; c) black tea

The composition of green tea has been thoroughly studied up to the nineteen eighties and is now well known. Tea is the best dietary source of catechins. Epigallocatechin gallate (EGCG) is the major catechin in tea accounting for more than ten percent on a dry weight basis. However, catechin and epicatechin (EC) can also be found in chocolate, black grapes, red wine and apples (Rice-Evans, 1997). Flavonols are more widely distributed. Quercetin, kaempferol and rutin are the most important flavonols in tea. Tea contains phenolic acids mainly caffeic, quinic. Caffeic acid is also found in white grapes, berries, in most fruits, in some vegetables particularly in asparagus, olive and cabbage (Rice-Evans 1997). Tea is also a good source of methylxanthines primarily in the form of caffeine.

With the changing society of today's world, tea trends are constantly changing. They are also very different in different parts of the world. FAO projected that world green tea production would grow at a faster rate than black tea by 2.0% annually, to reach 1097.7 thousand tons by 2016. World black tea consumption is projected to expand to reach 2.69 million tons by 2016, an annual growth rate of 1.3%. China is the largest green tea consumer, with 484.9 thousand tons of green tea consumed in 2005, which accounts for 70.17 and 54.85% of its total green tea production and 54.86% of world green tea consumption in 2005 (691.0 thousand tons). Green tea consumption fluctuated from 2000 to 2005, in Japan, Vietnam, and Indonesia. The green tea consumption in Indonesia was 3.13 thousand tons in 2005. Black tea consumption was more than green tea consumption, 67.9 thousand tons in 2005 (Wan *et al.*2009).

Although different green teas may be produced by different processing techniques, the general green tea processing is achieved as follows, fresh tealeaves plucked and fixed to inactivate enzyme. Then the leaves will be rolled and dried (or fired). The moisture content of the final product (crude tea) should be less than 6%. Oolong tea has different technique of processing. However, every company usually has different techniques. The general oolong tea processing is achieved as follows: fresh tealeaves are withered and bruised (shaken). The leaves will be partially fermented then fixed and rolled. The final step in drying to get suitable moisture content (Wan *et al.* 2009).

In Taiwan, it is estimated that approximately 80% of tea produced is consumed as oolong tea (Lin 2009). Oolong tea is manufactured predominantly in Fujian, Guangdong and Taiwan provinces of China. Although oolong tea is getting more and more popular in the world, especially in China and Japan, there is much less investigation on the quality of different oolong tea in comparison with the vigorous studies on the quality of green tea and black teas. Oolong tea is a semi-fermented tea as partially chlorophylls (chl), catechins and other polyphenols (PPs) are preserved after processing owing to inactivation of enzyme by dry heating. The perceived quality of oolong teas is assessed according to their appearance of leaf tea and the color, taste and aroma of the brew and features of infused young shoots (Wang *et al.* 2010).

Oolong tea possesses the characteristics of both the unfermented green tea and fully fermented black tea. In its manufacture are applied the long withering processing of black tea manufacture, with shaking slightly to oxidise the PPs, followed by the heatblanching procedures of green tea manufacture to stabilise the oxidised and nonoxidised components in tea leaf. Unique processing makes oolong teas possess the characteristic of 'green tea with red circumference'. This is because the fresh leaves are rotated after the withering process. The rotating process causes the friction between the leaves, disrupts the cellular tissue at the edge of leaves and causes a limited degree fermentation. Typical brew liquor of oolong tea is 'golden brew liquor with green leaf' with fragrant flowery aroma and a sweet, smooth and soothing taste (Hui *et al.* 2004).

2.2.Tea polyphenols

In the most simple chemical terms, phenolic compounds include a hydroxylated aromatic ring such as phenol, *p*-cresol, and 3-ethylphenol (Figure 2). Phenolic compounds comprise a large group of organic substances, and flavonoids are an important subgroup. Phenolic compounds, such as p-hydroxybenzoic acid, catechol, caffeic acid, gossypol, and quercein, are found in all plant tissues.Polyphenolics have traditionally been separated into "condensed" and "hydrolysable" tannins. These terms are somewhat confusing because both groups can be hydrolyzed. "Condensed" tannins are more correctly referred to as flavan-3,4-diolderived tannins or proanthocyanidins, and the "hydrolysable" tannins as gallotannins or ellagitannins (Fennema 1996).

Tea polyphenols, previously called tea tannis (Figure 3), are also known as tea flavonoids. Tannins are a diverse group of molecules that range up to 3000 D and are formed from carbocyclic acids, phenolic acids, and sugars. The exact structures of the larger molecules are not known (Fennema 1996).

Figure 2 Phenol structure (Prahl 2012)

Figure 3 Plant-derived polyphenol, tannic acid, formed by esterification of ten equivalents of the phenylpropanoid-derived gallic acid to a monosaccharide (glucose) core from primary metabolism (Wikipedia 2012).

Tannin can give astringency flavour. Astringency is a taste-related phenomenon, perceived as a dry feeling in the mouth along with a coarse puckering of the oral tissue. Astringency usually involves the association of tannins or polyphenols with proteins in the saliva to form precipitates or aggregates. Additionally, sparingly soluble proteins such as those found in certain dry milk powders also combine with proteins and mucopolysaccharides of saliva and cause astringency. Astringency is often confused with bitterness because many individuals do not clearly understand its nature, and many polyphenols or tannins cause both astringent and bitter sensations (Fennema 1996).

Polyphenols are important elicitors of the taste of bitterness and astringency in tea (Scharbert *et al.* 2004; Scharbert & Hofmann 2005). Among the polyphenols in fresh tea leaves, catechins are the predominant form of polyphenols, which account for 12-24% of the dry weight. Besides catechins,

g kuti koportingan yang wapa 10%. University hat memperiariyak sebagan anat sekarak harya taita in dalam bisntak apagan tampa ian 928 University flavonol, and their glycosides, anthocyanidin and leucoanthocyanidin, phenolic acids and depsides are also present. These phenolic compounds are directly or indirectly associated with the characteristics of tea, including its color, taste, and aroma (Wong*et al.* 2009).

Total polyphenols in young tea shoots contains 18-36% dry basis, and their typical contents such as flavan-3-ols (catechins) 12-24%, flavonol and glycosides 3-4%, anthocyanins and leucoanthocyanidin 2-3%, phenolic acids and depsides ~5% (Wan*et al.*2003).

During fermentation process, polyphenols located within the vacuoles of the intact leaf cells are released and oxidized catalycally with polyphenol oxidases located in cytoplasm. Polyphenol oxidase can use any of the catechins as a substrate to form complex polyphenolic constituents. The catechins (Figure 4) in fresh tea leaves undergo enzymatic and chemical oxidation leading to oxidized, condensed, and polymerized polyphenols known as theaflavins and thearubigins, which contribute to the color and taste of liquors of black tea. The oxidative fermentation of catechins results in the development of appropriate flavor and color. It will cause a darkening of the leaf and a decrease in astringency. Theaflavins account for 1-3% of the dry weight of black tea. Thearubigins are by far the major components of black tea extract. They constitute as much as 10-20% of the dry weight of black tea (Wan*et al.* 2009).

Nerolidol, indole, benzenacetaldehyde, linalool, linalool oxide I, n-hexanal, benzyl nitrile, geraniol and 1-penten-3-ol were prevailing volatile compounds detected in most of oolong tea samples. These compounds together with methyl salicylate, methyl jasmonate, phenylethyl alcohol, benzyl alcohol, cis-jasmone and b-ionone are possibly principal contributor to fragrant flowery aroma of made oolong teas. Their abundant concentrations in oolong teas can be formed during tea manufacture, in which hydrolysis of their glycosides and primeverosides by b-glucosidase primeverosidase occurs intensively (Wang *et al.* 2001). Some thermal generated compounds, e.g. 3,7-dimethyl-1,5,7-octatrien-3-ol was measured in most of oolong tea. These later compounds exhibiting toasted flavour are known as heat products from AAs and sugars (Kato & Shibamoto 2001).

Enzymes have been implicated in the decolorization of tea compound. Two groups have been identified: Polyphenol oxidase (PPO) and peroxidase (POD). These enzymes are undesirable during the manufacturing of green tea (Jiang 2009).Polyphenol oxidase (1,2-benzenediol:oxygen oxidoreductase; EC 1.10.3.1) is frequently called tyrosinase, polyphenolase, phenolase, catechol oxidase, cresolase, or catecholase, depending on the substrate used in its assay or found in the greatest concentration in the plant that serves as a source of the enzyme. Polyphenol oxidase is found in plants, animals and some microorganisms, especially the fungi. It catalyzes two quite different reactions with a large number of phenols, as shown in Figure 4.

PPO: Polyphenol oxidase; POD: peroxidase

Figure 4 Scheme of the mechanism of PPO and POD to catalyze the reactions of polyphenols (Wan *et al.* 2009)

2.3.Catechins

Catechins are characterized by di- or trihidroxyl group substitution of the B ring and meta-5,7dihidroxyl substitution of the A-ring of the flavonoid structure. Catechins posses a 1,3-dihydroxy phenyl group (A-ring) and an *o*-dihydroxy phenyl group (B-ring).Catechins are group of flavonoids belonging to flavan-3-ols. In fresh tea leaves, the principal catechins are (-)-epicatechin (EC), (-)epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), catechin (C), and gallocatechin (GC). EGCG is the most abundant catechin, followed by EGC, ECG, and EC (Wan, Li, Zhang 2009). Structure can be seen in Figure 5.

Catechins are responsible for the astringent taste and strenght of green tea infusion. During green tea manufacture, most catechins and otherpolyphenols are preserved owing to the inactivation of the endogenous enzymes by dry heating or steaming at the initial step. green tea quality correlates positively with the concentration of polyphenols. However, a high concentration of polyphenols or catechins, which makes the infusion strongly bitter and astringent, is not necessarily required for high quality green tea. High quality green tea is characterized by high contents of free amino acids with appropriate concentrations of catechhins and caffeine (Chen *et al.* 1985).

The antioxidant activity of catechin is determined by the B-ring catechol structure and is further enhanced in gallocatechins by the 5'-hydroxyl group on the B-ring. Various structureantioxidant activity studies have concluded that the presence of a gallate group in the 3-position and a trihydroxy B-ring plays the most important role in the free radical scavenging abilities of catechins (Salah *et al.* 1995; Nanjo *et al.* 1996).

2.4.Antioxidants

Antioxidant is a molecule capable of inhibiting the oxidation of other molecules. Oxidation is a chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing agent. Oxidation reactions can produce free radicals (see Figure 6).

R∙ +	AH	>	RH +	A∙
RO• +	AH		ROH +	A●
ROO• +	AH		ROOH +	A∙
R∙ +	A∙	>	RA	
RO• +	A●		ROA	
ROO• +	A●		ROOA	
Antioxida	$nt + O_2$		Oxidized Ant	ioxidant

Figure 6 Reaction of antioxidants with radicals (FST Ohio-state 2012)

In living organisms, reactive oxygen species are generated by many pathways and they can cause oxidative damage to important biomolecules such as lipoproteins and DNA. Antioxidants and antiradicals have received much attention because their ingestion supposedly helps to prevent in vivo oxidative damage which is associated with many diseases, including cancer, atherosclerosis, diabetes, arthritis, brain dysfunction, and immune deficiency. Consequently, there has been increasing interest in finding natural antioxidants from plants to protect the human body from the attack of free radicals and retard the progress of chronic diseases (Haslam 1996; Weisburger 1999).

The potential health benefits associated with tea consumption have been partially attributed to the antioxidant properties of tea polyphenols. Thus antioxidant activity is very important to be know in the tea. DPPH method is sensitive enough to detect active principles at low concentrations (Wan*et al.* 2009).

Although there is conflicting evidence, epidemiological studies suggest that green tea possesses diverse pharmacological properties, which include anti-oxidative (Serafini*et al.* 1996), antiinflammatory (Mutoh *et al.* 2000), anti-mutagenic (Steele *et al.* 2000), anti-diabetic (Zeyuan*et al.* 1998), anti-bacterial (Kuroda*et al.* 2005), anti-parasitic (Molan*et al.* 2003; Molan*et al.* 2004), and anti-aging effects (Esposito *et al.* 2002). Although a number of mechanisms have been proposed for the beneficial effects of tea, the radical-scavenging and antioxidant properties of tea polyphenols are frequently cited as important contributors (Higdon & Frie 2003) to these benefical effects.

Tea polyphenols, especially catechins and theaflavins, can execute their antioxidant activities principally through scavenging free radicals, chelating transition metal ions, and modulating oxidant/antioxidant enzymes or genes. The main sites of antioxidant action of catechins are the catechol or pyrogallol group of the B-ring, the meta-5,7,-dihydroxyl group of the A-ring, and the galloyl group of the D-ring. The main antioxidant sites of theaflavins are similar to those of catechins. Antioxidant/prooxidant activity of polyphenols are dependent on many factors, such as metal-reducing potential, chelating behavior, pH, solubility characteristics, bioavailability, and stability in tissues (Wan *et al.* 2009).

2.5.Caffeine

Caffeine is the major purine alkaloid present, together with theobromine and theophylline(Wong *et al.* 2009). Structur is showed in Figure 7. Caffeine is a mild central nervous system stimulant. Although ithas been found that caffeine in tea leads to faster digit vigilancereaction time, improved rapid visual information processing accuracy, and attenuated increases in self-reported metal fatigue(Haskell*et al.* 2008), at a sufficientlyhigh dose, it may also cause flushing, chills, agitation, irritability,loss of appetite, weakness, and tremor. Hypertension,hypotension, tachycardia, vomiting, fever, delusions, hallucinations,seizures, arrhythmia, cardiac arrest, coma and death havebeen reported in cases of overdose (>200 mg/day) (Kerrigan &Lindsey 2005). Tea normally contains 20–50 mg of caffeine/g dry leaves (Yamauchi *et al.* 2008) and 24–50 mg/150 ml tea (Dixit*et al.* 2006).

Figure 7 Caffeine structure (Wikipedia 2012)

However, it hasbeen shown that the concentration of caffeine in a cup of tea isdependent on brewing conditions, namely, water temperature, brewing duration, and leaf/water ratio (Horie, Nesumi, Ujihara, &Kohata 2002; Labbé, Tremblay, & Bazinet 2006) because brewing conditions influence the dissolution and diffusion rates of caffeine (Spiro & Lam 1995). The form of the leaf could affect the infusion rateof caffeine in solution (Suteerapataranon 2005). It was shown that the caffeineconcentration in the tea solution prepared from rolled-leafoolong tea was less than that from loose-leaf green tea, althoughthose tea samples were produced from the same tea variety (*C. Sinensis*var.*sinensis*) grown in the same plantation.

Some other factors that could affect caffeine concentration intea infusion have been studied. The tea processing method couldhave an effect on tea quality (Muthumani & Kumar 2007a,b). Attempts had been made to study the effect of fermentation on tea quality but work on the effect of processing method on caffeine content is limited. To produce green (non-fermented), oolong (semi-fermented), and black (fermented) teas, dry leaves are steamed, rolled, and withered to different degrees. Caffeine, and also other important components, could be increased or decreased during those processes (Muthumani & Kumar 2007a,b). The caffeine concentration in fresh tea leaves is another factor affecting caffeine concentrations in tea infusions. Yang, Lambert, *et al.* (2007), Yang, Ye, *et al.*. (2007) reported the different amounts of caffeine in *C. sinensis* (2.72% w/w) and *C. assamicavar.kucha* (0.94% w/w) while Chen, Wang, Xia, Xu, and Pei (2005) found no significant differences among *C. sinensis c. talinensis*, *C. talinensis*, *C. sinensis var. dehungensis*, *C. crassicolumna* and *C. sinensis var.assamica*.

2.6.Tea Industry in Thailand

With a long history of trade between the two countries, tea was undoubtedly first introduced from China. Overseas Chinese settled in the far South of Thailand around the trading ports, in Chonburi and Rayong and the capital at Ayuthaya, bringing with them their tea culture – particularly Oolong. Later immigrants were the backbone of the tin industry in the South (Commins 2008).

Tea is emerging as an economically important crop in Thailand and is earning a significant share of the beverage market. The development of what is known today as Thai tea is unclear. Given that most recipes call for condensed milk, it could not predate the introduction of that product to the country, as it could not predate the introduction of crushed ice. Iced coffee, traditionally made from concentrate (*oliang*), was probably introduced around the same time. The development of Thai tea however, seems unrelated to the consumption of Oolong. Thai tea is black and preferred strong. It is not unlike the tea still consumed in Burma, although in Thailand it is preferred cold. It would be fair to assume that Thai tea (with its addition of milk) has its roots in Europe or America, rather than China. It was probably introduced during the time of Field Marshall Pibul Songkram, who seemed to favour Western habits as being civilized (Commins 2008).

Thailand, although neither a major producer nor exporter, has been growing tea for over 60 years. The mountainous regions of North Thailand favour the cultivation of tea plants and the district of Doi Mae Salong is noted for growing quality Oolong tea. The growers are descendants of the Chinese Kuomintang (KMT) who were welcomed in northern Thailand as a buffer against the onslaught of Mao Zse Tung's armies in southern China. A noted producer of Thai grown, "black" tea is the Raming Tea Company, which has a faithful following of consumers (Commins 2008).

In 1995, Taiwan introduced superior seedlings and provided training in methods to increase yield. Eventually the seedlings were produced in Thailand itself and distributed to a number of villages. One factor affecting the industry in Northern Thailand is the influence from Taiwan, mainly assisting Kuomintang settlers, but also direct investment in the industry itself. Oolong tea has been one of Taiwan's major agricultural exports and it has been the cause of serious environmental damage in that country. Mudflows and landslides caused by deforestation are a frequent problem during the monsoon. Due to higher standards of living, Taiwan now imports more tea (in value terms) than it exports and thus agri-business concerns in Taiwan are looking for places where their tea can be grown more cheaply (Commins 2008).

In Thailand, tea is cultivated in the north part of the country in the provinces of Chiang Rai and Chiang Mai (account for 85% of tea growing areas and 93% of tea production in Thailand). About 30% of the production is commercialized in the domestic, whereas the remaining 70% is exported. In 2010, Chinese Taipei, United States of America, Netherlands and Cambodia make up a great proportion of the Thai Tea export. The exported quantity and value was 2,380 tons and 4,851 USD thousand with the annual growth rate (2006-2010) 15% and 11% respectively (International Trade Center 2011). Commercially grown teas in Thailand are the Assam tea (*Camellia sinensis* var. *assamica*) and the Chinese tea (*Camellia sinensis* var. *sinensis*). Two major Chinese teas are jing shuan oolong (cv. oolong no. 12) and chin shin oolong (cv. oolong no. 17). Assam cultivar is normally used to produce green and black teas, whereas Chinese cultivars are used as raw materials for oolong tea. However, green tea produced from jing shuan oolong (cv. oolong no. 12) can also be found in Thailand.

Figure 9 Graph of Import Quantity of Tea in Thailand, 1961-2008 (FAOSTAT 2008)

Rank	Area	Production (Int \$1000)	Production (MT)
1	China	1560617	1467467
2	India	1054097	991180
3	Kenya	424327	399000
4	Sri Lanka	300219	282300
5	Turkey	249917	235000
6	Viet Nam	211064	198466
7	Iran (Islamic Republic of)	176236	165717
8	Indonesia	159521	150000
9	Argentina	94196	88574
10	Japan	90395	85000
11	Thailand	71509	67241
12	Malawi	70827	66600
13	Bangladesh	63808	60000
14	Uganda	43389	40800
15	United Republic of Tanzania	38285	36000
16	Myanmar	34456	32400
17	Rwanda	26055	24500
18	Zimbabwe	22333	21000
19	Brazil	19567	18400
20	Nepal	17661	16607

Table 2. Tea production rank by country in 2010

Source : FAOSTAT (2010)

P D U U VOTSI

III. MATERIALS AND METHODS

3.1. MATERIALS AND INSTRUMENTS 3.1.1 Materials

3.1.1.1 Samples

A total of 13 of green teas of 2 major cultivars, *assamica* and *sinensis* / cv. oolong no. 12 (chin hsuan oolong) and 26 of oolong tea of 2 major varieties, cv. oolong no. 12 and cv. oolong no. 17 (chin shin oolong) were collected randomly from 18 factories in Chiang Rai province in 2011 (see Appendix 1). Green tea from var. *assamica* were in code A-GT and followed by number, green tea from var. *sinensis* / cv. oolong no 12 were in code O12-GT and followed by number, oolong tea from var. *sinensis* / cv. oolong no 12 were in code O12-GT and oolong tea from var. *sinensis* / cv. oolong no 12 were in code O12-OT, and oolong tea from var. *sinensis* / cv. oolong no 17 were in code O12-OT. Different sample code might come from same company but their brand were different.

Table 3. Sample code			
Green tea var.	Green tea var.	oolong tea from	oolong tea from
assamica	<i>sinensis /</i> cv. oolong	var. <i>sinensis /</i> cv.	var. <i>sinensis /</i> cv.
	no. 12	oolong no 12	oolong no 17
A-GT-1	O12-GT-1	O12-OT-1	O17-OT-1
A-GT-2	O12-GT-2	O12-OT-2	O17-OT-2
A-GT-3	O12-GT-3	O12-OT-3	O17-OT-3
A-GT-4	O12-GT-4	O12-OT-4	O17-OT-4
A-GT-5	O12-GT-5	O12-OT-5	O17-OT-5
A-GT-6	O12-GT-6	O12-OT-6	O17-OT-6
	O12-GT-7	O12-OT-7	O17-OT-7
		O12-OT-8	O17-OT-8
		O12-OT-9	O17-OT-9
			O17-OT-10
			O17-OT-11
			O17-OT-12
			O17-OT-13
			O17-OT-14
			O17-OT-15
			O17-OT-16
			O17-OT-017

3.1.1.2. Chemical materials

Folin–Ciocalteu's phenol reagent and gallic acidwas purchased from Fluka (Buchs, Switzerland). Anhydrous sodium carbonate was purchased from Merck (Darmstadt, Germany). The standards which include (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (+)-Catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin gallate (EGCG), caffeine (CF), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Acetonitrile, trifluoroacetic acid (TFA) and methanol (HPLC-grade) were purchased from Fluka (Buchs, Switzerland). Trolox ((±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) and DPPH (2,2-diphenyl-1-

picryhydrazyl) were purchased from Aldrich (Steinheim, Germany). Methanol (HPLC-grade) was purchased from Fischer Scientific (Leicestershire, UK). Potassium hexacyanoferrate $[K_3Fe(CN)_6]$ was purchased from Merck (Darmstadt, Germany). Ascorbic acid and ferric chloride (FeCl₃) were purchased from Ajax Finechem (Seven Hills, Australia). Monosodium phosphate monohydrate, Disodium phosphate heptahydrateand Trichloroacetic acid (TFA) were purchased from Fluka (Buchs, Switzerland).

3.1.2 Instruments

The main instruments were a spectrophotometer (UV Vis. Biochrom/Libra S22, England), HPLC C18, oven, analytical balance,vacuum pump, blender, hot plate, water heater, setrifugator, and vortex.

3.2. METHODS

3.2.1. Sample Extraction

Collected tea samples were ground and 2 g of ground tea was extracted with 200 ml of boiling distilled water at a temperature of 95°C. The extraction mixture was constantly stirred with a magnetic stirrer. After 10 min, the extraction mixture was filtered through filter paper (Whatman No. 4). The residue was washed with distilled water (3x10ml). The tea solution was cooled to room temperature and adjusted to 250 ml with distilled water. All samples were extracted in duplicate.

Figure 10 Blender

Figure 11 Hot plate for extraction

Figure 12 Tea extract

3.2.2. Determination of Moisture Content (ISO 1573)

Tea samples, ~5 g weighed to the nearest 0.001g, were placed in a moisture can and heated in an oven at $103\pm2^{\circ}$ C for at least 16 h to constant weight. The percentage of moisture in the sample were then calculated (ISO 1573). All tests were performed in duplicate.

% M. C. (wet basis) =
$$\frac{sample \ weight \ (g) - dried \ sample \ weight(g)}{sample \ weight} x100$$

% M.C. (dry basis) = $\frac{sample \ weight \ (g) - dried \ sample \ weight(g)}{dry \ weight} x100$

Figure 13 Hot air oven (for TPC, DPPH, and FRAP assay)

Figure 14 Desicator

3.2.3 Determination of total polyphenol content (TPC) (Singleton & Rossi 1965; ISO 14502-1 2005)

The total polyphenol content (TPC) was determined by spectrophotometry, using gallic acid as standard, according to the method described by the International Organization for Standardization (ISO 14502-1). Briefly, 1.0 mL of the diluted sample extract (50-fold dilution) was transferred in duplicate to separate tubes containing 5.0 mL of 10% v/v dilution of Folin-Ciocalteu's reagent in water. Then, 4.0 mL of a sodium carbonate solution (7.5% w/v) was added. The tubes were then allowed to stand at room temperature for 60 min before absorbance at 765 nm was measured. The concentration of polyphenols in samples was derived from a standard curve of gallic acid ranging from 10 to 100 μ g/mL. The TPC was expressed as gallic acid equivalents in g/100 g dry basis (%GAE). All tests were performed in duplicate.

Total polyphenols content (g/100g db) = $\frac{C \times V \times DF \times 100}{1000,000 \times W \times \% DM}$

C = Gallic acid concentration ($\mu g/mL$) obtained from calibration curve

V = Volume of tea extract solution (mL)

DF = Dillution factor (25)

%DM = % dry matter

W = Weight of tea sample (g)

Figure 15 Spectrophotometer

3.2.4. Determination of catechins and caffeine contents (ISO-14502-2)

Preparation of samples

The extract of teaswere diluted to 10 ml with distilled water. Then filtered through a $0.45 \,\mu m$ PTFE filter before HPLC analysis.

Preparation of Standards

The %purity from the certificate was used to prepare the exact concentration of stock standard solutions. The individual standard solutions of CF, GC, EGC, C, EC, EGCG, GCG, ECG, CG were prepared by dissolving them in a small volume of methanol, to generate a stock concentration of 999.0, 313.6, 412.0, 880.0, 911.8, 1,036, 1,000, 469, 832.0 and 514.8 μ g/ml respectively. The mixed stock standard solution was prepared by mixing an equal volume of each stock standard. Working standard solutions were prepared by dilution of the mixed stock solution and then filtered through a-0.45 μ m PTFE filter.

HPLC Analysis

HPLC analysis of standards and samples was conducted on Water 966 high performance liquid chromatography comprising vacuum degasser, quaternary pump, autosampler, thermostatted column compartment and photo diode array detector. The column used was a Platinum EPS C18 reversed phase, 3μ m (Length 53x7mm, Internal Diameter 4.6 mm). Mobile phase eventually adopted for this study was water/acetonitrile (87:13) containing 0.05% (v/v) trifluoroacetic acid (TFA) with the flow rate of 2 ml/min. Absorption wavelength was selected at 210 nm. The column was operated at 30°C. The sample injection was 20 μ l.

Caffeine and 8 catechins were identified by comparing their retention times and UV spectra in the 190-400 nm range with standards. They were quantified by external standard method and the results were expressed as g/100 g dry basis (% w/w). Total catechins content (TCC) was resolved by the addition of the amounts of individual catechins (GC, EGC, C, EC, EGCG, GCG, ECG, CG). All tests were performed in triplicates.

Caffeine or Catechins
$$\left(\frac{g}{100 \ g} \ db\right) = \frac{C \ x \ F \ x \ V \ x \ DF \ x \ 100}{10000 \ x \ W \ x \ \% DM}$$

C = concentration (μ g/ml) obtained from calibration curve of caffeine

 $F = Rf_i/RF_{cf}$

V = volume of tea extract solution (ml)

DF = Dilution Factor (10)

%DM = %Dry matter

W = weight of tea sample (g)

Figure 16 Sample for injection

Figure 17 Vacuum pump for mobile phase preparation

Figure 18 Reverse phase - HPLC

3.2.5. Determination of DPPH radical scavenging activity (DPPH assay) (Yen & Duh 1994)

The extract of teas werediluted to 25 ml with distilled water. The diluted tea extract (50µl) was mixed with an aliquot of 2,000 µl of 60 µM DPPH radical in methanol. Distilled water was used as a control instead of the extract. The reaction mixture was vortex-mixed and let to stand at 25°C in the dark for 60 min. Absorbance at 517 nm was measured using methanol as a blank. The control and standard were subjected to the same procedures as the sample except that, for the control, only distilled water was added, and, for the standard, the extract was replaced with 0-1,000 µM Trolox standard. The percentage inhibition values were calculated from the absorbance of the control (A_c) and of the sample (A_s). The calibration curve was plotted between Trolox concentration (µM) and %Inhibition. The DPPH radical scavenging activity of tea sample was expressed as in terms of milimole equivalents of Trolox (TE) per 100 grams of sample (dry weight basis). All tests were performed in duplicate.

3.2.6. Determination of ferric reducing antioxidant power activity (FRAP assay) (Yen & Chen 1995)

A 1-ml aliquot of each extract (25-fold dilution) was mixed with 2.5 ml of phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of a 1% aqueous potassium hexacyanoferrate $[K_3Fe(CN)_6]$ solution. After a 30 min incubation at 50°C, 2.5 ml of 10% trichloroacetic acid were added, and the mixture was centrifuged for 10 min. A 2.5-ml aliquot of the upper layer was mixed with 2.5 ml of water and 0.5 ml of 0.1% aqueous FeCl₃, and the absorbance was recorded at 700 nm. The control and standard were subjected to the same procedures as the

sample except that, for the control, only distilled waterwas added, and, for the standard, the extract was replaced with 0-1000 μ M ascorbic acid standard. Iron(III) reducing activity was determined as milimole equivalents of ascorbic acid per 100 grams of sample (dry weight basis). All tests were performed in duplicate.

$$FRAP \ assay \left(\frac{mmole \ ascorbic \ acid}{100 \ g} \ db\right) = \frac{C \ x \ V \ x \ DF \ x \ 100 \ x \ 100}{1000 \ x \ W \ x \ \% DMx 1000}$$

C V DF %DM W

Figure 19Cetrifuge

3.2.7. Statistical analysis

Samples were collected randomly. One way analysis of variance was performed with SPSS 16.0 statistical software. Differences between means were evaluated using the Duncan's multiple range test with a significance level of $\alpha = 0.05$. Differences at $p \le 0.05$ were considered significant.Correlation coefficients were calculated with Minitab 16 for antioxidant activities (DPPH and FRAP) against Total polyphenol content, caffeine, total catechins content and single catechins. Principal component analysis of 39 samples and 13 variables was performed with Minitab 16.

IV. RESULTS AND DISCUSSION

4.1. Chemical composition and antioxidant capacity of green tea and oolong tea

Chemical analyses were applied on 39 samples consist of total of 13 of green teas of 2 major cultivars, *assamica* and *sinensis* / cv. oolong no.12 (chin hsuan oolong) and 26 of oolong tea of 2 major varieties, cv. oolong no. 12 and cv. oolong no. 17 (chin shin oolong). In this research, sample was divided into four groups which were six green teas from *Camellia sinensis* var.*assamica* (A-GT), seven green teas from *Camellia sinensis* var.*sinensis* / cv.oolong no.12(O12-GT), nine oolong teas from *Camellia sinensis* var.*sinensis* / cv.oolong no.12(O12-OT), 17 oolong teas from *Camellia sinensis* / cv.oolong no.17(O17-GT).

4.1.1. Moisture content

Moisture content is an important quality parameter of teas (Roberts & Smith 1963) and is usually neglected by researchers, but not by the industries or tea traders. Tea researchers (Othieno & Owuor 1984; Robinson &Owuor 1993) suggested that the moisture content of the teas should be controlled to lie under 6.5% for marketing teas, whereas Millin (1987) noted that teas had a moisture content of 7–8% during retailing. Thai standard for tea moisture content should be controlled to lie under 7% dry basis (Tea Institute 1983). While Indonesia standard for tea moisture content should be controlled to lie under 8% dry basis (SNI 1996).

In this research, the results of moisture content determination was showed in Appendix 2. ANOVA results showed that different brands in a group of tea type have different moisture content in the significance level 5% (p<0.05). The moisture content of six green tea samples from var.*assamica* were found in a range of 4.70 to 9.17% w/w db. Sample A-GT-6 was found higher than Thailand tea standard. The moisture content of seven green tea samples from var.*sinensis*/cv. oolong no. 12 were found in a range of 4.29 to 6.60% w/w db. All samples are in a range of Thailand tea standard. The moisture content of nine oolong tea samples from var. *sinensis*/cv.oolong no. 12 were found in a range of 1.18 to 8.20% w/w db. All samples are in a range of Thailand tea standard, except sample O12-OT-9 contain moisture content higher than Thai tea standard. The moisture content of 17 oolong tea samples from var.*sinensis*/cv. oolong no. 17 were found in a range of 0.83 to 6.28% w/w db. All samples are in a range of Thailand tea standard.

4.1.2. Total polyphenol content

Phenolic compounds in tea have been found to be efficient free-radical scavengers, partly due to their one-electron reduction potential, i.e., the ability to act as hydrogen or electron donors (Higdon & Frei 2003). The Folin-Ciocalteu assay is one of the oldest methods developed to determine the content of total phenols (Singleton 1965). In this work, the total polyphenol content of samples were analyzed by Folin Ciocalteu method. Results are presented in Appendix 3. ANOVA results showed that different brands in a group of tea type have different total phenolic content in the significancy level 5% (p<0.05).

Total polyphenol content in six green tea samples from var. *assamica* were found to vary from 17.01 to 21.19% GAE. The highest polyphenol content was found in the A-GT-4 and the lowest polyphenol content was found in the A-GT-6. Duncan test divided the six samples of green tea var. *assamica* (A-GT) into 4 subsets. Samples in the same subset mean

those samples were not significant different each other, such as sample A-GT-1, A-GT-3, and A-GT-5. Sample A-GT-4 (21.19% GAE) has the highest total polyphenol content among all samples and showed significant difference with other samples. Green tea samples from var. assamica were the highest range of total polyphenol content among all sample groups.

The different results have shown in the green tea samples from var. sinensis (cv. oolong no. 12). Total polyphenol content in seven green tea samples from var. sinensis were found to vary from 11.86 to 17.68% GAE. The highest polyphenol content was found in the sample O12-GT-3 and the lowest polyphenol content was found in the sample O12-GT-5. Duncan test divided the 7 samples of green tea var. sinensis (cv. oolong no. 12) into 5 subsets. Significant differences were found among the samples, such as between sample O12-GT-1, O12-GT-4, and O12-GT-6.

Total polyphenol content in nine oolong tea samples produced from C. sinensis (cv. oolong no. 12) were found to vary from 10.22 to 17.57% GAE. The highest polyphenol content was found in the O12-GT-8 and the lowest polyphenol content was found in the O12-GT-4. Duncan test divided the 9 samples of oolong tea var. sinensis (cv. oolong no. 12) into 6 subsets. Significant differences were found among the samples, but sample O12-GT-8 as the highest polyphenol content showed no significant difference with sample O12-GT-7.

Total polyphenol content in 17 oolong tea samples produced from C. sinensis (cv. oolong no. 17) was found to vary from 13.32 to 17.79% GAE. The highest polyphenol content was found in sample O17-OT-15 and the lowest polyphenol content was found in the O17-OT-4. Duncan test divided the 17 samples of oolong tea var. sinensis (cv. oolong no. 17) into 8 subsets Significant differences were found among the samples.

Comparing with other country green teas, the total polyphenol content of green teas from Thailand are lower than green teas from China, as the main tea producers of the world (Yao et al. 2006). Comparing with fruits, the total polyphenol content of green teas and oolong teas from Thailand are higher than mango (Ma et al. 2011), pomegranate (Martos et al. 2011) and exotic fruits (pineapple, soursop, sweetsop, jackfruit, murici, papaya, mangaba, sapodilla, ciruela, umbu and tamarind) from northeastern Brazil (Almeida et al. 2011), coffee (Schulz et al. 1999), and black tea (Khokhar and Magnusdottir 2002). Mango (Mangifera indica L.), as well as citrus fruits, can be considered a good source of dietary antioxidants, such as ascorbic acid, carotenoids and phenolic compounds.

Table 4 Total polyphenols content of different source

Source	Total polyphenols content	Reference
Green tea (Thailand)	11.52-20.83% GAE	
Green tea (China)	21-23% GAE	Yao <i>et al.</i> (2006)
Green tea	6.58–10.62	Khokhar and Magnusdottir (2002)
Oolong tea (Thailand)	9.86 to 16.49% GAE	
Black tea	8.05-13.49	Khokhar and Magnusdottir (2002)
Instant Coffee	14.6–15.1	Schulz et al. (1999)
Ground coffee	5.25-5.70	
Mango	0.009 to 0.193%	Ma et al. 2011
Pomegranate	0.01%	Martos et al. 2011

in g Gallic Acid Equivalent/100g dry matter

4.1.3. Antioxidant capacity

Antioxidant capacity was determined by DPPH radical scavenging activity assay and Ferric Reducing Power Activity (FRAP) assay. DPPH measures the ability of compounds to act as an hydrogen donor while FRAP measures the ability of compounds to act as an electron donor. In DPPH assay, antioxidant capacity was expressed as in terms of milimole equivalents of trolox per 100 gram of sample (dry basis). In FRAP assay, antioxidant capacity was expressed as iron (III) reducing activity which was determined as micromole equivalents of ascorbic acid per 100 grams of sample (dry basis). Results are presented in Appendix 4. ANOVA results showed that different brands in a group of tea type have different antioxidant capacity in the significance level 5% (p<0.05).

Antioxidant capacity in six green tea samples from var. *assamica* were found in a range of 132.32 to 247.11mmole TE/100 g db in DPPH-assay and about 1.49 to 2.52mmole AA/100 g db in FRAP-assay. The highest antioxidant capacity in DPPH-assay was found in sample A-GT-1 and the lowest concentration was found in sample A-GT-6. The highest antioxidant capacity in FRAP-assay was found in sample A-GT-4 and the lowest concentration was found in sample A-GT-2. Different brands in a group of green tea samples from var. *assamica* showed significantly different on its antioxidant capacity.

Results of antioxidant capacity in seven green tea samples from var. *sinensis* (cv. oolong no. 12) also were expressed by DPPH assay and FRAP assay. In DPPH radical scavenging activity, antioxidant capacity were found in a range of 80.08 to 241.39mmole TE/100 g db. The highest antioxidant capacity in DPPH-assay is found in sample O12-GT-7 and lowest concentration is found in sample O12-GT-5. In FRAP-assay, antioxidant capacity were found about 0.88 to 1.34 mmole AA/100 g db. The highest antioxidant capacity in FRAP-assay is found in sample O12-GT-5. Various brands of green tea from var. *sinensis* (cv. oolong no. 12) sample group contained significantly different antioxidant capacity.

In DPPH radical scavenging activity, antioxidant capacity in nine oolong tea samples from var. *sinensis* (cv. oolong no. 12) were found in a range of 98.93 to 147.62 mmole TE/100 g db. The highest antioxidant capacity in DPPH-assay is found in sample O12-OT-7 and lowest concentration is found in sample O12-OT-4. In FRAP-assay, antioxidant capacity were found about 1.31 to 2.06 mmole AA/100 g db. The highest antioxidant capacity in FRAP-assay is found in sample O12-OT-8 and lowest concentration is found in sample O12-OT-4. Different brands in a group of oolong tea samples from var. *sinensis* (cv. oolong no. 12) showed significant difference on its antioxidant capacity.

In DPPH radical scavenging activity, antioxidant capacity in 17 oolong tea samples from var. *sinensis* (cv. oolong no. 17) were found in a range of 105.35 to 16.46 mmole TE/100 g db. The highest antioxidant capacity in DPPH-assay was found in sample O17-OT-15 and lowest concentration is found in sample O17-OT-4. In FRAP-assay, antioxidant capacity were found about 1.50 to 1.90 mmole AA/100 g db. The highest antioxidant capacity in FRAP-assay was found in sample O17-OT-15 and lowest concentration is found in sample O17-OT-15 and lowest concentration is found in sample O17-OT-16. Significant differences were found among various brands of oolong tea samples from var. *sinensis* (cv. oolong no. 17).

The TEAC values (μ M/g) found in the green teas (131.90 to 379.68) and oolong teas (200.90 to 298.16) from Thailand are higher than those of other plants, which are rich in antioxidants, such as strawberry (25.9), raspberry (18.5), red cabbage (13.8), broccoli (6.5) and spinach (7.6) (Proteggente *et al.* 2002). These results indicate that the green teas and oolong

teas are good sources of antioxidants. Antioxidant capacity of green teas (80.08 to 247.11 mmole TE/100 g db) and oolong teas (98.93 to 164.61 mmole TE/100 g db) from Thailand are lower than grape seed extracts (1680 to 9200 mmole TE/100 g db) (Xia et al. 2010). Green tea and grapes are traditional, popular beverages that have diverse health benefits including antioxidant, antimicrobial, anti-inflammatory, and anticarcinogenic properties (Xia et al. 2010).

4.1.4. Caffein content

Caffeine concentrations in tea infusions prepared from dried leaves of six green tea samples from var.assamica, seven green tea samples from var.sinensis (cv. oolong no.12), nine oolong tea samples from var.sinensis (cv. oolong no.12), and 17 oolong tea samples from var.sinensis (cv. oolong no.17). Samples were analyzed by Reverse phase HPLC column 18 with mix standard catechins and caffeine. ANOVA results showed that different brands in a group of tea type have different amounts of caffeine in the significance level 5% (p<0.05).

The caffeine content ofsix brands of green tea samples from var.assamica were found to vary from 3.27 to 3.71% w/w, with A-GT-1 as the highest sample containing caffeine and A-GT-5 as the lowest sample. No significant differences were found among the samples.

The caffeine content of seven brands of green tea samples from var.sinensis (cv. oolong no.12) were found to vary from 1.69 to 3.51% w/w, with O12-GT-7 as the highest sample containing caffeine and O12-GT-4 as the lowest sample. Significant differences were found among the various brands in group of oolong tea samples from var. sinensis (cv. oolong no.12).

The caffeine content of nine brands of oolong tea samples from var.sinensis (cv. oolong no.12) were found to vary from 1.84 to 3.26% w/w, but no significant differences were found among the samples.

The caffeine content of 17 brands of oolong tea samples from var.sinensis (cv. oolong no.17) were found to vary from 1.61 to 3.25% w/w, with O17- OT-5 as the highest sample containing caffeine and O17-OT-4 as the lowest sample. Various brands in a group of oolong tea sample from var.sinensis (cv. oolong no.17) showed significant differences.

Wang et al. (2010) showed that caffeine content of oolong teas from Taiwan and China were in range of 1.68 to 3.80% of the dry weight, these results were similar to the caffeine content of oolong teas in Thailand (1.61 to 3.26% of the dry weight). Lin (2009) stated that caffeine accounts for 3-6% of the dry weight of brewed tea. Tea contains about one third the caffeine of coffee, the most well known source of caffeine.But Fujioka and Shibamoto (2008) found that caffeine content in regular coffees were in a range of 1.09 to 1.65%. Ashihara and Crozier (2001) stated that caffeine is found in the highest concentrations in young leaves of first-flush shoots of var. sinensis (2.8% of the dry weight). The beans of most cultivars of Arabica coffee (C. arabica) contain ~1.0% caffeine, whereas Coffea canephora cv. Robusta (1.7%) and cv. Guarini (2.4%), Coffea dewevrei (1.2%) and Coffea liberica (1.4%) contain higher concentrations. Seeds of cola (Cola nitida) also contain caffeine (2.2%). Caffeine has recently been detected in flowers of several citrus species, with the highest concentrations (0.2%) in pollen.

The highest amount of caffeine in samples analyzed was found in tea sample while the lowest was found in coffee sample. The current findings demonstrate that tea contains higher level of caffeine than coffee. Growing conditions, processing conditions and other variables affect caffeine content and that certain types of tea contains somewhat more caffeine than other teas, this is in agreement with the caffeine content obtained using different samples of tea. Although coffee contains less caffeine than tea (dry weight basis), some coffee solutions contain higher concentration of caffeine than tea solutions. This is normally because coffee is ground extremely fine and more ground coffee than tea is used to make the solutions. Other reasons could be because of high quality coffee beans used in terms of caffeine content or due to comparison with low quality tea (Wanyika *et al.* 2010).

4.1.5. Catechin content

The samples were analyzed by Reverse phase HPLC, column 18, and used 8 single catechins standard. Results showed in Appendix 6. ANOVA results showed that different brands in a group of tea type have different amounts of caffeine in the significance level 5% (p<0.05).

The total catechins content of six brands of green tea samples from var.*assamica*were found to vary from 9.02 to 14.08% w/w. The highest total catechinscontent was found in the A-GT-5 and the lowest polyphenol content was found in the A-GT-6. In green tea produced from *C. sinensis* var.*assamica* showed significant difference in some single catechins, i.e. EGC, EC, EGCG, and ECG, but small difference in GC, GCG, and ECG. Not detected was found in CG. Total catechins content was about 51.73 to 70.27% of its total polyphenol content.

The total catechins content of seven brands of green tea samples from var.*sinensis* (cv. oolong no.12) were found to vary from 8.31 to 13.19% w/w. The highest total catechins content was found in the O12-GT-3 and the lowest polyphenol content was found in the O12-GT-5. Significant differences were found among the samples. In green tea produced from *C. sinensis*(cv.oolongno.12) showed significant difference in some single catechins, i.e. GC, C, EC, EGCG, GCG, and ECG. Not detected was found in CG. Total catechins content was about 70.15 to 74.66% of its total polyphenol content.

The total catechins content of nine brands of oolong tea samples from var.*sinensis* (cv. oolong no.12) were found to vary from 8.12 to 12.46% w/w, but no significant differences were found among the samples. In oolong tea products produced from *C. sinensis*(cv.oolongno.12) showed small differences in GCG, EGCG, and EGC. No detected number were found in CG. Total catechins content was about 70.29 to 77.98% of its total polyphenol content.

Samples in group of oolong tea products produced from C. *sinensis* (cv. oolong no. 17) showed significant difference in total catechins and all single catechins, except non detected in CG. The total catechins content was found to vary from 6.81 to 12.31% w/w. The highest total catechins content was found in the O17-OT-15 and the lowest polyphenol content was found in the O17-OT-8. Total catechins content was about 49.97 to 69.25% of its total polyphenol content.

Catechins constitute 15–30% of dry weight of green tea leaves as opposed to 8–20% of oolong and 3–10% of black tea (Amidor 2009). But it was in contrast to the catechins content of green teas and oolong teas from Thailand. In Thailand, the total catechins content of green and oolong teas were lower than in sample were found by Amidor.
4.2. Comparison of tea samples 4.2.1. Comparisonbetween green tea var.assamica and sinensis (cv. oolong no.12)

Green tea products in this research were divided into 2 varieties, *assamica* variety (*Camelliasinensis* var. *assamica*) and *sinensis*/oolong/chinese variety (*Camellia sinensis* var. *sinensis*). Assam cultivar is normally used to produce green and black teas. *Sinensis*variety is known to be a stronger ecotype than var. *assamica*, being resistant to both cold and hot drought conditions. However, var. *sinensis* is considered to be inferior in both quantity and quality of yield (De Costa *et al.* 2007). Both of them were compared to determine which variety in green tea type has higher chemical compounds and antioxidant capacity than other. The results were showed in Table 2 and 3.

The total polyphenol content of green tea products produced from *C.sinensis* var.*assamica* (19.30% GAE) were higher than green tea products produced from *C. sinensis* var. *sinensis*/chinese variety (14.90% GAE), both were significant different (p<0.05) each other. Usually, teas originating from Indian or Sri Lankan varieties (*Camellia sinensis* var. *assamica*) have higher polyphenol contents (30% GAE) (Hara *et al.* 1995) than those from the Chinese variety (*Camelliasinensis* var. *sinensis*, 20% GAE) (Harbowy *et al.* 1997). Comparing with other country green teas, the total polyphenol content of green teas from Thailand (11-21% GAE) are lower than green teas from China (21-23% GAE), as the main tea producers of the world (Yao *et al.* 2006).

Green tea products produced from *C. sinensis* var. *assamica* have higher (p<0.05) ability to inhibit DPPH radical and ferric reducing capacity than green tea products produced from *C. sinensis* var. *sinensis*. The antioxidant capacity of green tea products produced from *C. sinensis* var. *assamica* by DPPH assay were in a range of 247.11 to 132.32 mmol TE / 100 g dry basis, with a mean of 183.90mmol TE / 100 g dry basis. The antioxidant capacity of green tea products produced from *C. sinensis* var. *sinensis* var.

Regarding to the comparison of total catechins content and caffeine content, green tea products produced from *C. sinensis* var. *assamica* has higher total catechins content and caffeine content (12.43% and 3.44%, respectively) than total catechins contentand caffeine content (10.86% and 2.5%) of green tea products produced from *C. sinensis* var. *sinensis*. Significant differences were found in caffeine content, but no significant differences were found in total catechins content. In single cathecins, there were significant differences in EGC, C, EC, EGCG, GCG, and ECG.

Significant difference between caffeine content in tea variety was in contrast to the findings of Suteerapataranon *et al.* (2009) who reported that tea variety did not have much effect on caffeine content in Chiang Rai tea infusions. Caffeine concentrations in different tea-varieties infusions were not significantly different. In their study, tea varieties did not play a major role. Other factors such as the altitude of the site, climate, soil composition and properties, and cultivation method, which were considered to be similar for the samples studied, might have more influence in caffeine content.

Figure 20 Comparison of mositure content, total polyphenol content, caffeine content, and total catechin content between *Camellia sinensis* var. *assamica* and var. *sinensis*

Figure 21 Comparison of antioxidant capacity by a) DPPH-assay b) FRAP-assay between Camellia sinensis var. *assamica* and var. *sinensis*

Figure 22 Comparison of single catechins content between *Camellia sinensis* var. *assamica* and var. *sinensis*

4.2.2. Comparison between *Camellia sinensis* var. *sinensis* (cv. oolong no.12) and *Camellia sinensis* var. *sinensis* (cv. oolong no.17)

Oolong tea samples in this research were come from 2 types of oolong tea, number 12 and number 17. The results of chemical composition and antioxidant capacity comparison were showed in Table 4 and 5. Significant differences only were found in moisture content, antioxidant capacity by DPPH-assay, and some single catechins (GC, ECGC, and ECG). Total polyphenol content in oolong no. 12 (14.08 g GAE/100 g dry basis) no significant difference with oolong no. 17 (14.90 g GAE/100 g dry basis). The total polyphenol content of oolong tea (10.22 to 17.79 g GAE / 100 g dry basis) manufactured in Thailand was similar to those reported for oolong tea samples from China and Taiwan (8.02 to 16.85 g GAE / 100 g dry basis) (Wang *et al.* 2010) as the most countries consuming oolong tea.

Caffeine content in oolong tea from *C.sinensis* (cv. oolong no. 12) $(2.55 \pm 0.61\%)$ was no significant difference with oolong tea from *C.sinensis* (cv. oolong no. 17) $(2.25 \pm 0.48\%)$. Total catechins content of oolong tea from *C.sinensis* (cv. oolong no. 12) $(10.58 \pm 2.17\%)$ also no significant difference with oolong tea from *C.sinensis* (cv. oolong no. 17) $(9.94 \pm 1.46\%)$.

Figure 23 Comparison of mositure content, total polyphenol content, caffeine content, and total catechin content between oolong no. 12 and no. 17

Figure 24 Comparison of antioxidant capacity by a) DPPH-assay b) FRAP-assay between oolong no. 12 and no. 17

Figure 25 Comparison of single catechins content between oolong no. 12 and no. 17

4.2.3. Comparison of Green and Oolong Tea Products

Comparing between green tea group and oolong tea group, there were significant differences in moisture content, total polyphenol content, caffeine content, total catechins content, and antioxidant capacity by DPPH-assay (Table 6 and 7). The total polyphenol of green tea samples (16.93% GAE) was higher than oolong tea samples (14.62% GAE). The differences found between green tea and oolong tea could be due to fermentation process in oolong tea. It may indicate that polyphenols could have oxidized during fermentation stage of oolong tea processing. Green tea quality correlates positively with concentration of polyphenols.

Green tea has significantly higher antioxidant capacity than oolong tea by DPPH assay, but no significantly higher antioxidant capacity by FRAP method. In DPPH assay, the antioxidant capacity of green tea (164.01 mmole TE/100g db) was higher than oolong tea (132.73 mmole TE/100g db). In FRAP assay, the antioxidant capacity of green tea (1.53 mmole AA/100g db) was higher than oolong tea (1.67 mmole AA/100g db). Generally, green tea contains more of such compounds than other tea (Sikora *et al.* 2008). The green tea is preferentially recommended for its strong antioxidant properties.

Green tea has significantly higher total catechins content than oolong tea. Total catechins content in green tea was 11.63 ± 1.77 %, but 10.24 ± 1.43 % in oolong tea. In single catechin, there were significant differences in all single catechins except EGCG and no detected in CG. In this work, green tea has higher content in C, EC, EGCG, and ECG than oolong tea. But oolong tea has higher content in GC, EGC, and GCG.

The chemical composition of green tea is similar to those of fresh tea leaves (Chen *et al.* 2003). Yen and Chen (1995) found the greatest amount of catechins in green tea (26.7%), followed by oolong tea (23.2%) and black tea (4.3%). Similarly, Cabrera *et al.* (2003) found higher content of catechins in green tea than in oolong and black tea. Teas sold in Australian supermarkets, the polyphenol content of green tea (25%) was much higher than that of black

tea (18%) (Yao *et al.* 2006). Lin and Shiau (2009) stated that cathecins are the main compounds in green tea; they consist of (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). To produce oolong, black, and pu-erh teas, the fresh tea leaves are allowed to wither, decreasing their moistire content until their weight approaches the appropriate percentage (this value is assessed by experience) of the original leaf weight. The withered leaves are then rolled and crushed, initiating the fermentation of polyphenols. This fermentation process converts catechins to theaflavins, mainly theaflavin (TF-1), theaflavin-3-gallate (TF-2a), theaflavin-3'gallate (TF-2b), and theaflavin-3,3'-digallate (TF-3), and thearubigins, consequently decreasing the catechin content.

Oolong tea has lower caffeine content than green tea $(2.34 \pm 0.55\%)$ and $2.93 \pm 0.77\%$, respectively) and showed significant difference. This is in agreement to the findings of Horie *et al.* (1997) who reported that the contents of caffeine were significantly different among various kinds of teas. But, Suteerapataranon*et al.* (2010) stated that on average, the green (non-fermented) tea infusions contained a little more caffeine than did theoolong (semi-fermented) tea infusions brewed in water at 90°C and no significant difference was found between them. Thus, the different tea manufacturing methods used to produce the oolong and green tea samples used here are likely to play a major role in influencing the caffeine content in tea products.

Figure 26 Comparison of mositure content, total polyphenol content, caffeine content, and total catechin content between green and oolong tea

Figure 27 Comparison of antioxidant capacity by a) DPPH-assay b) FRAP-assay between green and oolong tea

Figure 28 Comparison of single catechins content between green and oolong tea

4.3. Relationship between Chemical Composition and Antioxidant Capacity

Correlation analysis between chemical composition and antioxidant capacity, respectively (including all data for each measure) were undertaken. The total polyphenol content and the antioxidant activity are both parameters of quality for tea regarding to its biological properties (Harbowy 1997). A variable is correlated to other if the value of correlation is more than 0.5, and have high correlation if the correlation value is more than 0.8 (Limpawattana, Shewfelt 2010)

In this work as showed in Table 8, pearson's correlation analysis showed that antioxidant capacity correlated with those of total polyphenol content, caffeine content, TCC, C, EC, and ECG.The pearson's correlation between TPC and Antioxidant by DPPH and FRAP assay were the highest correlation among all, 0.649 and 0.648, respectively.

Pearson's correlation analysis also showed the direction of correlation coefficient, which were positive and negative direction, Positive direction means that the increasing of one variable ccan increase other variable, while negative direction means that the increasing of one variable can decrease the amount of other variable. In this work, positive correlation could be seen between DPPH and TPC, CF, TCC, C, EC, EGCG, and ECG, while negative correlation could be seen between DPPH and GC, EGC, and GCG. Positive correlation also could be seen between FRAP and TPC, CF, TCC, C, EC and ECG, while negative correlation could be seen between GCG.

Pearson's correlation was also conducted to analyze the correlation in each sample groups. In sample A-GT (green tea var. *assamica*), there were no significance correlationsbetween antioxidant capacity and chemical constituents. In sample O12-GT (green tea var. *sinensis*), antioxidant capacity by DPPH-assay was strongly correlated with GC, whereas the correlation direction is negative. In FRAP-assay, there were strong correlation between antioxidant capacity and TPC, caffeine, total catechins, catechin, EC, EGCG, and ECG. All of them are in positive direction.

				U	sample	1			1 2	
Wanishla	All samples		A	A-GT		O12-GT		O12-OT		O17-OT
variable	DPPH	FRAP	DPPH	FRAP	DPPH	FRAP	DPPH	FRAP	DPPH	FRAP
TPC	0.649*	0.648*	0.283	0.532	0.504	0.985*	0.972*	0.975*	0.630*	0.884*
CF	0.381*	0.209	0.585	-0.503	0.432	0.805*	-0.367	-0.371	0.298	0.609*
TCC	0.451*	0.358*	0.359	0.038	0.465	0.948*	0.755*	0.738*	-0.054	0.461
GC	-0.206	0.060	0.383	0.177	-0.824*	-0.437	0.151	0.290	0.392	0.071
EGC	-0.206	-0.119	0.224	0.264	0.124	-0.057	0.535	0.555	-0.228	0.180
С	0.467*	0.474*	-0.2	0.172	0.471	0.857*	-0.082	-0.112	0.435	0.420
EC	0.541*	0.420*	0.365	-0.495	0.679	0.899*	0.167	0.006	0.290	0.636*
EGCG	0.105	-0.083	0.136	0.443	0.511	0.964*	0.814*	0.813*	-0.127	0.348
GCG	-0.161	0.000	0.485	0.261	-0.289	0.444	0.360	0.444	0.187	0.205
ECG	0.497*	0.395*	0.071	-0.533	0.672	0.934*	0.197	0.076	0.028	0.549*

4.4. Chemical Characteristic Profiles of Tea Samples by PCA (Principal Component Analysis)

Data results of chemical characteristics and antioxidant capacity of tea samples in different sample groups were analyzed by Principal Component Analysis (PCA) to help understanding the underlying data structure and/or form a smaller number of uncorrelated variables. Principal components analysis is commonly used in the market research, and other industries that use large data sets.

The samples were divided into 4 groups, i.e. A-GT (green tea from var. *assamica*), O12-GT (green tea from var. *sinensis*/cv. oolong no. 12), O12-OT (oolong tea from var. *sinensis*/cv. oolong no. 12), and O17-OT (oolong tea from var. *sinensis*/cv. oolong no. 17). In this work, data were analyzed by Minitab 16 statistical software. The mean of every assay would be convert to Z value, then statistical software showed eigenvalue, %variance, and cumulative%. The variable means had 13 principal components. It should be noted that the interpretation of the principal components is subjective, however, obvious patterns emerge quite often. For instance, one could think of the first principal component as representing an overall antioxidant capacity, moisture content, and chemical compositions, because the coefficients of these terms have the same sign and are not close to zero.

4.4.1. Principal Component of Green tea var. assamica

The first principal component has variance (eigenvalue) 5.9713 and accounts for 45.9% of the total variance. The second principal component had variance 3.7693 and accounts for 28.6% of the data variability. It was calculated from the original data using the coefficients listed under PC2. PC1 and PC2 were the principal component for further analysis. Variables in the same quadrant are close, so they vary together at least within the 74.9% of the variation that the two components explain.

For the chemical constituent and antioxidant data, DPPH, TCC, TPC, GC, EGC, GCG, EGCG and FRAP have large positive loadings on component 1. C, EC, CF, and ECG have large positive loadings on component 2. Variable DPPH, FRAP, caffeine, and catechin have short vector, it means that the data diversity is small. The data in those variables are almost

similar each other. Variable TPC, GC, and EGC have positive correlation. The same case is happened between variable GCG and EGCG, also EC and C.

Figure 29 Biplot graph of sample green tea var. assamica

In a quadrant, a sample that has near distance with variable line means that sample contain high content of that variable. In quadrant I, sample A-GT-3 and A-GT-2 are close to variable DPPH, TCC, TPC, GC, and EGC. Sample A-GT-2 is close to variable DPPH and TCC. In quadrant II, sample A-GT-5 is close to variable GCG, EGCG, and FRAP. Sample A-GT-4 have highest value in variable GCG, EGCG, and FRAP. In quadrant III showed that sample A-GT-6 has highest value in moisture content. The moisture content of sample A-GT-6 is 9.2% db which is more than Thai tea standard. In quadrant IV, sample A-GT-1 has high content of C, EC, Caffeine and ECG.

4.4.2. Principal Component of Green tea var. sinensis

The first principal component has variance (eigenvalue) 8.2674 and accounts for 63.6% of the total variance. The second principal component has variance 2.7659 and accounts for 21.3% of the data variability. Variables in the same quadrant are close, so they vary together at least within the 84.9% of the variation that the two components explain.

For the chemical constituent and antioxidant data, caffeine, cathecin, total cathecins, EGCG, FRAP, TPC, ECG, and EC have large positive loadings on component 1. DPPH and EGC have large negative loadings on component 2. Variable EGC has short vector, it means that the data diversity is small. The EGC data values are almost similar each other. Variable FRAP and TPC are positively related to caffeine, cathecin, total cathecins, EGCG. So when one is high (relatively) for a sample, the other is high. DPPH is also positively related to EC and ECG.

Figure 30 graph of green tea var. sinensis (cv. oolong no. 12)

In quadrant I, sample O12-GT-3 has high content of GCG, caffeine, cathecin, total catechins, EGCG, FRAP, TPC, and ECG. This sample has more various dominant chemical constituent than others. In quadrant II, sample O12-GT-7 has high content of EC and DPPH. Sample O12-GT-2 is close to variable DPPH. In quadrant III, there are sample O12-GT-6 and O12-GT-4. Both of them have high value in EGC. Sample O12-GT-5 and O12-GT-1 are in the same quadrant. Sample O12-GT-5 has high content of GC.

4.4.3. Principal Component of Oolong tea no. 12

The first principal component has variance (eigenvalue) 5.7745 and accounts for 44.4% of the total variance. The second principal component had variance 3.4282 and accounts for 26.4% of the data variability. Variables in the same quadrant are close, so they vary together at least within the 70.8% of the variation that the two components explain.

Figure 31 Biplot graph of oolong tea from cv. oolong no. 12

Variable EC, GC, MC, EGC, C, and caffeine has short vector, it means that the data diversity is small and data values are almost similar each other. Variable catechin, EC, ECG, GC, GCG, TCC, moisture content, and EGCG have positive correlation. Positive correlation are also found in variable DPPH, FRAP, TPC, and EGC.

Sample O12-OT-9 is close to variable DPPH and sample O12-OT-6 is close to variable FRAP. Sample O12-OT-8 and O12-OT-7have high value of antioxidant capacity in DPPH and FRAP, and content of TPC and EGC. Sample O12-OT-3, O12-OT-1, and O12-OT-5 are in quadrant III. But those samples are not close to any variables. In quadrant VI, sample O12-OT-2 and O12-OT-4 have content of caffeine more than mean.

4.4.4. Principal Component of Oolong tea no. 17

The first principal component has variance (eigenvalue) 4.9072 and accounts for 37.7% of the total variance. The second principal component had variance 3.3807 and accounts for 26% of the data variability. Variables in the same quadrant are close, so they vary together at least within the 63.7% of the variation that the two components explain.

Figure 32 Biplot graph of oolong tea from cv. oolong no. 17

Variable MC, GC and DPPH have short vector, it means that the data diversity is small and data values are almost similar each other. Variable DPPH and FRAP are positively related to TPC, Caffeine, EC, and Catechin. So when one is high (relatively) for a sample, the other is low.

Sample O17-OT-1 and O17-OT-6 are in quadrant I. Both of them are close to variable EGC, EGCG, TCC, GCG, and ECG. In quadrant II, there are sample O17-OT-11, O17-OT-5, O17-OT-15, and O17-OT-017. Sample O17-OT-15 has the highest content of DPPH, EC, FRAP, TPC, caffeine among others, and followed by sample O17-OT-5 and O17-OT-017. Sample O17-OT-8, O17-OT-9, O17-OT-13, and O17-OT-14areonly close to variable moisture content and GC. In quadrant VI, there are sample O17-OT-2, O17-OT-3, O17-OT-4, O17-OT-7, O17-OT-10, O17-OT-12and O17-OT-16. Those samples are not close to any variables.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1.Conclusions

This research is a contribution to the chemical characterization of green tea and oolong tea samples manufactured in Thailand. The obtained results suggest significant differences in the chemical constituents of various brands of green teas and oolong teas. In this research, 95% of the 39 tea samples showed a moisture content below 7%, 5% of tea samples being above 7%. The total polyphenol content of green tea was found to vary from 11.52 to 20.19% GAE, in oolong tea was found in a range of 10.22 to 17.57% GAE. These results were lower than green tea from China as the main producers of the world. The caffeine content in green tea samples were in a range of 1.69 to 3.71%, while in oolong tea samples were in a range of 1.61 to 3.26% w/w. These caffeine contents were similar to caffeine content of tea from China and Taiwan. The catechin content in green tea samples were in a range of 6.81 to 12.46% w/w. The antioxidant capacity of green tea samples was 164.01 mmole TE/ 100 g dry basis, in oolong tea samples was 132.73 mmole TE/ 100 g dry basis. These results were higher than those of other plants which are rich in antioxidants, such as strawberry, raspberry, broccoli and spinach. Antioxidant capacities of all tested teas had a correlation with the total polyphenol content, caffeine, total catechins content, catechin, EC and ECG.

5.2.Recommendations

Amino acids are one of the key components in tea. For further research, amino acids assay should be conducted to determine amino acids content in tea products manufactured in Thailand, because these components account for the freshness and briskness of the tea liquor. Other chemical constituents in tea that change during processing should be determined, such as chlorophyll, flavanols, and other volatile compounds.

LE OUIVELSI

REFERENCE

- Almeida M M B, De Sousa P H M, Arriaga A M C, Do Prado G M, De Carvalho Magalhães C E, Maia G A, De Lemos T L G. 2011. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res Int 44: 2155–2159.
- Amidor T. 2009. Wholesome green tea.http://www.foodproductdesign.com/articles/2009/07/whole some-green-tea. [27 March 2012].
- Ashihara H, Crozier A. 2001. Caffeine: a well known but little mentioned compound in plant science. Plant Sci 6: 9.
- Butsoongnern J, Thanomsilp C, Suteerapataranon S. 2005. Effect of tea infusion conditions on caffeine content in green tea and oolong tea. In Abstracts of the 33rd Congress on Science and Technology of Thailand: The Science Society of Thailand under the Patronage of His Majesty the King, Bangkok.
- Cabrera C, Gimenez R, Lopez M C. 2003. Determination of tea components with antioxidant activity. J Agric Food Chem 51: 4427–4435.
- Chen C N, Liang C M, Lai J R, Tsai Y J, Tsay J S, Lin J K. 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J Agric Food Chem 51: 7495-7503.
- Chen Q, Ruan Y, Wang Y, Liu W, Zhu H. 1985. Chemical evaluation of green tea taste. J Tea Sci 5: 7-17.
- Commins T, Sampanvejsobha S. 2008. Development of tea industry in Thailand. J. Food Ag-Ind. 2008 1: 1-16.
- Cooper R, Morré D J, Morré D M. 2005. Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J Altern Complement Med 11: 21–28.
- De Costa W A J M, Mohotti A J, Wijeratine M A. 2007. Ecophysiology of tea. J Plant Physiol 19: 299–332.
- Deka A, Vita J A. 2011. Tea and cardiovascular disease. Pharm Res 64: 136-145.
- Dixit A, Vaney N, Tandon O P. 2006. Effect of caffeine on central auditory pathways: An evoked potential study. Hear Res 220: 61–66.
- Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. 2002. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23: 719–735.
- Fennema O R. 1996. Food Chemistry. New York : Marcel Dekker, Inc.
- [FAO] Food and Agriculture Organization. 1998. Food Balance Sheets, 1994–1996 Average. Rome : Food and Agriculture Organization of the United Nations.
- [FAOSTAT] Food and Agriculture Organization Statistic. 2008. Export and Import Quantity of Tea in Thailand. http://data.mongabay.com/commodities/category/2-Trade/8- Crops+and+Livestock+ Products/667-Tea/61-Import+Quantity/216-Thailand. [6 March 2012]
- [FAOSTAT] Food and Agriculture Organization Statistic. 2010. Top production of Tea 2010. http://faostat.fao.org/site/339/default.aspx. [6 March 2012]
- Fitri N S. 2009. Pengaruh berat dan waktu penyeduhan terhadap kadar kafein dari bubuk teh. USU Repository.
- Fujioka K, Shibamoto T. 2008. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem 106: 217–221.
- Graham H N. 1999. Tea. In: Frederick J F. (ed), Wiley Encyclopedia of Food Science and Technology. 2nded. New York: John Wiley & Sons.

Harbowy M E, Balentine D A. 1997. Tea Chemistry. Crit Rev Plant Sci 16: 415 - 80.

- Haskell C F, Kennedy D O, Milne A L, Wesnes K A, Scholey A B. 2008. The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psy 77: 113–122.
- Haslam E. 1996. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J Natural Product 59: 205–215.
- Higdon J V, Frie B. 2003. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43: 89–143.
- Hodgson J M, Croft K D. 2010. Tea flavonoids and cardiovascular health. Molec Asp Med 31: 495-502.
- Horie H, Mukai T, Kohata K. 1997. Simultaneous determination of qualitatively important components in green tea infusions using capillary electrophoresis. J Chromatogr A 758: 332– 335.
- Hui Y H, Meunier L, Hansen A S. 2004. Handbook of Food and Beverage Fermentation Technology. Pp. 854–855. Boca Raton, USA: CRC press.
- [ITC] International Trade Center. 2011. Trade Map-International Trade Statistics. http://www.trademap.org/tradestat/SelectionMenu.aspx. [27 Aug 2011].
- ISO 14502-1. 2005. Determination of Substances Characteristic of Green and Black Tea–Part 1: Content of Total Polyphenols in Tea–Calorimetric Method using Folin–Ocalteu Reagent. Switzerland: International Standard Organization.
- ISO 14502-2. 2005. Determination of Substances Characteristic of Green and Black Tea: Part 2: Content of Catechins in Green Tea: Method using High-Performance Liquid Chromatography. Switzerland: International Standard Organization.
- ISO 1573. 1980. Determination of Loss in Mass at 103°C. Switzerland: International Standard Organization.
- Jiang H Y. 2009. White tea: Its manufacture, chemistry, and health effects. In: Ho C-T, Lin J-K, Shahidi F (eds). In Tea and Tea Products: Chemistry and Health-Promoting Properties. New York: CRC Press.
- Ju J, Lu G, Lambert J D, Yang C S. 2007. Inhibition of carcinogenesis by tea constituents. Working paper in Seminar of Cancer Biology 17: 395-402.
- Kato M, Shibamoto T. 2001. Variation of major volatile constituents in various green teas from Southeast Asia. J Agric Food Chem 49: 1394–1396.
- Kerrigan S, Lindsey T. 2005. Fatal caffeine overdose: Two case reports. Forensic Sci Inter 153: 67–69.
- Khokhar S, Magnusdottir S G. 2002. Total phenol, catechin, and caffeinecontents of teas commonly consumed in the United Kingdom. JAgric Food Chem, 50: 565–570.
- Kuroda Y, Hara Y. 1998. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mut Res 436: 69–97.
- Labbé D, Tremblay A, Bazinet L. 2006. Effect of brewing temperature and duration on green tea catechin solubilization: Basis for production of EGC and EGCG-enriched fractions. Sep Purif Technol 49: 1–9.
- Lambert J D, Elias R J. 2010. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophy 501: 65-72.
- Limpawattana M, Shewfelt R L. 2010. Flavor lexicon for sensory descriptive profiling of different rice types. J Food Sci 15: 199 205.

- Lin J K. 2009. Mechanisms of cancer chemoprevention by tea and tea polyphenols. In: Ho C T, Lin J K, Shahidi F. (eds). In Tea and Tea Products: Chemistry and Health-Promoting Properties. New York: CRC Press.
- Lin J K, Lin Y S. 2009. Fermented tea is more effective than unfermented tea in suppressing lipogenesis and obesity. In: Ho C T, Lin J K, Shahidi F. (eds). In Tea and Tea Products: Chemistry and Health-Promoting Properties. New York: CRC Press.
- Lin Y S, Tsai Y J, Tsay J S, Lin J K. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem 51: 1864–1873.
- Ma X, Wu H, Liu L, Yao Q, Wang S, Zhan R, Xing S, Zhou Y. 2011. Polyphenolic compounds and antioxidant properties in mango fruits. Scientia Horticulturae 129: 102–107.
- Martos V M, Navajas R Y, López J F, Sendra E, Barberá E S, Álvarez J A P. 2011. Antioxidant properties of pomegranate (*Punica granatum* L.) bagasses obtained as co-product in the juice extraction. Food Res Int 44: 1217–1223.
- Millin D J. 1987. Factors affecting the quality of tea. In: Herschdoerfer S M. (ed). Quality Control in the Food Industry. London: Academic Press.
- Molan A L, Meagher L P, Spencer P A, Sivakumaran S. 2003. Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. Int J Parasitol 33: 1691–1698.
- Molan A L, Sivakumaran S, Spencer P A, Meagher L P. 2004. Green tea flavan-3-ols and oligomeric proanthocyanidins inhibit the motility of infective larvae of Teladorsagia circumcincta and Trichostrongylus colubriformis in vitro. Res Vet Sci 77: 239–243.
- Muthumani T, Kumar R S S. 2007a. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem 101: 98–102.
- Muthumani T, Kumar R S S. 2007b. Studies on freeze-withering in black tea manufacturing. Food Chem 101: 103–106.
- Mutoh M, Takashi M, Fukuda K, Komatsu H, Enya T, Masushima-Hibiya Y, Mutoh H, Sugimura T, Wakabayashi K. 2000. Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: Structure–activity relationship. Japanese J Cancer Res 91: 686–791.
- Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. J Food Chem 65: 253-260.
- Obanda M, Owuor P O, Taylor S J. 1997. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J Sci Food Agric 74: 209–215.
- [FST Ohio-state] Food Science and Technology Ohio-state. 2001. Antioxidant. class.fst.ohiostate.edu/fst821/Lect/AA.pdf. [6 March 2012].
- Othieno C O, Owuor P O. 1984. Black tea quality and international standards. Int Tea J 7: 27-30.
- Ou A S, Tsai Y S, Wang H F. 2009. Mechanisms of cancer chemoprevention by tea and tea polyphenols. In: Ho C T, Jen K L, Shahidi F. (eds). In Tea and Tea Products: Chemistry and Health-Promoting Properties. New York: CRC Press.
- Owuor P O, Obanda M, Nyirenda M H, Mandala W L. 2008. Influence of region of production on clonal black tea chemical characteristics. Food Chem 108: 263–271.

Prahl S. 2012. Phenol. http://omlc.ogi.edu/spectra/PhotochemCAD/html/072.html. [6 March 2012].

Proteggente A R, Pannala A S, Paganga G, Buren L V, Wagner E, Wiseman S. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Rad Res 36: 217–233.

38

- Rains T M, Agarwal S, Maki K C. 2011. Antiobesity effects of green tea catechins: A mechanistic review. J Nutr Biochem 22: 1-7.
 - Rice-Evans C A, Miller N J, Paganga G. 1997. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20: 933–956.
 - Roberts E A H, Smith R F. 1963. The phenolic substances of manufactured tea: The spectrophotometric evaluation of tea liquors. J Sci Food Agric 14: 689–700.
 - Robinson J M, Owuor P O. 1993. Tea: analysing and testing. In: Macrae R, Robinson R, Sadler M (eds). The encyclopedia of food science. Food technology and nutrition (Vol. 7, pp. 4537– 4542)
 - Sae S, Grove K A, Lambert J D. 2011. Weight control and prevention of metabolic syndrome by green tea. Pharm Res 64: 146-154.
 - Salah N, Miller N J, Paganga G, Tijburg L, Bolwell G P, Rice Evans C. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain breaking antioxidants. Arch Biochem Biophys 322: 339-346.
 - Scharbert S, Hofmann T. 2005. Molecular definition of black tea taste by means of quantitative studies taste reconstitution and omission experiments. J Agric Food Chem 53: 5377–5384.
 - Scharbert S, Holzmann N, Hofmann T. 2004. Identification of the astrigent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem 52: 3498–3508.
 - Schulz H, Engelhardt U H, Wengent A, Drews H H, Lapczynski S. 1999. Application of NIRS to the simultaneous prediction alkaloids and phenolicsubstance in green tea leaves. J Agric Food Chem, 475: 5064–5067.
 - Serafini M, Ghiselli A, Ferro-Luzzi A. 1996. In vivo antioxidant effect of green and black tea in man. European J Cli Nutr 50: 28–32.
 - [SNI] Standard Nasional Indonesia. 1996. Tea. Badan Standardisasi Nasional.
 - Sikora E, Cieslik E, Topolska K. 2008. The sources of natural antioxidants. ActaScientiarum Polonorum. Technologia Alimentaria, 75: 5–17.
 - Singleton V L, Rossi J A. 1965. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. J Enol Vitic 16: 144-158.
 - Spiro M, Lam P-L L. 1995. Kinetics and equilibria of tea infusion part 12. Equilibrium and kinetic study of mineral ion extraction from black Assam Bukial and green Chun Mee teas. Food Chem 54: 393–396.
 - Steele V E, Kelloff G J, Balentine D, Boone C W, Mehta R, Bagheri D. 2000. Comparative chemopreventive mechanisms of green tea, black tea and selected polyphenol extracts measured by in vitro bioassays. Carcinogenesis 21: 63–67.
 - Suteerapataranon S, Butsoongnern J, Punturat P, Jorpalit W, Thanomsilp C. 2009. Caffeine in Chiang Rai tea infusions: Effects of tea variety, type,leaf form, and infusion conditions. Food Chem 114: 1335–1338
 - Thielecke F, Boschmann M. 2009. The potential role of green tea catechins in the prevention of the metabolic syndrome A review. Phytochemistry 70: 11-24.
 - Tea Institute. 1983. Standard of Chinese tea. http://www.teainstitutemfu.com/download.html. [27 March 2012].
 - Wan X C, Huang J Z, Shen S R. 2003. Tea Biochemistry. Beijing: China Agriculture Press.
 - Wan X, Li D X, Zhang Z Z. 2009. Antioxidant properties and mehanisms of tea polyphenols. In: Ho C-T, Lin J-K, Shahidi F (eds). Tea and Tea Products : Chemistry and Health-Promoting Properties. New York : CRC Press.

- Wang D M, Kubota K, Kobayashi A, Juan I M. 2010. Analysis of glycosidically bound aroma precursors in tea leaves: Change in the glycoside content of tea leaves during the oolong tea manufacturing process. J Agric Food Chem 49: 5391–5396.
- Wanyika H N, Gatebe E G, Gitu L M, Ngumba E K, Maritim C W. 2010. Determination of caffeine content of tea and instant coffee brands found in the Kenyan market. African J Food Sci 4: 353–358,
- Weisburger J H. 1999. Mechanism of action of antioxidants as exemplified in vegetable, tomatoes and tea. J Food Chem Toxicol 37: 943–948.
- Wheeler D S, Wheeler W J. 2004. The medicinal chemistry of tea. J Drug Dev Res 61: 45 65.
- Wikipedia. 2012. Caffeine. http://en.wikipedia.org/wiki/Caffeine. [6 March 2012].
- Wikipedia. 2012. Catechin. http://en.wikipedia.org/wiki/Catechin. [6 March 2012].
- Wikipedia. 2012. Polyphenol. http://en.wikipedia.org/wiki/Polyphenol. [6 March 2012].
- Wong C C, Cheng K W, Chao J, Peng X, Zheng Z, Wu J, Chen F, Wang M. 2009. Analytical Methods for Bioactive Compounds in Teas.
- Xia E Q, Deng G F, Guo Y J, Li H B. 2010. Biological activities of polyphenols from grapes Review. Int J Molec Sci 11: 622–646.
- Yamauchi Y, Nakamura A, Kohno I, Hatanaka K, Kitai M, Tanimoto T. 2008. Quasi-flow injection analysis for rapid determination of caffeine in tea using the sample pre-treatment method with a cartridge column filled with polyvinylpolypyrrolidone. J Chromatogr A 1177: 190–194.
- Yang C S, Lambert J D, Ju J, Lu G, Sang S. 2007. Tea and cancer prevention: Molecular mechanisms and human relevance. J Toxic App Pharm 224: 265-273.
- Yang X R, Ye C X, Xu J K, Jiang Y M. 2007. Simultaneous analysis of purine alkaloids and catechins in *Camellia sinensis*, *Camellia ptilophylla* and *Camellia assamica* var. *kucha* by HPLC. J Food Chem 100: 1132–1136.
- Yao L H, Jiang Y M, Caffin N, D'Arcy B, Datta N, Liu X. 2006. Phenolic compounds in tea from Australian supermarkets. Food Chem 96: 614–620.
- Yen G C, Duh P D. 1994. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active oxygen species. J Agric Food Chem 42: 629–632.
- Yen G C, Chen H Y. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43: 27-32.
- Yuan J-M, Sun C, Butler L M. 2011. Tea and cancer prevention: Epidemiological studies. J Pharm Res 64: 123-135.
- Zeyuan D, Bingying T X L, Jinming H, Yifeng C. 1998. Effect of green tea and black tea on the blood glucose, the blood triglycerides and antioxidation in aged rats. J Agric Food Chem 46: 875–878.

APPENDIX

Appendix 1. Tea samples

Appendix 2.Contents of moisture in green tea from var.assamica, green tea from cv. oolong no.12, oolong tea from cv. oolong no.12, and oolong tea fromvar.oolong no. 17

Code	MC (%w/w)
A-GT-1	4,88 ± 0,13 d
A-GT-2	$5,77 \pm 0,06 c$
A-GT-3	$4,70 \pm 0,14$ d
A-GT-4	$5{,}98\pm0{,}08\text{ bc}$
A-GT-5	$6{,}03\pm0{,}08~b$
A-GT-6	$9,17 \pm 0,06$ a
min	4.88
max	9.17
Mean	6.09
SD	1.61
O12-GT-1	$6.17\pm0.02~b$
O12-GT-2	$5.51\pm0.06\ c$
O12-GT-3	$5.51 \pm 0.02 \text{ c}$
O12-GT-4	$4.80\pm0.00\;d$
O12-GT-5	6.60 ± 0.01 a
O12-GT-6	$4.29 \pm 0.01 \text{ e}$
O12-GT-7	$4.82 \pm 0.08 \text{ d}$
min	4.29
max	6.60
Mean	5.38
SD	0.81
O12-OT-1	$5.72\pm0.10\ c$
O12-OT-2	$2.88\pm0.08~f$
O12-OT-3	1.39 ± 0.04 g
O12-OT-4	$4.78 \pm 0.01 \text{ e}$
O12-OT-5	1.18 ± 0.05 c
012-OT-6	5.28 ± 0.03 d
012-OT-7	5.38 ± 0.03 d
012-OT-8	$6.33 \pm 0.07 \text{ d}$
012-01-9	$8.20 \pm 0.08 a$
min	1.18
max	8.20
Mean	8.23
SD	2.32
O17-OT-1	2.23 ± 0.08 de
O17-OT-2	6.05 ± 0.03 b
O17-OT-3	5.46 ± 0.15 c
017-OT-4	2.19 ± 0.02 e
017-OT-5	1.49 ± 0.01 g
017-OT-6	2.30 ± 0.00 de
017-0T-7	1.58 ± 0.08 g
017-OT-8	5.54 ± 0.07 c
OT/-OT-9	2.29 ± 0.07 de

Cont'd appendix 2			
Code	MC (%w/w)		
O17-OT-10	$2.37 \pm 0.09 \text{ d}$		
O17-OT-11	$1.47\pm0.02~g$		
O17-OT-12	$1.49\pm0.05~g$		
O17-OT-13	$5.58\pm0.06\ c$		
O17-OT-14	$2.31 \pm 0.03 \text{ de}$		
O17-OT-15	$1.84\pm0.09~f$		
O17-OT-16	$0.83\pm0.02~h$		
O17-OT-017	$6.28\pm0.04~a$		
min	0.83		
max	6.28		
Mean	3.02		
SD	1.89		

Results are means \pm SD (n (A-GT) = 6; n (O12-GT) = 7; n (O12-OT) = 9; n (O17-OT) = 17). For each column, values followed by the same letter are not statistically different at P < 0.05 as measured by the Duncan test.

²13 Universit

A LO ADIGIA

Appendix 3 Contents of total polyphenol in green tea from var.assamica, green tea from
var.sinensis/cv. oolong no.12, oolong tea from var.sinensis/cv. oolong no.12, and oolong tea from
var.sinensis/oolong no. 17

Code	TPC (%w/w)
A-GT-1	$20.02 \pm 0,54$ ab
A-GT-2	$18.60 \pm 0,25$ c
A-GT-3	$20.06 \pm 0,92$ ab
A-GT-4	21.19 ± 0,69 a
A-GT-5	$18.93 \pm 0.15 \text{ bc}$
A-GT-6	$17.01 \pm 0,45 \text{ d}$
Min	17.01
Max	21.19
Mean	19.30
SD	1.46
O12-GT-1	$14.65 \pm 0.63 \text{ d}$
O12-GT-2	15.41 ± 0.55 c
O12-GT-3	17.68 ± 0.53 a
O12-GT-4	$14.03\pm0.52~d$
O12-GT-5	$11.86\pm0.10~e$
O12-GT-6	$14.24\pm0.35~d$
O12-GT-7	$16.47\pm0.53~b$
Min	11.86
Max	17.68
Mean	14.90
SD	1.87
O12-OT-1	11.69± 0.61 de
O12-OT-2	$12.48 \pm 0.55 \text{ d}$
O12-OT-3	$11.37 \pm 0.20 \text{ e}$
O12-OT-4	$10.22 \pm 0.48 \text{ f}$
O12-OT-5	14.34 ± 0.23 c
O12-OT-6	$15.17 \pm 0.52 \text{ d}$
O12-OT-7	17.47 ± 0.33 d
O12-OT-8	17.57 ± 0.20 a
012-01-9	16.45 ± 0.46 b
Min	10.22
Max	17.57
Mean	14.08
SD	2.47
017-OT-1	15.38 ± 0.34 bc
017-01-2	14.14 ± 0.12 defg
OT7-OT-3	$14.33 \pm 0.28 \text{ def}$
017-01-4	13.32 ± 0.29 tgh
OT/-OT-5	16.17 ± 0.37 ab
017-01-6	$14.24 \pm 0.08 \text{ def}$

Code	TPC (%w/w)
O17-OT-7	14.82 ± 0.29 cde
O17-OT-8	$15.46 \pm 0.71 \text{ cdef}$
O17-OT-9	$14.94 \pm 0.56 \text{ efg}$
O17-OT-10	14.39 ± 0.68 fgh
O17-OT-11	$16.24 \pm 0.48 \text{ cd}$
O17-OT-12	14.22 ± 0.21 gh
O17-OT-13	$14.96 \pm 0.30 \text{ efg}$
O17-OT-14	$13.42\pm0.12~h$
O17-OT-15	17.79 ± 0.64 a
O17-OT-16	$13.52\pm0.87~h$
O17-OT-017	$15.96\pm0.77~cde$
Min	11.55
Max	15.60
Mean	14.90
SD	1.11

Results are means \pm SD (n (A-GT) = 6; n (O12-GT) = 7; n (O12-OT) = 9; n (O17-OT) = 17). For each column, values followed by the same letter are not statistically different at P < 0.05 as measured by the Duncan test.

	Antio	xidant
-	DPPH-assav	FRAP-assav
Code	(mmolTE/100g)	(mmolAA/100g)
A GT 1	$247.10 \pm 5.57.3$	1.71 ± 0.13 d
A-01-1	247.10 ± 3.57 a	1.71 ± 0.10 a
A-GT-2	240.30 ± 4.02 a	$1.40 \pm 0.10 \text{ e}$
A-G1-3	130.09 ± 5.24 C	2.29 ± 0.10 D
A-GT-4	178.92 ± 6.48 b	2.51 ± 0.12 a
A-GT-5	153.80 ± 9.91 c	2.13 ± 0.16 c
A-GT-6	$132.32 \pm 5.80 \text{ d}$	$1.92 \pm 0.09 \text{ d}$
min	132.32	1.48
max	247.11	2.51
Mean	183.90	2.01
SD	48.79	0.33
O12-GT-1	119.35 ± 3.97 d	$1.05 \pm 0.26 \text{ cd}$
O12-GT-2	116.18 ± 3.37 de	1.16 ± 0.24 abc
O12-GT-3	147.34 ± 3.77 c	1.34 ± 0.15 a
O12-GT-4	$111.80 \pm 3.01 \text{ e}$	1.08 ± 0.09 bcd
O12-GT-5	$80.08 \pm 3.06 \; f$	$0.88\pm0.10~d$
O12-GT-6	212.64 ± 5.11 b	$1.04 \pm 0.10 \text{ cd}$
O12-GT-7	241.39 ± 7.10 a	$1.26 \pm 0.08 \text{ ab}$
min	80080.73	0.88
max	241387.59	1.34
Mean	146968.93	1.12
SD	58663.61	0.15
O12-OT-1	$101.06 \pm 6.07 \text{ c}$	$1.48 \pm 0.10 \text{ cd}$
O12-OT-2	113.74 ± 8.80 c	1.59 ± 0.11 bc
O12-OT-3	102.84 ± 11.49 c	$1.40 \pm 0.23 \text{ cd}$
O12-OT-4	98.93 ± 7.96 c	$1.31 \pm 0.15 \text{ d}$
O12-OT-5	131.11 ± 7.31 b	1.57 ± 0.04 bc
O12-OT-6	140.14 ± 5.32 ab	$1.78 \pm 0.01 \text{ ab}$
O12-OT-7	147.62 ± 9.28 a	$1.95 \pm 0.06 \text{ ab}$
O12-OT-8	147.05 ± 5.24 a	2.06 ± 0.05 a
O12-OT-9	135.41 ± 12.68 ab	1.93± 0.08 ab
min	98.93	1.31
max	147.62	2.06
Mean	124.21	1.67
SD	20.12	0.18
017-0T-1	131.80 ± 2.26 efg	1.74 ± 0.05 bcdefg
017-0T-2	124.12 ± 8.30 fg	1.68 ± 0.07 cdefg
017-0T-3	123.32 ± 6.11 fg	1.65 ± 0.07 efg
017-OT-4	105.35 + 7.53 h	1.54 ± 0.02 g
017-0T-5	117.84 + 6.87	1.75 ± 0.08 hcdefg
017-OT-6	121.63 + 8.03 fo	1.65 ± 0.03 defg
017 OT 7	122.28 ± 2.45 fg	1.56 ± 0.02 fg

Appendix 4 Antioxidant capacity in green tea from var.*assamica*, green tea from cv. oolong no.12, oolong tea from cv. oolong no.12, and oolong tea from cv.oolong no. 17

Cont'd	appendix	4
--------	----------	---

	Antioxidant							
Code	DPPH-assay	FRAP-assay						
Code	(mmolTE/100g)	(mmolAA/100g)						
017.07.9	147.71 ± 10.96 had	1.0 ± 0.09 hada						
01/-01-8	147.71 ± 10.86 bcd	1.69 ± 0.08 bcde						
O17-OT-9	156.76 ± 2.43 abc	1.63 ± 0.05 bcdf						
O17-OT-10	141.15 ± 15.69 de	1.54 ± 0.11 cdefg						
O17-OT-11	163.03 ± 13.11 a	$1.72 \pm 0.07 \ bc$						
O17-OT-12	142.62 ± 7.65 cde	1.62 ± 0.17 bcdef						
O17-OT-13	144.81 ± 5.31 bcde	$1.71 \pm 0.04 \text{ bcd}$						
O17-OT-14	$131.14 \pm 9.76 \text{ efg}$	$1.50 \pm 0.05 \text{ efg}$						
O17-OT-15	164.61± 4.79 a	1.90 ± 0.08 a						
O17-OT-16	$134.17 \pm 11.60 \text{ def}$	$1.57 \pm 0.04 \ cdefg$						
O17-OT-017	159.61 ± 6.75 ab	$1.78 \pm 0.09 \text{ ab}$						
min	105.35	1.50						
max	164.61	1.90						
Mean	137.24	1.67						
SD	17.28	0.11						

Results are means \pm SD (n (A-GT) = 6; n (O12-GT) = 7; n (O12-OT) = 9; n (O17-OT) = 17). For each column, values followed by the same letter are not statistically different at P < 0.05 as measured by the Duncan test.

AN ANNA

Appendix 5 Content of caffeine in green tea from var.assamica, green tea from cv. oolong no.12,
oolong tea from cv. oolong no.12, and oolong tea from cv.oolong no. 17

Code	CF (% w/w)
A-GT-1	3.71 ± 0.21
A-GT-2	3.43 ± 0.05
A-GT-3	3.44 ± 0.01
A-GT-4	3.35 ± 1.59
A-GT-5	3.27 ± 0.04
A-GT-6	3.45 ± 0.23
min	3.27
max	3.71
Mean	3.44
SD	0.35
O12-GT-1	$2.54\pm0.11~c$
O12-GT-2	$2.81\pm0.27~b$
O12-GT-3	3.17 ± 0.08 ab
O12-GT-4	$1.69 \pm 0.10 \text{ d}$
O12-GT-5	$1.93 \pm 0.36 \text{ d}$
O12-GT-6	$1.82 \pm 0.03 \text{ d}$
O12-GT-7	3.51 ± 0.07 a
min	1.69
max	3.51
Mean	2.50
SD	0.71
O12-OT-1	2.01 ± 0.26
O12-OT-2	2.97 ± 0.08
O12-OT-3	1.84 ± 0.01
O12-OT-4	3.26 ± 1.45
O12-OT-5	2.85 ± 0.08
O12-OT-6	2.33 ± 0.22
O12-OT-7	NP
O12-OT-8	2.48 ± 0.18
O12-OT-9	2.63 ± 0.08
min	1.84
max	3.26
Mean	2.55
SD	0.48
O17-OT-1	$1.77 \pm 0.01 \text{ fg}$
O17-OT-2	2.24 ± 0.00 cde
O17-OT-3	$1.70 \pm 0.14 \text{ fg}$
017-OT-4	1.61 ± 0.14 g
O17-OT-5	3.25 ± 0.08 a
017-OT-6	2.32 ± 0.09 cd
017-OT-7	$2.07 \pm 0.01 \text{ def}$
O17-OT-8	2.04 ± 0.49 def

Code	CF (% w/w)
O17-OT-9	$1.88 \pm 0.01 \text{ efg}$
O17-OT-10	$1.99 \pm 0.11 \text{ defg}$
O17-OT-11	$2.28\pm0.26~cd$
O17-OT-12	$1.94 \pm 0.07 \text{ defg}$
O17-OT-13	$2.49\pm0.03~bc$
O17-OT-14	2.24 ± 0.03 cde
O17-OT-15	3.18 ± 0.05 a
O17-OT-16	$2.50\pm0.16\ bc$
O17-OT-017	$2.74\pm0.23~b$
min	1.61
max	3.25
Mean	2.25
SD	0.47

Results are means \pm SD (n (A-GT) = 6; n (O12-GT) = 7; n (O12-OT) = 9; n (O17-OT) = 17). For each column, values followed by the same letter are not statistically different at P < 0.05 as measured by the Duncan test.

UNIVERSIT

Code	TCC(% w/w)	GC (% w/w)	EGC (% w/w)	C (% w/w)	EC (% w/w)	EGCG (% w/w)	GCG (% w/w)	ECG(% w/w)	CG (%
									w/w)
A-GT-1	13.08 ± 1.11	0.77 ± 0.06	$1.60\pm0.36~\text{b}$	1.70 ± 0.04	2.88±0.16 a	$2.20\pm0.61\ cd$	0.39 ± 0.08	3.53 ± 0.14 a	nd
A-GT-2	12.88 ± 0.90	1.01 ± 0.02	$1.95 \pm 0.00 ab$	1.51 ± 0.03	$2.29\pm0.05 \text{ ab}$	$2.74\pm0.05\ bc$	0.48 ± 0.04	$2.90\pm0.14~ab$	nd
A-GT-3	13.51 ± 1.08	0.89 ± 0.56	$1.70\pm0.20\ b$	2.15 ± 0.13	$2.62\pm0.04\ ab$	$2.44\pm0.16\ c$	0.25 ± 0.02	$3.45\pm0.00~a$	nd
A-GT-4	11.99 ± 0.98	0.99 ± 0.56	2.16 ± 0.19 ab	1.41 ± 0.95	$1.31\pm0.02\ c$	$3.69\pm0.92\ ab$	0.76 ± 0.58	1.65 ± 1.41 bc	nd
A-GT-5	14.11 ± 1.10	0.96 ± 0.03	2.48 ± 0.02 a	1.61 ± 0.01	$2.39\pm0.02\ c$	$3.47\pm0.06~a$	0.34 ± 0.02	$2.84\pm0.04\ c$	nd
A-GT-6	8.98 ± 1.07	0.39 ± 0.03	$0.70\pm0.01\ c$	1.53 ± 0.05	$1.87\pm0.01~\text{bc}$	$1.16\pm0.02~d$	0.09 ± 0.17	$3.24\pm0.10~a$	nd
min	8.98	0.39	0.70	1.41	1.31	1.16	0.09	1.65	-
Max	14.11	1.01	2.48	2.15	2.88	3.69	0.76	3.53	-
Mean	12.42	0.84	1.77	1.65	2.23	2.62	0.39	2.94	-
SD	1.83	0.24	0.61	0.26	0.56	0.92	0.22	0.69	-
O12-GT-1	10.99 ± 1.22 ab	$1.13\pm0.04~b$	2.87 ± 0.41 a	0.90 ± 0.02 bc	0.95 ± 0.07 ab	3.74 ± 0.61 bc	$0.76\pm0.18\ b$	$0.63 \pm 0.01 \text{ c}$	nd
O12-GT-2	10.94 ± 1.35 c	0.91 ± 0.04 a	$2.95\pm0.18\ b$	0.87 ± 0.14 a	$0.91\pm0.08\ b$	$4.01\pm0.27\;d$	0.51 ± 0.10 bc	$0.78\pm0.06~b$	nd
O12-GT-3	13.20 ± 1.67 a	$0.91 \pm 0.03 \text{ cd}$	2.41 ± 0.13 a	$1.04\pm0.01~\text{b}$	1.09 ± 0.00 a	$5.49 \pm 0.29 \text{ ab}$	1.06 ± 0.11 a	1.19 ± 0.04 a	nd
O12-GT-4	$10.32\pm1.29~bc$	$1.08\pm0.05~b$	$3.18\pm0.56~a$	$0.64 \pm 0.03 \text{ d}$	$0.80 \pm 0.01 \text{ bc}$	3.50 ± 0.63 bc	0.60 ± 0.13 bc	$0.52\pm0.03~d$	nd
O12-GT-5	$8.32\pm0.90\ c$	$0.99\pm0.05~bc$	$2.17\pm0.63~a$	$0.64\pm0.00~\text{d}$	$0.70\pm0.01\ c$	$2.75\pm0.85\ c$	$0.66\pm~0.10~b$	$0.41\pm0.06~\text{e}$	nd
O12-GT-6	10.54 ± 1.38 bc	$0.80\pm0.01~\text{de}$	$3.16\pm0.22~a$	$0.72\pm0.04~cd$	$0.91\pm0.03~b$	$3.83\pm0.34\ bc$	$0.36\pm0.05\;c$	$0.76\pm~0.02~b$	nd
O12-GT-7	$11.69\pm1.44~ab$	$0.74\pm0.14\;e$	$2.50\pm0.41~a$	$1.03\pm0.07~b$	$1.09\pm0.09~a$	4.62 ± 0.30 a	$0.58\pm0.01~\text{bc}$	$1.12\pm0.06~a$	nd
Min	8.32	0.74	2.17	0.64	0.70	2.75	0.36	0.41	-

Appendix 6 Content of total catechins and single catechins in green tea from var.*assamica*, green tea from var.*sinensis*/cv. oolong no.12, oolong tea from var.*sinensis*/colong no. 17

Code	TCC(% w/w)	GC (% w/w)	EGC (% w/w)	C (% w/w)	EC (% w/w)	EGCG (% w/w)	GCG (% w/w)	ECG(% w/w)	CG (% w/w)
Max	13.20	1.13	3.18	1.04	1.09	5.49	1.06	1.19	-
Mean	10.86	0.94	2.75	0.83	0.92	3.99	0.65	0.77	-
SD	1.47	0.14	0.39	0.17	0.14	0.87	0.22	0.29	-
O12-OT-1	9.10 ± 1.20	0.95 ± 0.21	3.15 ± 0.17	0.45 ± 0.41	0.68 ± 0.17	2.91 ± 0.09	0.54 ± 0.12	0.42 ± 0.02	nd
O12-OT-2	$9.46\pm\ 0.86$	1.06 ± 0.14	2.21 ± 0.70	0.96 ± 0.19	0.95 ± 0.11	2.90 ± 1.15	0.83 ± 0.08	0.55 ± 0.03	nd
O12-OT-3	8.14 ± 0.93	0.89 ± 0.10	2.52 ± 0.49	0.74 ± 0.005	0.81 ± 0.02	2.46 ± 0.38	0.29 ± 0.06	0.42 ± 0.07	nd
O12-OT-4	11.17 ± 0.91	1.00 ± 0.51	2.00 ± 0.62	1.19 ± 0.75	1.23 ± 0.65	3.49 ± 1.80	0.87 ± 0.73	1.39 ± 1.35	nd
O12-OT-5	9.91 ± 1.91	0.91 ± 0.06	3.54 ± 0.48	0.68 ± 0.06	1.21 ± 0.15	2.61 ± 0.81	0.34 ± 0.06	0.61 ± 0.26	nd
O12-OT-6	11.01 ± 1.23	1.08 ± 0.07	2.79 ± 0.05	0.79 ± 0.16	0.92 ± 0.06	3.83 ± 0.01	0.84 ± 0.18	0.76 ± 0.03	nd
O12-OT-7	12.47 ± 1.61	0.89 ± 0.02	2.69 ± 0.04	0.74 ± 0.03	0.92 ± 0.03	5.01 ± 0.11	1.12 ± 0.002	1.00 ± 0.03	nd
O12-OT-8	12.47 ± 1.54	1.06 ± 0.03	3.61 ± 0.02	0.87 ± 0.12	1.05 ± 0.09	4.40 ± 0.01	0.61 ± 0.10	0.88 ± 0.03	nd
O12-OT-9	11.23 ± 1.28	1.00 ± 0.02	2.83 ± 0.27	0.82 ± 0.02	0.96 ±0.003	3.98 ± 0.02	0.95 ± 0.05	0.69 ± 0.02	nd
Min	8.14	0.89	2.00	0.45	0.68	2.46	0.29	0.42	-
Max	12.47	1.08	3.61	1.19	1.23	5.10	1.12	1.39	-
Moon	10.55	0.98	2.82	0.80	0.97	3.52	0.71	0.75	-
SD	1.50	0.07	0.55	0.20	0.18	0.88	0.28	0.31	-
O17-OT-1	11.44 ± 1.39 ab	1.47 ± 0.13 abcd	4.06 ± 0.22 a	0.70 ± 0.05 efg	$0.99 \pm 0.04 \text{ ef}$	3.09 ± 0.20 abcd	$0.56 \pm 0.01 \text{ def}$	$0.57\pm0.01~c$	nd

Code	TCC(% w/w)	GC (% w/w)	EGC (% w/w)	C (% w/w)	EC (% w/w)	EGCG (% w/w)	GCG (% w/w)	ECG(% w/w)	CG (% w/w)
O17-OT-2	10.85 ± 1.28 abcd	$1.27\pm0.02~ef$	3.45 ± 0.06 ab	$0.59\pm0.06~g$	0.84 ± 0.03 gh	3.33 ± 0.08 ab	0.82 ± 0.01 abcde	$0.56\pm0.00\ c$	nd
O17-OT-3	10.13 ± 1.15 bcde	1.44 ± 0.03 abcde	$3.58\pm0.13~ab$	$\begin{array}{c} 0.74 \pm 0.06 \\ defg \end{array}$	$1.02\pm0.04~\text{cde}$	2.38 ± 0.06 de	$0.53\pm0.05~\text{ef}$	$0.44 \pm 0.03 \text{ cd}$	nd
O17-OT-4	$9.42 \pm 1.05 \; cde$	1.34 ± 0.17 cdef	3.30 ± 0.37 bc	0.73 ± 0.04 defg	$1.01 \pm 0.05 \text{ de}$	2.14 ± 0.45 e	$0.46\pm0.12~f$	$0.42 \pm 0.11 \text{ cd}$	nd
O17-OT-5	$\begin{array}{c} 10.45 \pm 0.78 \\ \text{bcde} \end{array}$	$1.21\pm0.01~f$	$2.20\pm0.09~\text{e}$	1.11 ± 0.07 a	1.16 ± 0.01 ab	2.96 ± 0.07 abcde	$0.88 \pm 0.05 \text{ abc}$	0.93 ± 0.05 a	nd
O17-OT-6	11.13 ± 1.16 ab	1.47 ± 0.04 abcde	$3.20\pm0.16~bcd$	0.67 ± 0.09 efg	$0.92\pm0.05~efg$	$3.28\pm0.17\ abc$	$0.99\pm0.03\ a$	0.60 ± 0.04 bc	nd
O17-OT-7	10.70 ± 1.19 abcd	1.45 ± 0.02 abcde	3.39 ± 0.01 abc	$0.65\pm0.05~fg$	$0.85\pm0.02~fgh$	3.03 ± 0.07 abcd	0.76 ± 0.04 abcdef	$0.56\pm0.02\ c$	nd
O17-OT-8	$6.82 \pm 0.45 \text{ g}$	1.61 ± 0.02 ab	$1.35\pm0.29~f$	0.95 ± 0.04 abc	1.16 ± 0.11 abc	$0.87\pm0.88\;f$	$0.62\pm0.46~\text{cdef}$	$0.27\pm0.35~\text{d}$	nd
O17-OT-9	$7.45\pm0.45~fg$	1.53 ± 0.06 abc	$1.55\pm0.40~f$	0.91 ± 0.08 bcd	$0.92 \pm 0.07 \text{ efg}$	$1.34\pm0.59~f$	0.71 ± 0.01 abcdef	$0.48\pm0.06~cd$	nd
O17-OT-10	9.92 ± 1.00 bcde	$\begin{array}{c} 1.34 \pm 0.11 \\ \text{cdef} \end{array}$	3.10 ± 0.05 bcd	$\begin{array}{c} 0.80 \pm 0.05 \\ bcdef \end{array}$	$0.95 \pm 0.08 \text{ efg}$	2.51 ± 0.02 bcde	0.74 ± 0.05 abcdef	$0.48\pm0.05~\text{cd}$	nd
O17-OT-11	10.98 ± 1.10 abc	1.44 ± 0.06 abcde	3.22 ± 0.23 bcd	0.87 ± 0.20 bcde	1.03 ± 0.13 bcde	3.05 ± 0.14 abcd	0.76 ± 0.12 abcdef	0.62 ± 0.00 bc	nd
O17-OT-12	9.40 ± 0.95 cde	$\begin{array}{c} 1.43 \pm 0.02 \\ \text{bcde} \end{array}$	$2.72\pm0.48~\text{cde}$	$0.67 \pm 0.12 \text{ fg}$	$0.75\pm0.01~h$	$2.60\pm0.38~\text{bcde}$	0.77 ± 0.04 abcdef	$0.46 \pm 0.03 \text{ cd}$	nd
O17-OT-13	$9.20\pm0.81~\text{de}$	$1.31 \pm 0.04 \text{ def}$	2.53 ± 0.40 de	0.78 ± 0.07 cdefg	0.89 ± 0.04 efgh	2.35 ± 0.31 de	0.86 ± 0.02 abcd	$0.48 \pm 0.01 \text{ cd}$	nd
O17-OT-14	$8.93 \pm 0.73 \text{ ef}$	1.45 ± 0.03 abcde	$2.38\pm0.55~e$	0.80 ± 0.01 bcdef	$0.94 \pm 0.05 \text{ efg}$	2.12 ± 0.49 e	0.78 ± 0.04 abcde	$0.47\pm0.05\;cd$	nd

Code	TCC(% w/w)	GC (% w/w)	EGC (% w/w)	C (% w/w)	EC (% w/w)	EGCG (% w/w)	GCG (% w/w)	ECG(% w/w)	CG (% w/w)
O17-OT-15	12.35 ± 1.22 a	$1.33\pm0.05~def$	3.46 ± 0.24 ab	0.96 ± 0.03 abc	1.22 ± 0.01 a	3.62 ± 0.11 a	0.95 ± 0.08 abcde	0.82 ± 0.12 ab	nd
O17-OT-16	9.31 ± 0.79 cde	$1.22\pm0.11~f$	$2.26\pm0.40~\text{e}$	0.91 ± 0.04 bcd	$0.85\pm0.00~fgh$	2.62 ± 0.46 bcde	$0.93 \pm 0.06 \ abcdef$	$0.52\pm0.07\ c$	nd
O17-OT-017	10.50 ± 0.95 bcde	1.62 ± 0.16 a	3.10 ± 0.15 bcd	0.99 ± 0.10 ab	$\begin{array}{c} 1.14 \pm 0.09 \\ abcd \end{array}$	$2.42\pm0.12~cde$	0.67 ± 0.09 bcdef	$0.56\pm0.04\ c$	nd
Min	6.82	0.02	0.01	0.05	0.02	0.07	0.04	0.02	-
Max	12.35	1.62	4.06	1.11	1.22	3.62	0.99	0.93	-
Mean	9.94	1.32	2.67	0.78	0.93	2.40	0.71	0.51	-
SD	1.39	0.36	1.00	0.23	0.27	0.92	0.23	0.20	-

C	% Moisture (%w/w)			% I	% Dry matter(%w/w)			%moisture%w/w (db)		
Sample	Mean	SD	%RSD	Mean	SD	%RSD	Mean	SD	%RSD	
O12-GT-001	5.8099	0.0155	0.2663	94.1901	0.0155	0.0164	6.1683	0.0174	0.2827	
O12-GT-002	5.2242	0.0582	1.1140	94.7758	0.0582	0.0614	5.5122	0.0648	1.1754	
O12-GT-003	5.2206	0.0206	0.3947	94.7794	0.0206	0.0217	5.5082	0.0229	0.4164	
O12-GT-004	4.5752	0.0042	0.0915	95.4248	0.0042	0.0044	4.7946	0.0046	0.0958	
O12-GT-005	6.1883	0.0062	0.1007	93.8117	0.0062	0.0066	6.5965	0.0071	0.1074	
O12-GT-006	4.1166	0.0113	0.2740	95.8834	0.0113	0.0118	4.2933	0.0123	0.2858	
O12-GT-007	4.5996	0.0713	1.5499	95.4004	0.0713	0.0747	4.8214	0.0783	1.6246	
A-GT-001	4.6528	0.1148	2.4675	95.3472	0.1148	0.1204	4.8799	0.1263	2.5879	
A-GT-002	5.4582	0.0548	1.0047	94.5418	0.0548	0.0580	5.7734	0.0614	1.0627	
A-GT-003	4.4919	0.1245	2.7719	95.5081	0.1245	0.1304	4.7032	0.1365	2.9022	
A-GT-004	5.6454	0.0735	1.3011	94.3546	0.0735	0.0778	5.9832	0.0825	1.3789	
A-GT-005	5.6867	0.0754	1.3256	94.3133	0.0754	0.0799	6.0297	0.0848	1.4056	
A-GT-006	8.4037	0.0510	0.6070	91.5963	0.0510	0.0557	9.1748	0.0608	0.6627	
O17-OT-001	2.1836	0.0732	3.3545	97.8164	0.0732	0.0749	2.2324	0.0766	3.4293	
O17-OT-002	5.7057	0.0258	0.4524	94.2943	0.0258	0.0274	6.0510	0.0290	0.4797	
O17-OT-003	5.1781	0.1372	2.6502	94.8219	0.1372	0.1447	5.4610	0.1526	2.7948	

Appendix 7. Mositure content raw data in dry basis and wet basis

IPB University

_

Cont'd	appendix	7
--------	----------	---

Comple	%	Moisture (%w/	w)	% I	Dry matter(%w/	w)	%n	noisture%w/w	(db)
Sample	Mean	SD	%RSD	Mean	SD	%RSD	Mean	SD	%RSD
O17-OT-004	2.1434	0.0198	0.9249	97.8566	0.0198	0.0203	2.1903	0.0207	0.9451
O17-OT-005	1.4638	0.0110	0.7492	98.5362	0.0110	0.0111	1.4856	0.0113	0.7603
O17-OT-006	2.2526	0.0031	0.1396	97.7474	0.0031	0.0032	2.3045	0.0033	0.1428
O17-OT-007	1.5534	0.0757	4.8741	98.4466	0.0757	0.0769	1.5780	0.0781	4.9509
O17-OT-008	5.2533	0.0652	1.2418	94.7467	0.0652	0.0689	5.5446	0.0727	1.3106
O17-OT-009	2.2377	0.0679	3.0360	97.7623	0.0679	0.0695	2.2889	0.0711	3.1055
O17-OT-010	2.3126	0.0870	3.7609	97.6874	0.0870	0.0890	2.3674	0.0911	3.8499
O17-OT-011	1.4494	0.0182	1.2543	98.5506	0.0182	0.0184	1.4707	0.0187	1.2728
O17-OT-012	1.4689	0.0476	3.2385	98.5311	0.0476	0.0483	1.4908	0.0490	3.2867
O17-OT-013	5.2863	0.0534	1.0109	94.7137	0.0534	0.0564	5.5814	0.0596	1.0673
O17-OT-014	2.2612	0.0258	1.1409	97.7388	0.0258	0.0264	2.3135	0.0270	1.1673
O17-OT-015	1.8037	0.0878	4.8674	98.1963	0.0878	0.0894	1.8368	0.0910	4.9567
O17-OT-016	0.8189	0.0156	1.9065	99.1811	0.0156	0.0157	0.8257	0.0159	1.9222
O17-OT-017	5.9080	0.0396	0.6702	94.0920	0.0396	0.0421	6.2790	0.0447	0.7123
O12-OT-001	5.4096	0.0915	1.6907	94.5904	0.0915	0.0967	5.7190	0.1022	1.7874
O12-OT-002	2.7972	0.0756	2.7011	97.2028	0.0756	0.0777	2.8777	0.0800	2.7788
O12-OT-003	1.3734	0.0373	2.7185	98.6266	0.0373	0.0379	1.3926	0.0384	2.7563
O12-OT-004	4.5646	0.0124	0.2717	95.4354	0.0124	0.0130	4.7829	0.0136	0.2847
O12-OT-005	1.1686	0.0499	4.2709	98.8314	0.0499	0.0505	1.1824	0.0511	4.3213

Cont'd	appendix	7

Sampla	% Moisture (%w/w)			% I	% Dry matter(%w/w)			% moisture% w/w (db)		
Sample	Mean	SD	%RSD	Mean	SD	%RSD	Mean	SD	%RSD	
O12-OT-006	5.0166	0.0235	0.4675	94.9834	0.0235	0.0247	5.2815	0.0260	0.4922	
O12-OT-007	5.1085	0.0234	0.4587	94.8915	0.0234	0.0247	5.3835	0.0260	0.4834	
O12-OT-008	5.9519	0.0637	1.0710	94.0481	0.0637	0.0678	6.3285	0.0721	1.1388	
O12-OT-009	7.5776	0.0701	0.9248	92.4224	0.0701	0.0758	8.1989	0.0820	1.0006	

Appendix 8. Gallic acid calibration cu	rve
--	-----

-pponum or e	same aera ear	oranon carve				
$Con(\mu g/ml).$	Abs.1	Abs.2	Abs.3	А	А	SD
				spectro		
0	0.0076	0.0184	0.0088	0.0116	0.0000	0.0059
10	0.1352	0.1238	0.1326	0.1305	0.1189	0.0060
20	0.2429	0.2534	0.2491	0.2485	0.2369	0.0053
30	0.3620	0.3579	0.3677	0.3625	0.3509	0.0049
40	0.4649	0.4910	0.4774	0.4778	0.4662	0.0131
50	0.5953	0.5784	0.5971	0.5903	0.5787	0.0103
60	0.7005	0.7024	0.7028	0.7019	0.6903	0.0012
70	0.8211	0.8143	0.8109	0.8154	0.8038	0.0052
80	0.8867	0.9156	0.9048	0.9024	0.8908	0.0146
90	1.0407	1.0208	1.0326	1.0314	1.0198	0.0100
100	1.1609	1.1348	1.0925	1.13	1.1178	0.0345

²E Universit

Annendix 9	DPPH-assav	callibration	curve	(trolog	standard)
representation 7.	DITITUSSuy	camoration	curve	(uoiox	standard)

Name	MW	Weight (g)	Vol. MeOH (ml)	Con. (mM)
Trolox	250.32	0.0250	10	9987.22
DPPH	394	0.0024	100	60.91

Level	Con.		A 517					
	(mM)	1	2	3	mean			
1	0	0.8309	0.8156	0.8224	0.8230	0.00		
2	200	0.7138	0.6983	0.7200	0.7107	13.65		
3	399	0.6084	0.5959	0.6231	0.6091	25.99		
4	599	0.4561	0.5045	0.4870	0.4825	41.37		
5	799	0.3803	0.3594	0.3885	0.3761	54.31		
6	999	0.2681	0.2395	0.2437	0.2504	69.57		

|--|

Con.	Abs.1	Abs.2	Abs.3	A spectro	А	SD
0	0.0866	0.0825	0.0715	0.0802	0.0000	0.0078
200	0.3487	0.3456	0.3718	0.3554	0.2752	0.0143
400	0.6379	0.5952	0.6458	0.6263	0.5461	0.0272
600	0.8194	0.8276	0.7739	0.8070	0.7268	0.0289
800	1.0522	1.0655	1.0206	1.0461	0.9659	0.0231
1000	1.0881	1.1701	1.1637	1.1406	1.0604	0.0456

²B Universit

Appendix11. Data of Concentration Caffe	ine and Catechin in Mix Standard
---	----------------------------------

Concentra	Concentration										
Con.Mix	G	GC	EGC	С	EC	EGCG	CF	GCG	ECG	CG	
(µg/mL)	99.9	39.2	40.18	100	97	80	100	40.18	98	49	
1	0.20	0.08	0.08	0.20	0.19	0.16	0.20	0.08	0.20	0.10	
2	1.00	0.39	0.40	1.00	0.97	0.80	1.00	0.40	0.98	0.49	
3	5.00	1.96	2.01	5.00	4.85	4.00	5.00	2.01	4.90	2.45	
4	9.99	3.92	4.02	10.00	9.70	8.00	10.00	4.02	9.80	4.90	
5	19.98	7.84	8.04	20.00	19.40	16.00	20.00	8.04	19.60	9.80	
6	39.96	15.68	16.07	40.00	38.80	32.00	40.00	16.07	39.20	19.60	
7	59.94	23.52	24.11	60.00	58.20	48.00	60.00	24.11	58.80	29.40	
8	79.92	31.36	32.14	80.00	77.60	64.00	80.00	32.14	78.40	39.20	
9	99.90	39.20	40.18	100.00	97.00	80.00	100.00	40.18	98.00	49.00	

ap.		
	1	

Appendix12. Data and Curve of Gallocatechin standard

GC									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-GC
	$(\mu g/mL)$	1	2	3	Mean			(mV*sec)	
3	1.96	13472	9022	14117	12204	2774.2	22.73262	12.20	0.160607
4	3.92	117960	98942	99996	105633	10688.8	10.11882	105.63	0.037110
5	7.84	433241	428290	425265	428932	4026.6	0.93874	428.93	0.018278
6	15.68	889802	891797	886389	889329	2734.8	0.30751	889.33	0.017631
7	23.52	1361222	1361419	1354988	1359210	3657.4	0.26908	1359.21	0.017304
8	31.36	1811274	1870638	1809024	1830312	34941.5	1.90904	1830.31	0.017134
9	39.20	2131986	2127202	2292481	2183890	94073.3	4.30760	2183.89	0.017950

Appendix 13. Data and Curve of Epigallocatechin Standard

EGC									
									RFE-
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	EGC
	(µg/mL)	1	2	3	Mean			(mV*sec)	
3	2.01	46516	45031	39105	43551	3921.0	9.00332	43.55	0.046130
4	4.02	60674	54821	51140	55545	4808.1	8.65615	55.55	0.072338
5	8.04	277513	272498	267033	272348	5241.6	1.92460	272.35	0.029506
6	16.07	846070	838482	838159	840904	4477.1	0.53241	840.90	0.019113
7	24.11	1363869	1366317	1361497	1363894	2410.1	0.17671	1363.89	0.017676
8	32.14	1818552	1878280	1818431	1838421	34519.0	1.87764	1838.42	0.017485
9	40.18	2150500	2153638	2333291	2212476	104640.3	4.72956	2212.48	0.018161

enimetaliste produktion find the contract the second test of a similar frequencies of the second second

C									
Level	Conc	Peak area (mV*sec)				SD	%RSD	Peak area	RF-C
	(µg/mL)	1	2	3	Mean			(mV*sec)	
1	0.20	46661	45593	7427	33227	22349.8	67.26408	33.23	0.006019
2	1.00	4381	4718	3579	4226	585.1	13.84539	4.23	0.236630
3	5.00	258152	249477	231391	246340	13653.5	5.542547	246.34	0.020297
4	10.00	496033	462270	474490	477598	17094.7	3.579307	477.60	0.020938
5	20.00	871562	880836	873651	875350	4864.8	0.55575	875.35	0.022848
6	40.00	1613818	1616021	1613928	1614589	1241.4	0.076884	1614.59	0.024774
7	60.00	2425475	2430889	2429159	2428508	2765.1	0.113862	2428.51	0.024707
8	80.00	3225592	3355028	3222453	3267691	75652.3	2.315162	3267.69	0.024482
9	100.00	3805808	3815782	4067067	3896219	148042.7	3.799651	3896.22	0.025666

Appendix 15. Data and Curve of Epicatechin Standard

EC									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-EC
	(µg/mL)	1	2	3	Mean			(mV*sec)	
3	4.85	229877	219701	205325	218301	12335.7	5.650788	218.30	0.022217
4	9.70	483862	449854	458421	464046	17688.0	3.811684	464.05	0.020903
5	19.40	913945	916884	906668	912499	5259.3	0.576358	912.50	0.021260
6	38.80	1762054	1760126	1758253	1760144	1900.6	0.107978	1760.14	0.022044
7	58.20	2672613	2678775	2676645	2676011	3129.5	0.116948	2676.01	0.021749
8	77.60	3555755	3690704	3549852	3598770	79671.6	2.213856	3598.77	0.021563
9	97.00	4200623	4204674	4453436	4286244	144806.4	3.378398	4286.24	0.022631

65

Annondiv	16	Data ar	nd Cumva	of I	Inigal	loostophin	gallata	Stondor	d
Appendix	10.	Data ai	na Curve	01 1	zpigai	locatechin	ganate	Standar	u

EGCG									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-
	(µg/mL)	1	2	3	Mean			(mV*sec)	EGCG
5	16.00	602610	596321	573670	590867	15221.4	2.57611	590.87	0.027079
6	32.00	1795609	1791354	1785725	1790896	4957.9	0.276839	1790.90	0.017868
7	48.00	2896843	2893573	2895324	2895247	1636.4	0.056519	2895.25	0.016579
8	64.00	3884732	4016829	3894688	3932083	73560.8	1.870785	3932.08	0.016276
9	80.00	4627886	4646375	4833889	4702717	113974.1	2.42358	4702.72	0.017011

GCG									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-GCG
	(µg/mL)	1	2	3	Mean			(mV*sec)	
4	4.02	56960	49114	49144	51739.3	4521.3	8.738526	51.74	0.077659
5	8.04	372415	375248	360921	369528	7587.3	2.053235	369.53	0.021747
6	16.07	823357	823338	819065	821920	2472.5	0.300823	821.92	0.019554
7	24.11	1284788	1285181	1296132	1288700	6439.0	0.499652	1288.70	0.018707
8	32.14	1729687	1789176	1728673	1749179	34642.4	1.980496	1749.18	0.018377
9	40.18	2073892	2078048	2270978	2140973	112607.1	5.259623	2140.97	0.018767

Appendix 17. Data and Curve of Gallocatechine gallate standard

ECG									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-ECG
	$(\mu g/mL)$	1	2	3	Mean			(mV*sec)	
3	4.90	170443	163453	160687	164861	5028.1	3.049899	164.86	0.029722
4	9.80	386359	372909	377111	378793	6880.9	1.816546	378.79	0.025872
5	19.60	886511	887579	877589	883893	5485.5	0.620604	883.89	0.022175
6	39.20	1832457	1819321	1826645	1826141	6582.5	0.360459	1826.14	0.021466
7	58.80	2834437	2835000	2832846	2834094	1117.1	0.039418	2834.09	0.020747
8	78.40	3791078	3929398	3783514	3834663	82129.8	2.141772	3834.66	0.020445
9	98.00	4506252	4511335	4565129	4527572	32624.5	0.720573	4527.57	0.021645

copulation for Chivese

²B Universit

Annondiv	10	Data and	Curvo	of Catachin	Gallata	Standard
Appendix	17.	Data allu	Curve	of CaleChin	Ganale	Stanuaru

CG									
Level	Conc	Peak area	(mV*sec)			SD	%RSD	Peak area	RF-CG
	(µg/mL)	1	2	3	Mean			(mV*sec)	
3	2.45	65801	62792	58652	62415	3589.4	5.750829	62.42	0.039253
4	4.90	158481	151682	153876	154680	3470.0	2.243356	154.68	0.031678
5	9.80	390771	398559	379321	389550	9676.9	2.484124	389.55	0.025157
6	19.60	821299	812873	814387	816186	4491.9	0.550358	816.19	0.024014
7	29.40	1274066	1278920	1276134	1276373	2435.8	0.19084	1276.37	0.023034
8	39.20	1720236	1808215	1729822	1752758	48266.0	2.75372	1752.76	0.022365
9	49.00	2052642	2072100	2065152	2063298	9860.6	0.477905	2063.30	0.023748

the Christian Communication of the state of the second strate

~ ~		
-		
~		

Appendix 20.	Data and	Curve of	Caffeine	Standard
ippendix 20.	Dutu unu	Cui ve oi	Culterne	Stunduru

	Peak area	(mV*sec)		SD	%RSD	Peak area	RF-CF	RF-CF
1	2	3	Mean				(mV*sec)	
35046		32729	22592	1638.4	7.252083	22.59	0.008853	0.028437
8610	8833	8264	8569	286.7	3.345865	8.57	0.116700	0.029131
182649	177241	167583	175824	7632.3	4.3408404	175.82	0.028437	0.030235
357352	332481	339993	343275	12756.3	3.7160407	343.28	0.029131	0.031146
662590	668568	653289	661482	7699.5	1.1639752	661.48	0.030235	0.030795
1284839	1284653	1283294	1284262	843.5	0.0656763	1284.26	0.031146	0.030387
1946767	1948628	1949767	1948387	1514.4	0.0777264	1948.39	0.030795	0.031724
2605219	2693547	2599419	2632728	52750	2.0036357	2632.73	0.030387	
3089850	3094222	3272598	3152223	104270.4	3.3078378	3152.22	0.031724	
			,	Total				0.030265

Appendix 21. Grubb test of respon factor

Before	Grubb's test											
Lev	RF											
	G	GC	EGC	С	EC	EGCG	CF	GCG	ECG	CG		
3	0.015909	0.160607	0.046130	0.020297	0.022217	0.394251	0.028437	0.036873	0.029722	0.039253	_	
4	0.019441	0.037110	0.072338	0.020938	0.020903	0.027079	0.029131	0.077659	0.025872	0.031678		
5	0.021137	0.018278	0.029506	0.022848	0.021260	0.017868	0.030235	0.021747	0.022175	0.025157		
6	0.023356	0.017631	0.019113	0.024774	0.022044	0.016579	0.031146	0.019554	0.021466	0.024014		
7	0.023789	0.017304	0.017676	0.024707	0.021749	0.016276	0.030795	0.018707	0.020747	0.023034		
8	0.023688	0.017134	0.017485	0.024482	0.021563	0.017011	0.030387	0.018377	0.020445	0.022365		
9	0.025729	0.017950	0.018161	0.025666	0.022631		0.031724	0.018767	0.021645	0.023748		
After C	Grubb's test											
No.	RF											
	G	GC	EGC	С	EC	EGCG	CF	GCG	ECG	CG	Analysis	RF
1	0.019441	0.018278	0.019113	0.020297	0.022217	0.017868	0.028437	0.021747	0.025872	0.025157	EGC	0.018108
2	0.021137	0.017631	0.017676	0.020938	0.020903	0.016579	0.029131	0.019554	0.022175	0.024014	С	0.023387
3	0.023356	0.017304	0.017485	0.022848	0.021260	0.016276	0.030235	0.018707	0.021466	0.023034	EC	0.021767
4	0.023789	0.017134	0.018161	0.024774	0.022044	0.017011	0.031146	0.018377	0.020747	0.022365	EGCG	0.016934
5	0.023688	0.017950		0.024707	0.021749		0.030795	0.018767	0.020445	0.023748	CF	0.030265
6	0.025729			0.024482	0.021563		0.030387		0.021645		GCG	0.019430
7				0.025666	0.022631		0.031724				ECG	0.022058
Mean	0.022856	0.017659	0.018108	0.023387	0.021767	0.016934	0.030265	0.019430	0.022058	0.023664	CG	0.023664

A Traiverci

71

Appendix 22. Example of calculation of catechin and caffeine

Sample O12-GT-1

Sample	REP.	%DM	Final Vol	DF	Rf-i	RF-CF	RF-	sto	1 CF	Peak area	(mV*sec)	Amoun g dry	t(g/100 basis)	Aanal	SD
(g)			(ml)				I/KF-CF	slope	y-intercept	Peak area	Mean	Amou nt	Mean	ysis	3D
2	1	94.19	250	10	0.02	0.03	0.76	31976.00	13163.00	413526	119521 50	1.25	1 26	G	0.16
2	2	94.19	250	10	0.02	0.03	0.76	31976.00	13163.00	483517	446521.50	1.47	1.50	U	0.10
2	1	94.19	250	10	0.02	0.03	0.58	31976.00	13163.00	468115	180160 00	1.10	1 1 2	CC	0.04
2	2	94.19	250	10	0.02	0.03	0.58	31976.00	13163.00	492805	480460.00	1.16	1.15	GC	0.04
2	1	94.19	250	10	0.02	0.03	0.60	31976.00	13163.00	1287828	1160260.00	3.16	2 07	ECC	0.41
2	2	94.19	250	10	0.02	0.03	0.60	31976.00	13163.00	1050764	1109209.00	2.58	2.87	EUC	0.41
2	1	94.19	250	10	0.02	0.03	0.77	31976.00	13163.00	288221	202246.00	0.88	0.00	C	0.02
2	2	94.19	250	10	0.02	0.03	0.77	31976.00	13163.00	298271	293240.00	0.91	0.90	C 0.0	0.02
2	1	94.19	250	10	0.02	0.03	0.72	31976.00	13163.00	316502	222426 00	0.90	0.05	EC	0.07
2	2	94.19	250	10	0.02	0.03	0.72	31976.00	13163.00	348370	332430.00	1.00	0.95	EC	0.07
2	1	94.19	250	10	0.02	0.03	0.56	31976.00	13163.00	1809827	1602120 5	4.17	274	EGC	0.61
2	2	94.19	250	10	0.02	0.03	0.56	31976.00	13163.00	1436438	1023132.5	3.31	3.74	G	0.01
2	1	94.19	250	10	0.03	0.03	1.00	31976.00	13163.00	643127	624572 00	2.61	254	CE	0.11
2	2	94.19	250	10	0.03	0.03	1.00	31976.00	13163.00	606019	024375.00	2.46	2.34	Сг	0.11
2	1	94.19	250	10	0.02	0.03	0.64	31976.00	13163.00	346999	200220.00	0.89	076	000	0.10
2	2	94.19	250	10	0.02	0.03	0.64	31976.00	13163.00	253441	300220.00	0.64	0.76	GCG	0.18
2	1	94.19	250	10	0.02	0.03	0.73	31976.00	13163.00	220037	222202 50	0.63	0.62	ECC	0.01
2	2	94.19	250	10	0.02	0.03	0.73	31976.00	13163.00	224370	222205.50	0.64	0.03	ECG	0.01
2	1	94.19	250	10	0.02	0.03	0.78	31976.00	13163.00	11427	<00 7 00	-0.01	0.02	00	0.02
2	2	94.19	250	10	0.02	0.03	0.78	31976.00	13163.00	2187	6807.00	-0.04	-0.02	CG	0.02

-		
œ		
š⊂.		
56		
2		

	-	Sum of Squares	df	Mean Square	F	Sig.
Moist	Between Groups	26.029	5	5.206	550.392	.000
	Within Groups	.057	6	.009		
	Total	26.086	11			
tpc	Between Groups	21.153	5	4.231	13.618	.003
	Within Groups	1.864	6	.311		
	Total	23.017	11			
CAFFEINE	Between Groups	.220	5	.044	.101	.988
	Within Groups	2.614	6	.436		
	Total	2.834	11			
TCC	Between Groups	33.166	5	6.633	1.282	.380
	Within Groups	31.040	6	5.173		
	Total	64.206	11			
GC	Between Groups	.555	5	.111	2.103	.196
	Within Groups	.317	6	.053		
	Total	.872	11			
EGC	Between Groups	3.760	5	.752	21.325	.001
	Within Groups	.212	6	.035		
	Total	3.971	11			
С	Between Groups	.690	5	.138	.900	.536
	Within Groups	.920	6	.153		
	Total	1.610	11			
EC	Between Groups	3.160	5	.632	4.377	.050
	Within Groups	.866	6	.144		
	Total	4.026	11			
ECGC	Between Groups	8.432	5	1.686	8.152	.012
	Within Groups	1.241	6	.207		
	Total	9.673	11			
GCG	Between Groups	.295	4	.074	1.056	.464
	Within Groups	.349	5	.070		
	Total	.644	9			
ECG	Between Groups	4.736	5	.947	2.780	.123
	Within Groups	2.044	6	.341		
	Total	6.780	11			
DPPH	Between Groups	23799.380	5	4759.876	167.541	.000
	Within Groups	170.461	6	28.410		
	Total	23969.840	11			
FRAP	Between Groups	1.447	5	.289	109.899	.000
	Within Groups	.016	6	.003		
	Total	1.463	11			

Appendix 23. ANOVA and Posthoc test of sample A-GT ANOVA

Moist

Duncan							
		Su	Subset for $alpha = 0.05$				
Sample	N	1	2	3	4		
A-GT-3	2	4.7050					
A-GT-1	2	4.8800					
A-GT-2	2		5.7750				
A-GT-4	2		5.9800	5.9800			
A-GT-5	2			6.0300			
A-GT-6	2				9.1750		
Sig.		.122	.080	.626	1.000		

Means for groups in homogeneous subsets are displayed.

CAFFEINE

Duncan				
		Subset for alpha = 0.05		
Sample	Ν	1		
A-GT-5	2	3.2708		
A-GT-4	2	3.3461		
A-GT-2	2	3.4284		
A-GT-3	2	3.4444		
A-GT-6	2	3.4512		
A-GT-1	2	3.7090		
Sig.		.543		

Means for groups in homogeneous subsets are displayed.

тсс

Duncan				
		Subset for alpha = 0.05		
Sample	Ν	1		
A-GT-6	2	9.0000		
A-GT-4	2	11.9799		
A-GT-2	2	12.8894		
A-GT-1	2	13.0700		
A-GT-3	2	13.5050		
A-GT-5	2	14.1150		
Sig.		.079		

Means for groups in homogeneous subsets are displayed.

Duncan								
		Su	Subset for $alpha = 0.05$					
Sample	N	1	2	3	4			
A-GT-6	2	17.0050						
A-GT-2	2		18.5950					
A-GT-5	2		18.9300	18.9300				
A-GT-1	2			20.0200	20.0200			
A-GT-3	2			20.0650	20.0650			
A-GT-4	2			u	21.1900			
Sig.		1.000	.570	.097	.089			

Means for groups in homogeneous subsets are displayed.

e galipar herpe antak karatingan perdalikan, produktor, peratar kerek minah, peratarak topetan, peratarak sepa Segolipan Kesik merupatan kependagan yang wajar IPR Saberisty. Nang mengununakan ber memperbanyak sebagai data pida ad kerya tahu in dalam berapa apapan terpa dan PR Un

Duncan					
		Subset for a	ulpha = 0.05		
Sample	Ν	1	2		
A-GT-6	2	.3901			
A-GT-1	2	.7707	.7707		
A-GT-3	2	.8939	.8939		
A-GT-5	2	.9600	.9600		
A-GT-4	2		.9981		
A-GT-2	2		1.0083		
Sig.		.057	.360		

GC

Means for groups in homogeneous subsets are displayed.

Duncan							
		Sı	ubset for	alpha = 0	0.05		
Sample	N	1	2	3	4		
A-GT-6	2	.6991					
A-GT-1	2		1.5969				
A-GT-3	2		1.6979	1.6979			
A-GT-2	2		1.9515	1.9515			
A-GT-4	2			2.1623	2.1623		
A-GT-5	2				2.4850		
Sig.		1.000	.118	.054	.137		

Means for groups in homogeneous subsets are displayed.

Du	incan	
		Subset for $alpha = 0.05$
Sample	Ν	1
A-GT-4	2	1.4119
A-GT-2	2	1.5124
A-GT-6	2	1.5294
A-GT-5	2	1.6150
A-GT-1	2	1.6990
A-GT-3	2	2.1511
Sig.		.124

С

Means for groups in homogeneous subsets are displayed.

EC	
----	--

Duncan							
	Subset for alpha = 0.05						
Sample	Ν	1	2	3			
A-GT-4	2	1.3135					
A-GT-6	2	1.8663	1.8663				
A-GT-2	2		2.2905	2.2905			
A-GT-5	2		2.3950	2.3950			
A-GT-3	2		2.6205	2.6205			
A-GT-1	2			2.8813			
Sig.		.196	.108	.188			

ECGC

Duncan							
-		Su	bset for a	ulpha = 0	.05		
Sample	N	1	2	3	4		
A-GT-6	2	1.1622					
A-GT-1	2	2.1999	2.1999				
A-GT-3	2		2.4405	2.4405			
A-GT-2	2		2.7396	2.7396	2.7396		
A-GT-5	2			3.4700	3.4700		
A-GT-4	2				3.6902		
Sig.		.063	.295	.072	.090		

Means for groups in homogeneous subsets are displayed.

GCG

Dur	ican	
		Subset for $alpha = 0.05$
Sample	Ν	1
A-GT-3	2	.2517
A-GT-5	2	.3450
A-GT-1	2	.3945
A-GT-2	2	.4786
A-GT-4	2	.7555
Sig.		.126

Means for groups in homogeneous subsets are displayed.

ECG

Duncan

		Subset for alpha = 0.05		
Sample	Ν	1	2	
A-GT-4	2	1.6546		
A-GT-5	2	2.8450	2.8450	
A-GT-2	2	2.9023	2.9023	
A-GT-6	2		3.2436	
A-GT-3	2		3.4516	
A-GT-1	2		3.5329	
Sig.		.085	.303	

DPPH

Duncan								
		-	Subset for a	alpha = 0.05	-			
Sample	Ν	1	2	3	4			
A-GT-6	2	1.3232E2						
A-GT-3	2		1.5069E2					
A-GT-5	2		1.5380E2					
A-GT-4	2			1.7892E2				
A-GT-2	2				2.4056E2			
A-GT-1	2		u .		2.4710E2			
Sig.		1.000	.581	1.000	.265			

Means for groups in homogeneous subsets are displayed.

FRAP

Du	Duncan						
				Subset for a	alpha = 0.05		
Sample	Ν	1	2	3	4	5	6
A-GT-2	2	1.4850					
A-GT-1	2		1.7100				
A-GT-6	2			1.9250			
A-GT-5	2				2.1300		
A-GT-3	2					2.2950	
A-GT-4	2						2.5150
Sig.		1.000	1.000	1.000	1.000	1.000	1.000

ANOVA								
		Sum of Squares	df	Mean Square	F	Sig.		
Moist	Between Groups	7.945	6	1.324	838.807	.000		
	Within Groups	.011	7	.002				
	Total	7.956	13					
tpc	Between Groups	41.898	6	6.983	85.786	.000		
	Within Groups	.570	7	.081				
	Total	42.468	13					
Caffeine	Between Groups	6.054	6	1.009	30.063	.000		
	Within Groups	.235	7	.034				
	Total	6.289	13					
TCC	Between Groups	26.039	6	4.340	4.719	.031		
	Within Groups	6.438	7	.920				
	Total	32.477	13					
GC	Between Groups	.239	6	.040	9.525	.004		
	Within Groups	.029	7	.004				
	Total	.268	13					
EGC	Between Groups	1.837	6	.306	1.858	.218		
	Within Groups	1.154	7	.165				
	Total	2.991	13					
С	Between Groups	.347	6	.058	14.613	.001		
	Within Groups	.028	7	.004				
	Total	.374	13					
EC	Between Groups	.246	6	.041	14.344	.001		
	Within Groups	.020	7	.003				
	Total	.265	13					
ECGC	Between Groups	9.040	6	1.507	5.666	.019		
	Within Groups	1.862	7	.266				
	Total	10.902	13					
GCG	Between Groups	.591	6	.099	8.493	.006		
	Within Groups	.081	7	.012				
	Total	.673	13					

Appendix 24. ANOVA and posthoc test of sample O12-GT

	-	Sum of Squares	df	Mean Square	F	Sig.
ECG	Between Groups	1.011	6	.169	84.188	.000
	Within Groups	.014	7	.002		
	Total	1.025	13			
DPPH	Between Groups	41299.120	6	6883.187	903.996	.000
	Within Groups	53.299	7	7.614		
	Total	41352.419	13			
FRAP	Between Groups	.280	6	.047	6.804	.012
	Within Groups	.048	7	.007		
	Total	.328	13			

Duncan										
			Subset for $alpha = 0.05$							
sample	Ν	1	2	3	4	5				
O12-GT-6	2	4.2900								
012-GT-4	2		4.7950							
O12-GT-7	2		4.8250							
O12-GT-3	2			5.5050						
O12-GT-2	2			5.5150						
O12-GT-1	2				6.1700					
O12-GT-5	2					6.5950				
Sig.		1.000	.475	.809	1.000	1.000				
	Means for groups in homogeneous subsets are displayed.									

Moist

Duncan									
		Subset for $alpha = 0.05$							
sample	Ν	1	2	3	4	5			
O12-GT-5	2	11.8550							
O12-GT-4	2		14.0350						
O12-GT-6	2		14.2400						
O12-GT-1	2		14.6500						
O12-GT-2	2			15.4150					
O12-GT-7	2				16.4700				
O12-GT-3	2					17.6750			
Sig.		1.000	.077	1.000	1.000	1.000			
	Means for groups in homogeneous subsets are displayed.								

tpc

D......

Caffeine

D...

Duncan								
		Subset for $alpha = 0.05$						
sample	N	1	2	3	4			
O12-GT-4	2	1.6873						
O12-GT-6	2	1.8237						
O12-GT-5	2	1.9259						
O12-GT-1	2		2.5367					
O12-GT-2	2		2.8096	2.8096				
O12-GT-3	2			3.1734	3.1734			
O12-GT-7	2				3.5145			
Sig.		.250	.180	.087	.105			

Means for groups in homogeneous subsets are displayed.

Duilcail							
		Subset for $alpha = 0.05$					
sample	N	1	2	3			
O12-GT-5	2	8.3245					
O12-GT-4	2	10.3222	10.3222				
O12-GT-6	2	10.5388	10.5388				
O12-GT-2	2		10.9450	10.9450			
O12-GT-1	2		10.9859	10.9859			
O12-GT-7	2		11.6864	11.6864			
O12-GT-3	2			13.2036			
Sig.		.062	.222	.062			

-	
and the second second	
1	
1000	
200	
	(A BEACHER
200	
1.927	
1.5	

GC

Duncan							
		Sul	Subset for $alpha = 0.05$				
sample	N	1	2	3	4		
O12-GT-7	2	.7422					
O12-GT-6	2	.7965	.7965				
O12-GT-3	2		.9097	.9097			
O12-GT-2	2		.9133	.9133			
O12-GT-5	2			.9927	.9927		
O12-GT-4	2				1.0774		
O12-GT-1	2				1.1313		
Sig.		.430	.126	.256	.078		

С

Duncan

		Subset for $alpha = 0.05$				
sample	N	1	2	3	4	
O12-GT-5	2	.6366				
O12-GT-4	2	.6445				
O12-GT-6	2	.7226	.7226			
O12-GT-2	2		.8703	.8703		
O12-GT-1	2			.8980	.8980	
O12-GT-7	2				1.0292	
O12-GT-3	2				1.0403	
Sig.		.229	.051	.673	.066	

Means for groups in homogeneous subsets are displayed.

Г	(٦
Ŀ	L	-

Duncan							
		Sul	oset for	alpha =	0.05		
sample	N	1	2	3	4		
O12-GT-5	2	.6991					
O12-GT-4	2	.8033	.8033				
O12-GT-2	2		.9059	.9059			
O12-GT-6	2		.9120	.9120			
O12-GT-1	2			.9527			
O12-GT-3	2				1.0917		
O12-GT-7	2				1.0920		
Sig.		.092	.091	.427	.997		

Means for groups in homogeneous subsets are displayed.

Means for groups in homogeneous subsets are displayed.

EGC

Duncan						
		Subset for alpha $= 0.05$				
sample	Ν	1				
O12-GT-5	2	2.1724				
O12-GT-3	2	2.4132				
O12-GT-7	2	2.4966				
O12-GT-1	2	2.8699				
O12-GT-2	2	2.9475				
O12-GT-6	2	3.1612				
O12-GT-4	2	3.1801				
Sig.		.055				

ECGC

-	Duncan							
		-	Subset for $alpha = 0.05$					
	sample	N	1	2	3			
	O12-GT-5	2	2.7491					
	O12-GT-4	2	3.4945	3.4945				
	O12-GT-1	2	3.7373	3.7373				
	O12-GT-6	2	3.8298	3.8298				
	O12-GT-2	2	4.0100	4.0100				
	O12-GT-7	2		4.6181	4.6181			
	O12-GT-3	2			5.4902			
	Sig.		.057	.081	.135			

ECG

Duncan							
		Subset for alpha = 0.05					
sample	N	1	2	3	4	5	
O12-GT-5	2	.4136					
O12-GT-4	2		.5244				
O12-GT-1	2			.6321			
O12-GT-6	2				.7589		
O12-GT-2	2				.7847		
O12-GT-7	2					1.1237	
O12-GT-3	2					1.1872	
Sig.		1.000	1.000	1.000	.582	.199	
Means for groups in homogeneous subsets are displayed.							

Means for groups in homogeneous subsets are displayed.

GCG

Duncan				
		Subse	t for alph	a = 0.05
sample	N	1	2	3
O12-GT-6	2	.3578		
O12-GT-2	2	.5093	.5093	
O12-GT-7	2	.5847	.5847	
O12-GT-4	2	.5953	.5953	
O12-GT-5	2		.6565	
O12-GT-1	2		.7646	
O12-GT-3	2			1.0625
Sig.		.076	.063	1.000

Duncan								
			Subset for alpha = 0.05					
sample	Ν	1	2	3	4	5	6	
O12-GT-5	2	80.0800						
O12-GT-4	2		1.1180E2					
O12-GT-2	2		1.1618E2	1.1618E2				
O12-GT-1	2			1.1935E2				
O12-GT-3	2				1.4734E2			
O12-GT-6	2					2.1264E2		
O12-GT-7	2		u .				2.4139E2	
Sig.		1.000	.157	.288	1.000	1.000	1.000	
	Mea	ans for group	s in homoge	neous subset	s are display	ed.		

DPPH

FRAP

Duncan								
		Subset for $alpha = 0.05$						
sample	Ν	1	2	3	4			
O12-GT-5	2	.8800						
O12-GT-6	2	1.0400	1.0400					
O12-GT-1	2	1.0500	1.0500					
O12-GT-4	2	1.0800	1.0800	1.0800				
O12-GT-2	2		1.1600	1.1600	1.1600			
O12-GT-7	2			1.2600	1.2600			
O12-GT-3	2				1.3400			
Sig.		.057	.212	.075	.075			

ANOVA									
		Sum of Squares	df	Mean Square	F	Sig.			
Moist	Between Groups	86.443	8	10.805	2.929E3	.000			
	Within Groups	.033	9	.004					
	Total	86.476	17						
tpc	Between Groups	122.248	8	15.281	113.300	.000			
	Within Groups	1.214	9	.135					
	Total	123.462	17						
TCC	Between Groups	35.290	8	4.411	.894	.557			
	Within Groups	44.406	9	4.934					
	Total	79.696	17						
GC	Between Groups	.103	8	.013	.341	.928			
	Within Groups	.341	9	.038					
	Total	.444	17						
EGC	Between Groups	4.013	8	.502	3.121	.055			
	Within Groups	1.446	9	.161					
	Total	5.459	17						
С	Between Groups	.632	8	.079	.880	.566			
	Within Groups	.808	9	.090					
	Total	1.441	17						
EC	Between Groups	.416	8	.052	.928	.536			
	Within Groups	.504	9	.056					
	Total	.919	17						
ECGC	Between Groups	11.024	8	1.378	2.303	.118			
	Within Groups	5.386	9	.598					
	Total	16.410	17						
GCG	Between Groups	1.329	8	.166	2.458	.101			
	Within Groups	.608	9	.068					
	Total	1.937	17						
ECG	Between Groups	1.505	8	.188	.897	.556			
	Within Groups	1.888	9	.210					
	Total	3.393	17						

AN ANNA

		Sum of Squares	df	Mean Square	F	Sig.
DPPH	Between Groups	6475.903	8	809.488	20.004	.000
	Within Groups	364.193	9	40.466		
	Total	6840.096	17			
FRAP	Between Groups	1.121	8	.140	18.089	.000
	Within Groups	.070	9	.008		
	Total	1.190	17			
Caffeine	Between Groups	3.289	7	.470	1.663	.245
	Within Groups	2.260	8	.283		
	Total	5.549	15			

Duncan									
			Subset for $alpha = 0.05$						
Sample	N	1	2	3	4	5	6	7	8
O12-OT-5	2	1.1850							
O12-OT-3	2		1.3950						
O12-OT-2	2			2.8750					
O12-OT-4	2				4.7800				I
O12-OT-6	2					5.2800			
O12-OT-7	2					5.3850			u
O12-OT-1	2						5.7200		u .
O12-OT-8	2							6.3300	I
O12-OT-9	2								8.2000
Sig.		1.000	1.000	1.000	1.000	.118	1.000	1.000	1.000
	l	Means for g	groups in ho	omogeneou	s subsets a	re display	/ed.		

Moist

Duncan									
			Subset for alpha = 0.05						
Sample	Ν	1	2	3	4	5	6	7	
O12-OT-4	2	10.2150							
O12-OT-3	2		11.3650						
O12-OT-1	2		11.6850	11.6850					
O12-OT-2	2			12.4800					
O12-OT-5	2				14.3350				
O12-OT-6	2					15.1700			
O12-OT-9	2						16.4450		
O12-OT-7	2							17.4700	
O12-OT-8	2					u li		17.5700	
Sig.		1.000	.406	.059	1.000	1.000	1.000	.792	
		Means for g	groups in hor	nogeneous si	ubsets are dis	splayed.			

tpc

тсс

GC

Duncan

Duncan		
		Subset for alpha = 0.05
Sample	Ν	1
O12-OT-3	2	8.1400
O12-OT-1	2	9.0950
O12-OT-2	2	9.4650
O12-OT-5	2	10.1750
O12-OT-6	2	11.0000
O12-OT-4	2	11.1700
O12-OT-9	2	11.2350
O12-OT-7	2	12.4650
O12-OT-8	2	12.4700
Sig.		.109

		Subset for alpha = 0.05
Sample	Ν	1
O12-OT-5	2	.8656
O12-OT-3	2	.8912
O12-OT-7	2	.8941
O12-OT-1	2	.9544
O12-OT-4	2	1.0001
O12-OT-9	2	1.0031
O12-OT-8	2	1.0581
O12-OT-2	2	1.0605
O12-OT-6	2	1.0759
Sig.		.339

Means for groups in homogeneous subsets are displayed.

GC

Duncan

Duncan

Sample

012-0T-1

O12-OT-5

O12-OT-7

O12-OT-3

O12-OT-6

O12-OT-9

O12-OT-8

O12-OT-2

012-OT-4

Sig.

	1-	Subset for alpha $= 0.05$					
Sample	N	1	2	3			
O12-OT-4	2	2.0037					
O12-OT-2	2	2.2087	2.2087				
O12-OT-3	2	2.5205	2.5205				
O12-OT-7	2	2.6921	2.6921	2.6921			
O12-OT-6	2	2.7878	2.7878	2.7878			
O12-OT-9	2	2.8332	2.8332	2.8332			
O12-OT-1	2		3.1475	3.1475			
O12-OT-5	2		3.2073	3.2073			
O12-OT-8	2	1		3.6058			
Sig.		.091	.050	.067			

Means for groups in homogeneous subsets are displayed.

С

Ν

2

2

2

2

2

2

2

2

2

Subset for alpha = 0.05

1

.4532

.7168

.7382

.7419

.7860

.8211

.8701

.9644

1.1872

.054

		Subset for $alpha = 0.05$
Sample	Ν	1
O12-OT-1	2	.6786
O12-OT-3	2	.8116
O12-OT-6	2	.9173
O12-OT-7	2	.9199
O12-OT-2	2	.9495
O12-OT-9	2	.9601
O12-OT-8	2	1.0482
O12-OT-5	2	1.1053
O12-OT-4	2	1.2324
Sig.		.063

EC

Duncan

Means for groups in homogeneous subsets are displayed.

ECGC

Duncan				
		Subset for alpha = 0.05		
Sample	Ν	1	2	
O12-OT-3	2	2.4635		
O12-OT-2	2	2.8973		
O12-OT-1	2	2.9087		
O12-OT-5	2	3.1870	3.1870	
O12-OT-4	2	3.4894	3.4894	
O12-OT-6	2	3.8325	3.8325	
O12-OT-9	2	3.9777	3.9777	
O12-OT-8	2	4.3963	4.3963	
O12-OT-7	2		5.0959	
Sig.		.050	.051	

Means for groups in homogeneous subsets are displayed.

-	
-m	
8 <u>~</u>	
<u>e</u>	
22.	
\leq	
	direction of the
10	

GCG

Duncan				
		Subse	t for alph	a = 0.05
Sample	N	1	2	3
O12-OT-3	2	.2924		
O12-OT-5	2	.3041	.3041	
O12-OT-1	2	.5378	.5378	.5378
O12-OT-8	2	.6060	.6060	.6060
O12-OT-2	2	.8340	.8340	.8340
O12-OT-6	2	.8434	.8434	.8434
O12-OT-4	2	.8710	.8710	.8710
O12-OT-9	2		.9487	.9487
O12-OT-7	2			1.1208
Sig.		.073	.051	.072

Means for groups in homogeneous subsets are
displayed.

ECG

Duncan		
		Subset for alpha = 0.05
Sample	N	1
O12-OT-1	2	.4162
O12-OT-3	2	.4179
O12-OT-2	2	.5472
O12-OT-9	2	.6907

O12-OT-6	2	.7643
O12-OT-5	2	.7938
O12-OT-8	2	.8836
O12-OT-7	2	1.0041
O12-OT-4	2	1.3858
Sig.		.086

Means for groups in homogeneous subsets are displayed.

DPPH

Duncan				
		Subse	et for alpha =	= 0.05
Sample	N	1	2	3
O12-OT-4	2	98.9300		
O12-OT-1	2	1.0106E2		
O12-OT-3	2	1.0284E2		
O12-OT-2	2	1.1374E2		
O12-OT-5	2		1.3112E2	
O12-OT-9	2		1.3541E2	1.3541E2
O12-OT-6	2		1.4014E2	1.4014E2
O12-OT-8	2			1.4705E2
O12-OT-7	2			1.4762E2
Sig.		.057	.207	.106

Means for groups in homogeneous subsets are displayed.

IFD UNIVERSIT

D		
σ.		
0		
3.		
8		
Ŧ		

Duncan						
			Sub	set for alpha =	0.05	
Sample	N	1	2	3	4	5
O12-OT-4	2	1.3150				
O12-OT-3	2	1.4000	1.4000			
O12-OT-1	2	1.4800	1.4800			
O12-OT-5	2		1.5750	1.5750		
O12-OT-2	2		1.5900	1.5900		
O12-OT-6	2			1.7800	1.7800	
O12-OT-9	2				1.9300	1.9300
O12-OT-7	2				1.9500	1.9500
O12-OT-8	2					2.0600
Sig.		.106	.074	.053	.097	.191

Means for groups in homogeneous subsets are displayed.

caffeine

Duncan

		Subset for $alpha = 0.05$		
sample	Ν	1	2	
O12-OT-3	2	1.8350		
O12-OT-1	2	2.0100	2.0100	
O12-OT-6	2	2.3250	2.3250	
O12-OT-8	2	2.4800	2.4800	
O12-OT-9	2	2.6250	2.6250	
O12-OT-5	2	2.8550	2.8550	
O12-OT-2	2	2.9700	2.9700	
O12-OT-4	2		3.2650	
Sig.		.085	.062	

Means for groups in homogeneous subsets are

displayed.

FRAP

		AN	NOVA			
	-	Sum of Squares	df	Mean Square	F	Sig.
Moist	Between Groups	114.736	16	7.171	1.642E3	.000
	Within Groups	.074	17	.004		
	Total	114.811	33			
tpc	Between Groups	44.253	16	2.766	12.952	.000
	Within Groups	3.630	17	.214		
	Total	47.884	33			
Caffeine	Between Groups	7.126	16	.445	16.365	.000
	Within Groups	.463	17	.027		
	Total	7.588	33			
TCC	Between Groups	61.958	16	3.872	7.649	.000
	Within Groups	8.607	17	.506		
	Total	70.565	33			
GC	Between Groups	.462	16	.029	4.467	.002
	Within Groups	.110	17	.006		
	Total	.572	33			
EGC	Between Groups	17.239	16	1.077	12.419	.000
	Within Groups	1.475	17	.087		
	Total	18.714	33			
С	Between Groups	.649	16	.041	6.195	.000
	Within Groups	.111	17	.007		
	Total	.760	33			
EC	Between Groups	.555	16	.035	9.201	.000
	Within Groups	.064	17	.004		
	Total	.619	33			
ECGC	Between Groups	15.877	16	.992	7.849	.000
	Within Groups	2.149	17	.126		
	Total	18.027	33			
GCG	Between Groups	.706	16	.044	2.741	.023
	Within Groups	.274	17	.016		
	Total	.980	33			

Appendix 26. ANOVA and posthoc test of sample O12-GT

	-	Sum of Squares	df	Mean Square	F	Sig.
ECG	Between Groups	.725	16	.045	4.484	.002
	Within Groups	.172	17	.010		
	Total	.897	33			
DPPH	Between Groups	9554.926	16	597.183	14.048	.000
	Within Groups	722.678	17	42.510		
	Total	10277.604	33			
FRAP	Between Groups	.334	16	.021	3.216	.011
	Within Groups	.110	17	.006		
	Total	.444	33			

Moist

Duncan									
			_		Subset for	alpha = 0.0)5	_	
Sample	N	1	2	3	4	5	6	7	8
O17-OT-16	2	.8250							
O17-OT-11	2		1.4700						
O17-OT-5	2		1.4850				1		
O17-OT-12	2		1.4950						
O17-OT-7	2		1.5750						
O17-OT-15	2			1.8350					
O17-OT-4	2				2.1900				
O17-OT-1	2				2.2350	2.2350			
O17-OT-9	2				2.2900	2.2900			
O17-OT-6	2				2.3050	2.3050			
O17-OT-14	2				2.3100	2.3100			
O17-OT-10	2					2.3650			
O17-OT-3	2						5.4600		
O17-OT-8	2						5.5450		
O17-OT-13	2						5.5800		
O17-OT-2	2							6.0500	
O17-OT-17	2								6.2800
Sig.		1.000	.162	1.000	.119	.093	.102	1.000	1.000
		Means for groups in homogeneous subsets are displayed.							

Duncan								
				Subse	et for alpha =	0.05		
Sample	Ν	1	2	3	4	5	6	7
O17-OT-4	2	13.3200						
O17-OT-14	2	13.4150						
O17-OT-16	2	13.5150						
O17-OT-2	2	14.1400	14.1400					
O17-OT-12	2	14.2150	14.2150					
O17-OT-6	2	14.2400	14.2400					
O17-OT-3	2	14.3300	14.3300	14.3300				
O17-OT-10	2	14.3900	14.3900	14.3900	14.3900			
O17-OT-7	2		14.8200	14.8200	14.8200			
O17-OT-9	2		14.9350	14.9350	14.9350	14.9350		
O17-OT-13	2		14.9600	14.9600	14.9600	14.9600		
O17-OT-1	2			15.3800	15.3800	15.3800	15.3800	
O17-OT-8	2				15.4600	15.4600	15.4600	
O17-OT-17	2					15.9600	15.9600	
O17-OT-5	2						16.1700	
O17-OT-11	2						16.2400	
O17-OT-15	2							17.7900
Sig.		.058	.137	.058	.054	.060	.110	1.000

tpc

Duncan	-	F				-		-
				Subs	et for alpha =	0.05		
Sample	Ν	1	2	3	4	5	6	7
O17-OT-4	2	1.6092						
O17-OT-3	2	1.6984	1.6984					
O17-OT-1	2	1.7739	1.7739					
O17-OT-9	2	1.8767	1.8767	1.8767				
O17-OT-12	2	1.9415	1.9415	1.9415	1.9415			
O17-OT-10	2	1.9881	1.9881	1.9881	1.9881			
O17-OT-8	2		2.0424	2.0424	2.0424			
O17-OT-7	2		2.0697	2.0697	2.0697			
O17-OT-2	2			2.2361	2.2361	2.2361		
O17-OT-14	2			2.2422	2.2422	2.2422		
O17-OT-11	2				2.2754	2.2754		
O17-OT-6	2				2.3204	2.3204		
O17-OT-13	2					2.4891	2.4891	
O17-OT-16	2					2.4987	2.4987	
O17-OT-17	2						2.7376	
O17-OT-15	2							3.1835
O17-OT-5	2							3.2542
Sig.		.055	.062	.066	.059	.173	.171	.674

Duncan	_	_			-	-		-
		Subset for alpha = 0.05						
Sample	Ν	1	2	3	4	5	6	7
O17-OT-8	2	6.8300						
O17-OT-9	2	7.4400	7.4400					
O17-OT-14	2		8.9150	8.9150				
O17-OT-13	2			9.2100	9.2100			
O17-OT-16	2			9.3100	9.3100	9.3100		
O17-OT-12	2			9.4000	9.4000	9.4000		
O17-OT-4	2			9.4150	9.4150	9.4150		
O17-OT-10	2			9.9200	9.9200	9.9200	9.9200	
O17-OT-3	2			10.1300	10.1300	10.1300	10.1300	
O17-OT-5	2			10.4450	10.4450	10.4450	10.4450	
O17-OT-17	2			10.5000	10.5000	10.5000	10.5000	
O17-OT-7	2				10.7000	10.7000	10.7000	10.7000
O17-OT-2	2				10.8450	10.8450	10.8450	10.8450
O17-OT-11	2					10.9800	10.9800	10.9800
O17-OT-6	2						11.1400	11.1400
O17-OT-1	2						11.4400	11.4400
O17-OT-15	2							12.3350
Sig.		.403	.054	.068	.062	.057	.079	.055

тсс

Means for groups in homogeneous subsets are displayed.

seame are summer a

PE Universit

Duncan

		Subset for $alpha = 0.05$								
Sample	Ν	1	2	3	4	5	6			
O17-OT-5	2	1.2064								
O17-OT-16	2	1.2253								
O17-OT-2	2	1.2727	1.2727							
O17-OT-13	2	1.3109	1.3109	1.3109						
O17-OT-15	2	1.3311	1.3311	1.3311						
O17-OT-4	2	1.3402	1.3402	1.3402	1.3402					
O17-OT-10	2	1.3417	1.3417	1.3417	1.3417					
O17-OT-12	2		1.4290	1.4290	1.4290	1.4290				
O17-OT-11	2		1.4404	1.4404	1.4404	1.4404	1.4404			
O17-OT-3	2		1.4405	1.4405	1.4405	1.4405	1.4405			
O17-OT-14	2		1.4464	1.4464	1.4464	1.4464	1.4464			
O17-OT-7	2		1.4543	1.4543	1.4543	1.4543	1.4543			
O17-OT-6	2		1.4663	1.4663	1.4663	1.4663	1.4663			
O17-OT-1	2			1.4707	1.4707	1.4707	1.4707			
O17-OT-9	2				1.5275	1.5275	1.5275			
O17-OT-8	2					1.6072	1.6072			
O17-OT-17	2						1.6246			
Sig		155	052	102	059	069	061			

Means for groups in homogeneous subsets are displayed.

GC
Duncan							
				Subset for a	alpha = 0.05		
Sample	Ν	1	2	3	4	5	6
O17-OT-8	2	1.3514					
O17-OT-9	2	1.5544					
O17-OT-5	2		2.2007				
O17-OT-16	2		2.2570				u
O17-OT-14	2		2.3765				
O17-OT-13	2		2.5303	2.5303			
O17-OT-12	2		2.7234	2.7234	2.7234		
O17-OT-17	2			3.0947	3.0947	3.0947	
O17-OT-10	2			3.1014	3.1014	3.1014	
O17-OT-6	2			3.2033	3.2033	3.2033	
O17-OT-11	2			3.2145	3.2145	3.2145	
O17-OT-4	2				3.3001	3.3001	
O17-OT-7	2				3.3913	3.3913	3.3913
O17-OT-2	2					3.4461	3.4461
O17-OT-15	2					3.4560	3.4560
O17-OT-3	2					3.5752	3.5752
O17-OT-1	2						4.0596
Sig.		.500	.127	.053	.061	.171	.055

EGC

Means for groups in homogeneous subsets are displayed.

Duncan

			Subset for alpha = 0.05					
Sample	Ν	1	2	3	4	5	6	7
O17-OT-2	2	.5859						
O17-OT-7	2	.6452	.6452					
O17-OT-12	2	.6702	.6702					
O17-OT-6	2	.6741	.6741	.6741				
O17-OT-1	2	.6994	.6994	.6994				
O17-OT-4	2	.7328	.7328	.7328	.7328			
O17-OT-3	2	.7439	.7439	.7439	.7439			
O17-OT-13	2	.7796	.7796	.7796	.7796	.7796		
O17-OT-10	2		.7958	.7958	.7958	.7958	.7958	
O17-OT-14	2		.8042	.8042	.8042	.8042	.8042	
O17-OT-11	2			.8658	.8658	.8658	.8658	
O17-OT-16	2				.9056	.9056	.9056	
O17-OT-9	2				.9139	.9139	.9139	
O17-OT-8	2					.9465	.9465	.9465
O17-OT-15	2					.9567	.9567	.9567
O17-OT-17	2						.9891	.9891
O17-OT-5	2							1.1100
Sig.		.050	.104	.053	.066	.071	.051	.079

Means for groups in homogeneous subsets are displayed.

С

Duncan										
				Sul	oset for alph	a = 0.05				
Sample	N	1	2	3	4	5	6	7	8	
O17-OT-12	2	.7512								
O17-OT-2	2	.8400	.8400							
O17-OT-7	2	.8494	.8494	.8494						
O17-OT-16	2	.8542	.8542	.8542						
O17-OT-13	2	.8919	.8919	.8919	.8919					
O17-OT-6	2		.9190	.9190	.9190					
O17-OT-9	2		.9242	.9242	.9242					
O17-OT-14	2		.9376	.9376	.9376					
O17-OT-10	2		.9510	.9510	.9510					
O17-OT-1	2			.9900	.9900					
O17-OT-4	2				1.0074	1.0074				
O17-OT-3	2				1.0185	1.0185	1.0185			
O17-OT-11	2				1.0320	1.0320	1.0320	1.0320		
O17-OT-17	2					1.1436	1.1436	1.1436	1.1436	
O17-OT-8	2						1.1573	1.1573	1.1573	
O17-OT-5	2							1.1642	1.1642	
O17-OT-15	2								1.2214	
Sig.		.053	.130	.060	.062	.056	.052	.063	.260	

Means for groups in homogeneous subsets are displayed.

EC

Duncan							
				Subset for a	alpha = 0.05		
Sample	Ν	1	2	3	4	5	6
O17-OT-8	2	.8689					
O17-OT-9	2	1.3355					
O17-OT-14	2		2.1223				
O17-OT-4	2		2.1450				
O17-OT-13	2		2.3499	2.3499			
O17-OT-3	2		2.3834	2.3834			
O17-OT-17	2		2.4249	2.4249	2.4249		
O17-OT-10	2		2.5100	2.5100	2.5100	2.5100	
O17-OT-12	2		2.5969	2.5969	2.5969	2.5969	
O17-OT-16	2		2.6145	2.6145	2.6145	2.6145	
O17-OT-5	2		2.9547	2.9547	2.9547	2.9547	2.9547
O17-OT-7	2			3.0349	3.0349	3.0349	3.0349
O17-OT-11	2			3.0493	3.0493	3.0493	3.0493
O17-OT-1	2			3.0878	3.0878	3.0878	3.0878
O17-OT-6	2				3.2769	3.2769	3.2769
O17-OT-2	2					3.3256	3.3256
O17-OT-15	2						3.6171
Sig.		.207	.056	.088	.051	.061	.118

ECGC

Means for groups in homogeneous subsets are displayed.

a se opin nuns rea conversa

P & Universit

Duncan

		Subset for alpha = 0.05					
Sample	Ν	1	2	3	4	5	6
O17-OT-4	2	.4648					
O17-OT-3	2	.5328	.5328				
O17-OT-1	2	.5631	.5631	.5631			
O17-OT-8	2	.6243	.6243	.6243	.6243		
O17-OT-17	2	.6661	.6661	.6661	.6661	.6661	
O17-OT-9	2	.7109	.7109	.7109	.7109	.7109	.7109
O17-OT-10	2	.7445	.7445	.7445	.7445	.7445	.7445
O17-OT-7	2	.7621	.7621	.7621	.7621	.7621	.7621
O17-OT-11	2	.7628	.7628	.7628	.7628	.7628	.7628
O17-OT-12	2	.7659	.7659	.7659	.7659	.7659	.7659
O17-OT-14	2		.7784	.7784	.7784	.7784	.7784
O17-OT-2	2		.8201	.8201	.8201	.8201	.8201
O17-OT-13	2			.8595	.8595	.8595	.8595
O17-OT-5	2				.8791	.8791	.8791
O17-OT-16	2				.9324	.9324	.9324
O17-OT-15	2					.9458	.9458
O17-OT-6	2						.9924
Sig.		.054	.066	.059	.051	.073	.072

Means for groups in homogeneous subsets are displayed.

GCG

Duncan					
			Subset for a	alpha = 0.05	-
Sample	Ν	1	2	3	4
O17-OT-8	2	.2673			
O17-OT-4	2	.4252	.4252		
O17-OT-3	2	.4365	.4365		
O17-OT-12	2	.4605	.4605		
O17-OT-14	2	.4664	.4664		
O17-OT-10	2	.4787	.4787		
O17-OT-9	2	.4805	.4805		
O17-OT-13	2	.4812	.4812		
O17-OT-16	2		.5190		
O17-OT-17	2		.5557		
O17-OT-2	2		.5562		
O17-OT-7	2		.5600		
O17-OT-1	2		.5667		
O17-OT-6	2		.6014	.6014	
O17-OT-11	2		.6147	.6147	
O17-OT-15	2			.8173	.8173
O17-OT-5	2				.9319
Sig.		.079	.120	.056	.270

ECG

Means for groups in homogeneous subsets are displayed.

Duncan		_	-	-	-	-	-		-
				S	ubset for a	lpha = 0.0	5		
Sample	N	1	2	3	4	5	6	7	8
O17-OT-4	2	1.0536E2							
O17-OT-5	2	1.1784E2	1.1784E2						
O17-OT-6	2		1.2162E2	1.2162E2		u	u		u l
O17-OT-3	2		1.2332E2	1.2332E2					
O17-OT-7	2		1.2338E2	1.2338E2					
O17-OT-2	2		1.2412E2	1.2412E2	u and a second se	u .	u .		1
O17-OT-14	2		1.3114E2	1.3114E2	1.3114E2	u .	u .		
O17-OT-1	2		1.3180E2	1.3180E2	1.3180E2	u .	u .		
O17-OT-16	2			1.3418E2	1.3418E2	1.3418E2	t		1
O17-OT-10	2				1.4114E2	1.4114E2			
O17-OT-12	2			u .	1.4262E2	1.4262E2	1.4262E2		
O17-OT-13	2			t	1.4481E2	1.4481E2	1.4481E2	1.4481E2	1
O17-OT-8	2			u .	u and a second	1.4772E2	1.4772E2	1.4772E2	
O17-OT-9	2			u .		u .	1.5676E2	1.5676E2	1.5676E2
O17-OT-17	2							1.5961E2	1.5961E2
O17-OT-11	2			u.	1	u.	u.		1.6302E2
O17-OT-15	2			4		4	4		1.6461E2
Sig.		.072	.075	.107	.078	.077	.061	.051	.284

Means for groups in homogeneous subsets are displayed.

and the second se

ISLEATED FILE

s, Despontatio, NGAR energy/koo kepenthugan yang watar IPR University. Diterang mengunnunkeri dan seemperbanyak sebagain jarat sebiruh tarya talis ito dalam bijartak apaptar tempa bis 308. Unit

O17-OT-
O17-OT-

FRAP

Duncan						
			Subse	et for alpha =	- 0.05	
Sample	Ν	1	2	3	4	5
O17-OT-14	2	1.5000				
O17-OT-4	2	1.5450	1.5450			
O17-OT-10	2	1.5450	1.5450			
O17-OT-7	2	1.5650	1.5650	1.5650		
O17-OT-16	2	1.5750	1.5750	1.5750		
O17-OT-12	2	1.6250	1.6250	1.6250	1.6250	
O17-OT-9	2	1.6300	1.6300	1.6300	1.6300	
O17-OT-3	2	1.6500	1.6500	1.6500	1.6500	
O17-OT-6	2	1.6550	1.6550	1.6550	1.6550	
O17-OT-2	2	1.6800	1.6800	1.6800	1.6800	
O17-OT-8	2	1.6900	1.6900	1.6900	1.6900	
O17-OT-13	2		1.7150	1.7150	1.7150	1.7150
O17-OT-11	2		1.7200	1.7200	1.7200	1.7200
O17-OT-1	2			1.7450	1.7450	1.7450
O17-OT-5	2			1.7500	1.7500	1.7500
O17-OT-17	2				1.7850	1.7850
O17-OT-15	2					1.9000
Sig.		.057	.077	.063	.102	.055

Means for groups in homogeneous subsets are displayed.

Appendix 27. Comparison of chemical content

Communication of shows inst	a a wet a wet la atoma a w	C 11:			
Comparison of chemical	content between	Cameina	<i>sinensis</i> var	. <i>assamica</i> andvar.	sinensis

		ТРС	Antiox	kidant	
Variety	MC (%w/	(%GAE	DPPH-assay (mmolTE/100g)	FRAP-assay (mmolAA/100g)*	CF (%w/w)*
Assamic	6.09 ± 1.;	18.95 ± 1.46	183.90 ± 46.68	2.01 ± 0.37	3.44 ± 0.51
Sinensis	5.39 ± 0.1	14.58 ± 1.81	146.97 ± 56.40	1.12 ± 0.16	2.50 ± 0.70

Results are mean \pm SD (var. *assamica* = 6; var. *sinensis* = 7). For each column, assay label which is followed by the star statistically different at P < 0.05 as measured by the T-test.

Comparison of single catechins content between Camellia sinensis var. assamica andvar. sinensis

Vorioty	TCC			С	athecins (%w/w)			
variety	(%w/w)	GC	EGC*	C*	EC*	EGCG*	GCG	ECG*	CG
Aggamigg	$12.43 \pm$	$0.84 \pm$	1.77 ±	$1.65 \pm$	$2.23 \pm$	$2.62 \pm$	$0.45 \pm$	$2.94 \pm$	nd
Assamica	2.42	0.28	0.60	0.38	0.60	0.94	0.27	0.79	n.a
Oslang	$10.86 \pm$	$0.94 \pm$	$2.75 \pm$	$0.84 \pm$	$0.92 \pm$	$3.99 \pm$	$0.65 \pm$	$0.78 \pm$	nd
Oolong	1.58	0.14	0.48	0.17	0.14	0.92	0.44	0.28	n.a

Results are mean \pm SD (var. *assamica* = 6; var. *sinensis* = 7). For each column, assay label which is followed by the star statistically different at P < 0.05 as measured by the T-test.

Comparison of chemical content between *Camellia sinensis* var. *sinensis* (cv. oolong no. 12)and *Camellia sinensis* var. *sinensis* (cv. oolong no. 17)

	$\frac{MC}{(9/m/m)^{\frac{3}{2}}} \qquad \frac{TPC}{(9/CAE)}$		Antiox		
Oolong no	(%w/w)*	(%GAE)	DPPH-assay (mmolTE/100g)*	FRAP-assay (mmolAA/100g)	CF (%w/w)
Oolong 12	4.57 ± 2.26	14.08 ± 2.70	124.21 ± 20.06	1.68 ± 0.26	2.55 ± 0.61
Oolong 17	3.02 ± 1.87	14.90 ± 1.21	137.24 ± 17.65	1.66 ± 0.12	2.25 ± 0.48

Results are mean \pm SD (oolong no. 12 = 9; oolong no. 17 = 17). For each column, assay label which is followed by the star is statistically different at P < 0.05 as measured by the T-test.

Comparison of catechin content between Camellia sinensis var. sinensis (cv. oolong no. 12) and

Camellia sinensis var. sinensis (cv. oolong no. 17)

Outron	тсс			(Cathecins (%w/w)			
Oolong no	(%w/w)	GC*	EGC	С	EC	EGCG*	GCG	ECG*	CG
Oslana 12	$10.58 \pm$	$0.98 \pm$	$2.78 \pm$	$0.81 \pm$	$0.96 \pm$	3.58 ±	$0.71 \pm$	$0.77 \pm$	
Oolong 12	2.17	0.16	0.57	0.29	0.23	0.98	0.34	0.45	n.a
Oslana 17	0.04 ± 1.46	$1.41 \pm$	$2.87 \pm$	$0.81 \pm$	$0.99 \pm$	$2.57 \pm$	$0.75 \pm$	$0.54 \pm$	
Oblong 17	9.94 ± 1.40	0.13	0.75	0.15	0.13	0.74	0.17	0.17	n.a

Results are mean \pm SD (oolong no. 12 = 9; oolong no. 17 = 17). For each column, assay label which is followed by the star is statistically different at P < 0.05 as measured by the T-test.

Cont'd appendix 27

_

_

Comparison of chemical content between green tea and oolong tea	
---	--

Теэ	ea MC TPC		Antioxi	CF	
type	(%w/w)*	(%GAE)*	DPPH-assay (mmolTE/100g)*	FRAP-assay (mmolAA/100g)	- Cr (%w/w)*
green	5.71 ±	$16.93 \pm$	164.01 + 54.45	153 ± 053	$2.93 \pm$
tea	1.22	2.75	104.01 ± 54.45	1.55 ± 0.55	0.77
oolong	$3.56 \pm$	$14.62 \pm$	122.72 ± 10.26	1.67 ± 0.19	$2.34 \pm$
tea	2.12	1.87	152.75 ± 19.50	1.07 ± 0.18	0.54

Results are mean \pm SD (green tea = 13; oolong tea = 26). For each column, assay label which is followed by the star is statistically different at P < 0.05 as measured by the T-test.

Commonicon	of	tachin	aantant	hotreson	~***	400	and	aalama	+00
Comparison	OI Ca	пестип	comen	Derween	green	rea	ана	COLOUS	теа
companyour	01 V.		•••••••		8			0010118	

Теа	ТСС			С	athecins (%	∕₀w/w)			
type	(%w/w) *	GC*	EGC*	C*	EC*	EGCG	GCG*	ECG*	CG
green	$11.58 \pm$	$0.89 \pm$	$2.29 \pm$	1.21 ±	$1.53 \pm$	$3.36 \pm$	$0.53 \pm$	1.77 ±	nd
tea	2.12	0.22	0.73	0.50	0.78	1.15	0.28	1.23	n.u
oolon	$10.16 \pm$	$1.26 \pm$	$2.84 \pm$	$0.81 \pm$	$0.97 \pm$	$2.92 \pm$	$0.74 \pm$	$0.62 \pm$	
g tea	1.74	0.25	0.69	0.21	0.17	0.96	0.24	0.31	n.a.

Results are mean \pm SD (green tea = 13; oolong tea = 26). For each column, values followed by the same letter are not statistically different at P < 0.05 as measured by the T-test.

Appendix 28. T-test results of Green tea var. sinensis(oolong) and var. assamica

Group Statistics									
	sample	N	Mean	Std. Deviation	Std. Error Mean				
Moist	Gr.oolong	14	5.3849	.78214	.20904				
MOISt	Gr.Assam	12	6.0907	1.54016	.44461				
tra	Gr.oolong	14	14.9057	1.80741	.48305				
ıpc	Gr.Assam	12	19.3008	1.44654	.41758				
daab	Gr.oolong	14	1.4697E2	56.39996	15.07352				
appn	Gr.Assam	12	1.8390E2	46.68058	13.47552				
fron	Gr.oolong	14	1.1157	.15883	.04245				
пар	Gr.Assam	12	2.0100	.36467	.10527				
CAEFEINE	Gr.oolong	14	2.4959	.69555	.18589				
CAFFEINE	Gr.Assam	12	3.4417	.50757	.14652				
TCC	Gr.oolong	14	10.8580	1.58057	.42242				
ICC	Gr.Assam	12	12.4265	2.41596	.69743				
GC	Gr.oolong	14	.9376	.14368	.03840				
	Gr.Assam	12	.8369	.28162	.08130				
FGC	Gr.oolong	14	2.7487	.47967	.12820				
EUC	Gr.Assam	12	1.7655	.60087	.17346				
C	Gr.oolong	14	.8345	.16971	.04536				
L	Gr.Assam	12	1.6531	.38253	.11043				
FC	Gr.oolong	14	.9224	.14291	.03819				
EU	Gr.Assam	12	2.2278	.60498	.17464				
FCCC	Gr.oolong	14	3.9899	.91576	.24475				
ELUL	Gr.Assam	12	2.6171	.93774	.27070				
GCG	Gr.oolong	14	.6472	.22746	.06079				
	Gr.Assam	10	.4451	.26754	.08461				
FCG	Gr.oolong	14	.7749	.28084	.07506				
ECO	Gr.Assam	12	2.9383	.78510	.22664				

P			
č			
FIVE			

	-	Levene's Equality of	Test for Variances					t-test for Equal	ity of Means	
		E	Sig	+	đf	Sig. (2-	Mean	Std. Error	95% Confidence Interval	of the Difference
		Г	Sig.	ι	ui	tailed)	Difference	Difference	Lower	Upper
Moist	Equal variances assumed	1.485	.235	-1.506	24	.145	70578	.46855	-1.67282	.26126
WOISt	Equal variances not assumed			-1.437	15.749	.170	70578	.49130	-1.74863	.33707
tao	Equal variances assumed	.444	.512	-6.764	24	.000	-4.39512	.64983	-5.73629	-3.05395
tpe	Equal variances not assumed			-6.883	23.910	.000	-4.39512	.63852	-5.71323	-3.07701
dnnh	Equal variances assumed	.328	.572	-1.799	24	.085	-36.92988	20.52376	-79.28885	5.42909
Equal variances n	Equal variances not assumed			-1.827	23.981	.080	-36.92988	20.21882	-78.66126	4.80149
fran	Equal variances assumed	10.836	.003	-8.322	24	.000	89429	.10746	-1.11607	67250
frap	Equal variances not assumed			-7.879	14.543	.000	89429	.11351	-1.13688	65169
CAFEEINE	Equal variances assumed	4.273	.050	-3.899	24	.001	94577	.24255	-1.44637	44517
CAFFEINE	Equal variances not assumed			-3.996	23.466	.001	94577	.23670	-1.43488	45666
TCC	Equal variances assumed	2.061	.164	-1.986	24	.059	-1.56850	.78959	-3.19813	.06112
ice	Equal variances not assumed			-1.924	18.450	.070	-1.56850	.81538	-3.27857	.14156
CC	Equal variances assumed	3.430	.076	1.174	24	.252	.10072	.08577	07630	.27773
UC	Equal variances not assumed			1.120	15.790	.279	.10072	.08991	09009	.29152
FCC	Equal variances assumed	.596	.448	4.640	24	.000	.98323	.21189	.54591	1.42055
EUC	Equal variances not assumed			4.559	20.998	.000	.98323	.21569	.53468	1.43179
C	Equal variances assumed	1.772	.196	-7.237	24	.000	81863	.11311	-1.05208	58518
С	Equal variances not assumed			-6.857	14.671	.000	81863	.11938	-1.07358	56368
FC	Equal variances assumed	7.701	.011	-7.848	24	.000	-1.30546	.16635	-1.64880	96212
LC	Equal variances not assumed			-7.302	12.054	.000	-1.30546	.17877	-1.69478	91615

Cont'd appendix 28. Independent Samples Test

	Cont'd appendix 28									
		Levene's Equality of	Test for Variances					t-test for Equa	lity of Means	
		Б	Sia	4	đf	Sig. (2-	Mean	Std. Error	95% Confidence Interval	of the Difference
		Г	51g.	t	ui	tailed)	Difference	Difference	Lower	Upper
ECCC	Equal variances assumed	.002	.968	3.769	24	.001	1.37278	.36425	.62101	2.12455
ECGC	Equal variances not assumed			3.762	23.211	.001	1.37278	.36494	.61823	2.12734
CCC	Equal variances assumed	.022	.883	1.996	22	.058	.20216	.10130	00792	.41224
GCG	Equal variances not assumed			1.940	17.469	.069	.20216	.10418	01719	.42151
ECC	Equal variances assumed	.022	.883	1.996	22	.058	.20216	.22435	-2.62643	-1.70035
ECG	Equal variances not assumed			1.940	17.469	.069	.20216	.23874	-2.67757	-1.64921

Group Statistics								
-	Sample	Ν	Mean	Std. Deviation	Std. Error Mean			
Moist	Oolong 17	34	3.0177	1.86523	.31989			
WOISt	Oolong 12	18	4.5719	2.25565	.53166			
tao	Oolong 17	34	14.8988	1.20458	.20658			
tpc	Oolong 12	18	14.0817	2.69490	.63519			
daab	Oolong 17	34	1.3724E2	17.64773	3.02656			
uppn	Oolong 12	18	1.2421E2	20.05888	4.72792			
fron	Oolong 17	34	1.6632	.11599	.01989			
пар	Oolong 12	18	1.6756	.26462	.06237			
TCC	Oolong 17	34	9.9385	1.46230	.25078			
	Oolong 12	18	10.5794	2.16518	.51034			
GC	Oolong 17	34	1.4079	.13165	.02258			
	Oolong 12	18	.9781	.16164	.03810			
FCC	Oolong 17	34	2.8727	.75306	.12915			
EUC	Oolong 12	18	2.7785	.56669	.13357			
C	Oolong 17	34	.8129	.15173	.02602			
U	Oolong 12	18	.8088	.29111	.06862			
FC	Oolong 17	34	.9796	.13697	.02349			
EC	Oolong 12	18	.9581	.23254	.05481			
ECCC	Oolong 17	34	2.5704	.73909	.12675			
ECUC	Oolong 12	18	3.5831	.98249	.23158			
CCC	Oolong 17	34	.7532	.17229	.02955			
000	Oolong 12	18	.7065	.33752	.07955			
ECG	Oolong 17	34	.5423	.16485	.02827			
ECO	Oolong 12	18	.7671	.44677	.10530			
CE	Oolong 17	34	2.2493	.47953	.08224			
СГ	Oolong 12	16	2.5456	.60822	.15206			

Appendix 29. T-test results of oolong tea no. 12 and no. 17 Group Statistics

00				
-		100		
\leq			7	
	1			
4				

		Levene's Test Varia	for Equality of inces	t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2-tailed)	Mean	Std. Error	95% Confidence Diffe	ce Interval of the erence
							Difference	Difference	Lower	Upper
Maint	Equal variances assumed	.509	.479	-2.657	50	.011	-1.55416	.58488	-2.72893	37939
Moist	Equal variances not assumed			-2.505	29.542	.018	-1.55416	.62048	-2.82216	28615
tao	Equal variances assumed	28.077	.000	1.514	50	.136	.81716	.53961	26668	1.90099
tpc	Equal variances not assumed			1.223	20.667	.235	.81716	.66794	57327	2.20758
daab	Equal variances assumed	1.231	.273	2.415	50	.019	13.02405	5.39341	2.19106	23.85704
uppn	Equal variances not assumed			2.320	31.097	.027	13.02405	5.61367	1.57634	24.47176
from	Equal variances assumed	24.892	.000	234	50	.816	01232	.05270	11817	.09353
frap	Equal variances not assumed			188	20.524	.853	01232	.06547	14866	.12402
TCC	Equal variances assumed	3.000	.089	-1.268	50	.211	64092	.50532	-1.65587	.37404
ICC	Equal variances not assumed			-1.127	25.437	.270	64092	.56863	-1.81100	.52917
CC	Equal variances assumed	.520	.474	10.344	50	.000	.42986	.04155	.34639	.51332
UC	Equal variances not assumed			9.706	29.184	.000	.42986	.04429	.33930	.52041
ECC	Equal variances assumed	3.062	.086	.465	50	.644	.09419	.20268	31290	.50129
EGC	Equal variances not assumed			.507	43.885	.615	.09419	.18580	28028	.46867
C	Equal variances assumed	.755	.389	.067	50	.947	.00409	.06115	11873	.12691
C	Equal variances not assumed			.056	22.007	.956	.00409	.07338	14809	.15628
EC	Equal variances assumed	.791	.378	.421	50	.676	.02151	.05113	08119	.12421
EU	Equal variances not assumed			.361	23.411	.722	.02151	.05963	10173	.14475
ECCC	Equal variances assumed	3.710	.060	-4.186	50	.000	-1.01270	.24191	-1.49859	52681
ECUC	Equal variances not assumed			-3.836	27.443	.001	-1.01270	.26400	-1.55397	47143

Cont'd appendix 29. Independent Samples Test

	Cont'd appendix 29									
			t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean	Std. Error	95% Confidence Diffe	ce Interval of the erence
			_			-	Difference	Difference	Lower	Upper
CCC	Equal variances assumed	14.187	.000	.664	50	.510	.04676	.07040	09464	.18815
GCG	Equal variances not assumed			.551	21.800	.587	.04676	.08486	12933	.22284
ECG	Equal variances assumed	7.098	.010	-2.633	50	.011	22477	.08538	39627	05327
ECG	Equal variances not assumed			-2.061	19.487	.053	22477	.10903	45260	.00305
CE	Equal variances assumed	.292	.592	-1.869	48	.068	29637	.15861	61526	.02253
Сг	Equal variances not assumed			-1.714	24.121	.099	29637	.17287	65306	.06033

PB Univers

111

Group Statistics									
sample	Ν	Mean	Std. Deviation	Std. Error Mean					
Green	26	5.7107	1.22089	.23944					
Oolong	52	3.5557	2.12240	.29432					
Green	26	16.9342	2.75901	.54109					
Oolong	52	14.6160	1.87452	.25995					
Green	26	1.6401E2	54.45534	10.67957					
Oolong	52	1.3273E2	19.35938	2.68466					
Green	26	1.5285	.52757	.10347					
Oolong	52	1.6675	.17911	.02484					
Green	26	11.5820	2.12206	.41617					
Oolong	52	10.1604	1.74387	.24183					
Green	26	.8911	.21967	.04308					
Oolong	52	1.2592	.25013	.03469					
Green	26	2.2949	.72689	.14256					
Oolong	52	2.8401	.68995	.09568					
Green	26	1.2123	.50257	.09856					
Oolong	52	.8114	.20772	.02881					
Green	26	1.5249	.78239	.15344					
Oolong	52	.9722	.17399	.02413					
Green	26	3.3563	1.14459	.22447					
Oolong	52	2.9210	.95493	.13243					
Green	26	1.7734	1.23365	.24194					
Oolong	52	.6201	.30948	.04292					
Green	26	2.9324	.77209	.15142					
Oolong	50	2.3441	.53629	.07584					
Green	24	.5630	.26004	.05308					
Oolong	52	.7370	.24017	.03331					
	sample Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong Green Oolong	sampleNGreen26Oolong52Green26Oolong50Green24Oolong52	sample N Mean Green 26 5.7107 Oolong 52 3.5557 Green 26 16.9342 Oolong 52 14.6160 Green 26 1.6401E2 Oolong 52 1.3273E2 Green 26 1.5285 Oolong 52 1.6675 Green 26 1.5285 Oolong 52 1.6675 Green 26 1.5285 Oolong 52 10.1604 Green 26 .8911 Oolong 52 1.2592 Green 26 .8911 Oolong 52 1.2123 Oolong 52 .8114 Green 26 1.5249 Oolong 52 .9722 Green 26 3.3563 Oolong 52 .9210 Green 26 1.7734 Oolong 52	sample N Mean Std. Deviation Green 26 5.7107 1.22089 Oolong 52 3.5557 2.12240 Green 26 16.9342 2.75901 Oolong 52 14.6160 1.87452 Green 26 1.6401E2 54.45534 Oolong 52 1.3273E2 19.35938 Green 26 1.5285 .52757 Oolong 52 1.6675 .17911 Green 26 1.5820 2.12206 Oolong 52 10.1604 1.74387 Green 26 .8911 .21967 Oolong 52 1.2592 .25013 Green 26 .8911 .21967 Oolong 52 2.8401 .68995 Green 26 2.2949 .72689 Oolong 52 .8114 .20772 Green 26 1.5249 .78239 Oolong					

Appendix 30. T-test results of green tea and oolong tea Group Statistics

T		
00		
C		
-		

	-	Levene's Test Varia	for Equality of ances				t-test for Eq	uality of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean	Std. Error	95% Confidence Differ	Interval of the ence
							Difference	Difference	Lower	Upper
Main	Equal variances assumed	34.080	.000	4.787	76	.000	2.15494	.45020	1.25829	3.05160
Moist	Equal variances not assumed			5.680	74.382	.000	2.15494	.37942	1.39901	2.91088
4.7. 2	Equal variances assumed	8.006	.006	4.377	76	.000	2.31827	.52962	1.26344	3.37310
tpc	Equal variances not assumed			3.862	36.908	.000	2.31827	.60029	1.10187	3.53467
daab	Equal variances assumed	49.476	.000	3.718	76	.000	31.28423	8.41344	14.52742	48.04104
appn	Equal variances not assumed			2.841	28.204	.008	31.28423	11.01184	8.73485	53.83361
from	Equal variances assumed	55.886	.000	-1.721	76	.089	13904	.08077	29991	.02183
пар	Equal variances not assumed			-1.307	27.919	.202	13904	.10641	35703	.07895
TCC	Equal variances assumed	2.549	.115	3.154	76	.002	1.42158	.45077	.52379	2.31937
icc	Equal variances not assumed			2.953	42.366	.005	1.42158	.48133	.45046	2.39270
GC	Equal variances assumed	2.358	.129	-6.371	76	.000	36806	.05777	48313	25299
UC	Equal variances not assumed			-6.655	56.319	.000	36806	.05531	47885	25728
FGC	Equal variances assumed	.052	.821	-3.232	76	.002	54521	.16869	88119	20923
EUC	Equal variances not assumed			-3.176	47.838	.003	54521	.17169	89044	19998
С	Equal variances assumed	50.655	.000	4.986	76	.000	.40089	.08040	.24077	.56102
C	Equal variances not assumed			3.904	29.348	.001	.40089	.10268	.19099	.61080
FC	Equal variances assumed	166.365	.000	4.888	76	.000	.55275	.11309	.32751	.77798
EC	Equal variances not assumed			3.559	26.244	.001	.55275	.15533	.23362	.87188
FCGC	Equal variances assumed	1.365	.246	1.775	76	.080	.43526	.24529	05327	.92380
ELUC	Equal variances not assumed			1.670	42.883	.102	.43526	.26062	09037	.96090

Cont'd appendix 30. Independent Samples Test

				Cor	nt'd append	lix 30				
		Levene's Test Varia	for Equality of ances				t-test for Eq	uality of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Differ	Interval of the ence
									Lower	Upper
FOO	Equal variances assumed	206.218	.000	6.389	76	.000	1.15332	.18053	.79377	1.51287
ECG	Equal variances not assumed			4.694	26.585	.000	1.15332	.24572	.64879	1.65786
CE	Equal variances assumed	8.158	.006	3.887	74	.000	.58830	.15135	.28672	.88987
CF	Equal variances not assumed			3.474	37.901	.001	.58830	.16935	.24544	.93116
	Equal variances assumed	.093	.761	-2.861	74	.005	17404	.06083	29526	05283
GCG2	Equal variances not assumed			-2.777	41.757	.008	17404	.06266	30052	04756

Appendix 31 Correlation analysis by Minitab All samples

	MC	TPC	CF	TCC	GC	EGC	С	EC
TPC	0.300							
	0.063							
CF	0.197	0.434						
	0.230	0.006						
TCC	0.219	0.685	0.405					
	0.180	0.000	0.010					
GC	-0.449	-0.220	-0.363	-0.329				
	0.004	0.178	0.023	0.041				
EGC	-0.272	-0.219	-0.420	0.172	0.374			
	0.094	0.181	0.008	0.295	0.019			
С	0.277	0.689	0.705	0.518	-0.405	-0.636		
	0.088	0.000	0.000	0.001	0.010	0.000		
EC	0.259	0.680	0.615	0.568	-0.380	-0.495	0.918	
	0.111	0.000	0.000	0.000	0.017	0.001	0.000	
EGCG	0.155	0.190	-0.005	0.637	-0.333	0.428	-0.145	-0.187
	0.345	0.247	0.976	0.000	0.038	0.007	0.378	0.253
GCG	-0.176	-0.111	-0.229	0.055	0.439	0.223	-0.385	-0.484
	0.283	0.500	0.161	0.739	0.005	0.172	0.016	0.002
ECG	0.371	0.668	0.621	0.589	-0.584	-0.555	0.912	0.947
	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
DPPH	0.106	0.649	0.381	0.451	-0.206	-0.206	0.467	0.541
	0.522	0.000	0.017	0.004	0.209	0.208	0.003	0.000
FRAP	0.103	0.648	0.209	0.358	0.060	-0.119	0.474	0.420
	0.533	0.000	0.201	0.025	0.718	0.472	0.002	0.008
	GCG	ECG	DPPH					
ECG	-0.492							
	0.001							
DPPH	-0.161	0.497						
	0.329	0.001	0 1 0 1					
F'RAP	0.000	0.395	0.181					
a - 1 7	0.998	0.013	0.270					
Cell	contents:	Pearson	correl	ation				
		₽-Value						

EGCG

0.418

0.418 0.008 -0.071 0.668 0.105 0.524 -0.083 0.617

Correlation A-GT

CF	TPC 0.060 0.911	CF	TCC	GC	EGC	С	EC	EGCG	GCG
TCC	0.558 0.250	-0.075 0.888							
GC	0.676 0.141	-0.349 0.498	0.821 0.045						
EGC	0.590 0.218	-0.481 0.334	0.819 0.046	0.927 0.008					
С	0.187 0.723	0.227 0.665	0.409 0.420	0.040 0.940	-0.075 0.887				
EC	-0.057 0.915	0.553 0.255	0.552 0.257	0.037 0.944	0.009 0.986	0.644 0.168			
EGCG	0.679 0.138	-0.552 0.257	0.658 0.155	0.895 0.016	0.958 0.003	-0.197 0.708	-0.251 0.631		
GCG	0.791 0.061	-0.167 0.751	0.431 0.393	0.794 0.059	0.721 0.106	-0.363 0.479	-0.351 0.495	0.831 0.041	
ECG	-0.449 0.372	0.592 0.216	0.052 0.923	-0.457 0.362	-0.495 0.318	0.624 0.186	0.846 0.034	-0.710 0.114	-0.762 0.078
DPPH	0.283	0.585	0.359	0.383 0.453	0.224 0.669	-0.200 0.704	0.365 0.477	0.136 0.797	0.485
FRAP	0.532 0.277	-0.503 0.309	0.038 0.943	0.177 0.737	0.264 0.613	0.172 0.745	-0.495 0.318	0.443 0.378	0.261 0.617
DPPH	ECG 0.071	DPPH							

FRAP -0.533 -0.647 0.276 0.165

Cell Contents: Pearson correlation P-Value

Terminitation the Unive

Correlation 012-GT

CF	TPC 0 817	CF	TCC	GC	EGC	C	EC	EGCG	GCG
CI	0.025								
TCC	0.981	0.726							
	0.000	0.065							
GC	-0.405	-0.444	-0.299						
	0.367	0.318	0.515						
EGC	-0.033	-0.428	0.034	0.144					
	0.944	0.338	0.942	0.759					
С	0.903	0.957	0.862	-0.375	-0.294				
	0.005	0.001	0.013	0.407	0.522				
EC	0.941	0.843	0.928	-0.488	-0.078	0.940			
	0.002	0.017	0.003	0.267	0.868	0.002			
EGCG	0.980	0.775	0.974	-0.448	-0.124	0.874	0.927		
	0.000	0.041	0.000	0.314	0.791	0.010	0.003		
GCG	0.466	0.434	0.525	0.323	-0.545	0.513	0.382	0.529	
	0.291	0.331	0.226	0.479	0.206	0.239	0.398	0.222	
ECG	0.940	0.850	0.894	-0.652	-0.217	0.895	0.944	0.958	0.377
	0.002	0.016	0.007	0.113	0.640	0.006	0.001	0.001	0.405
DPPH	0.504	0.432	0.462	-0.824	0.124	0.471	0.679	0.511	-0.289
	0.249	0.333	0.297	0.023	0.791	0.286	0.094	0.241	0.530
FRAP	0.985	0.805	0.948	-0.437	-0.057	0.857	0.899	0.964	0.444
	0.000	0.029	0.001	0.327	0.904	0.014	0.006	0.000	0.318
	FCC	שססת							
עממת	0 672	DEFII							
DFFII	0.072								
ת ג מים	0.098	0 500							
r RAP	0.934	0.500							
	0.002	0.203							

Cell Contents: Pearson correlation P-Value

PB Universi

Correlation 012-OT

FRAP

0.076

0.846

	TPC	CF	TCC	GC	EGC	C	EC	EGCG	GCG
CF	-0.427								
	0.252								
TCC	0.743	-0.221							
	0.022	0.568							
GC	0.119	0.461	0.275						
	0.761	0.212	0.474						
EGC	0.593	-0.133	0.254	-0.067					
	0.093	0.733	0.509	0.865					
С	-0.164	0.478	0.328	0.426	-0.599				
	0.673	0.193	0.389	0.253	0.088				
EC	0.057	0.477	0.512	0.143	-0.200	0.807			
	0.883	0.194	0.159	0.714	0.605	0.009			
EGCG	0.828	-0.509	0.945	0.132	0.270	0.113	0.260		
	0.006	0.161	0.000	0.736	0.482	0.771	0.499		
GCG	0.370	-0.282	0.633	0.406	-0.376	0.371	0.161	0.683	
	0.328	0.462	0.067	0.278	0.319	0.326	0.679	0.043	
ECG	0.116	0.074	0.718	0.097	-0.254	0.689	0.821	0.557	0.474
	0.767	0.850	0.029	0.804	0.510	0.040	0.007	0.119	0.198
DPPH	0.972	-0.367	0.755	0.151	0.535	-0.082	0.167	0.814	0.360
	0.000	0.332	0.019	0.697	0.138	0.834	0.668	0.008	0.341
FRAP	0.975	-0.371	0.738	0.290	0.555	-0.112	0.006	0.813	0.444
	0.000	0.325	0.023	0.449	0.121	0.774	0.989	0.008	0.231
	ECG	DPPH							
DPPH	0.197								
	0.612								

Cell Contents: Pearson correlation P-Value

0.926

0.000

Correlation 017-OT

	TPC	CF	TCC	GC	EGC	С	EC	EGCG	GCG
CF	0.620								
	0.008								
TCC	0.398	0.375							
	0.114	0.138							
GC	0.133	-0.351	-0.295						
	0.611	0.168	0.250						
EGC	0.071	-0.136	0.842	-0.121					
	0.788	0.602	0.000	0.643					
С	0.564	0.638	-0.191	0.013	-0.538				
	0.018	0.006	0.464	0.961	0.026				
EC	0.715	0.482	0.146	0.186	-0.056	0.733			
	0.001	0.050	0.575	0.475	0.832	0.001			
EGCG	0.269	0.409	0.952	-0.478	0.745	-0.269	-0.069		
	0.297	0.103	0.000	0.052	0.001	0.296	0.793		
GCG	0.202	0.701	0.289	-0.438	-0.162	0.149	-0.138	0.479	
	0.438	0.002	0.260	0.078	0.535	0.567	0.596	0.052	
ECG	0.593	0.775	0.689	-0.479	0.248	0.384	0.366	0.711	0.543
	0.012	0.000	0.002	0.052	0.337	0.128	0.149	0.001	0.024
DPPH	0.630	0.298	-0.054	0.392	-0.228	0.435	0.290	-0.127	0.187
	0.007	0.246	0.836	0.120	0.380	0.081	0.258	0.627	0.472
FRAP	0.884	0.609	0.461	0.071	0.180	0.420	0.636	0.348	0.205
	0.000	0.009	0.062	0.788	0.490	0.093	0.006	0.171	0.429
	ECG	DPPH							
DPPH	0.028								
	0.916	0 500							
FRAP	0.549	0.508							
	0.022	0.037							

Cell Contents: Pearson correlation P-Value

or September and transfer and Station of the sector relationship was

FB Universi

Appendix 32 Principal Component Analysis

Sample A-GT, N=6

code	z1	z2	z3	z4	z5	z6	z7	z8	z9	z10	z11	z12	z13
1	-1.91157	0.508828	1.802028	0.362977	-0.28272	-0.27478	0.176417	1.163474	-0.45426	0.095344	0.863971	1.295612684	-0.6579
2	-0.50099	-0.46741	-0.08965	0.246737	0.723872	0.303691	-0.53411	0.11212	0.133584	0.431853	-0.05232	1.16145522	-1.34089
3	-2.1906	0.520168	0.018175	0.602886	0.23958	-0.11011	1.897276	0.699353	-0.19219	-0.47562	0.745838	-0.680769665	0.756831
4	-0.16974	1.287862	-0.64372	-0.2504	0.680964	0.647469	-0.91656	-1.62634	1.168869	1.539246	-1.8653	-0.101972771	1.40601
5	-0.09635	-0.26018	-1.15143	0.918594	0.533205	1.17299	-0.15373	0.294163	0.928469	-0.10855	-0.13575	-0.61707085	0.238958
6	4.86926	-1.58926	0.064593	-1.88079	-1.8949	-1.73926	-0.4693	-0.64277	-1.58448	-1.48227	0.443569	-1.057254618	-0.40301
Eigen	analysis	of the Co	rrelation	Matrix									
Eigen	value 5.	.9713 3.7	693 1.94	48 1.126	0 0.1885	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000 -	
0.000	0												
Propo	ortion ().459 0.	290 0.1	.50 0.08	7 0.015	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000 -	0.000
Cumul	ative 0).459 0.	749 0.8	99 0.98	5 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Variable	PC1	PC2				
Moist	-0.292	-0.345		Code	w1	w2
TPC	0.333	0.070			0.02020	2 02 40 45
CF	-0.146	0.348		A-G1-1	-0.03829	2.934945
TCC	0.302	0.297		A-GT-2	0.573895	0.692406
GC	0.388	0.081		A CT 2	0 504616	1.071162
EGC	0.381	0.018		A-01-5	0.394010	1.9/1102
С	-0.022	0.319		A-GT-4	2.854367	-2.4857
EC	-0.051	0.490		A CT 5	1 251701	0.207
EGCG	0.394	-0.098		A-01-5	1.551791	-0.507
GCG	0.363	-0.073		A-GT-6	-5.33638	-2.80581
ECG	-0.253	0.384	-			
DPPH	0.120	0.292				
FRAP	0.160	-0.264				

Sample O12-GT, N=7

code	z1	z2	z3	z4	z5	z6	z7	z8	z9	z10	z11	z12	z13
1	0.962952	-0.13963	0.057451	0.09012	1.372359	0.309879	0.373433	0.211969	-0.29107	0.528611	-0.49193	-0.470782249	-0.44422
2	0.156477	0.272641	0.441702	0.050459	-0.17168	0.508005	0.210484	-0.11514	0.023506	-0.62121	0.033644	-0.524777037	0.267822
3	0.151494	1.480815	0.953823	1.600289	-0.19775	-0.85743	1.210744	1.183971	1.728514	1.870541	1.420121	0.006315016	1.445396
4	-0.72569	-0.46408	-1.1383	-0.36973	0.990387	1.102389	-1.11766	-0.83259	-0.57075	-0.23401	-0.86316	-0.599454279	-0.22037
5	1.489359	-1.63372	-0.80246	-1.71196	0.390382	-1.47271	-1.16445	-1.56084	-1.42949	0.041608	-1.24458	-1.140198993	-1.56212
6	-1.34186	-0.35458	-0.94632	-0.21872	-0.99977	1.054223	-0.65807	-0.07281	-0.18441	-1.30379	-0.05535	1.119404712	-0.4578
7	-0.69273	0.838569	1.434099	0.559534	-1.38393	-0.64436	1.145512	1.185449	0.723707	-0.28175	1.201263	1.60949283	0.971288
Eige	Eigenanalysis of the Correlation Matrix												

Eigenvalue	8.2674	2.7659	1.2721	0.3970	0.2204	0.0772	0.0000	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
Proportion	0.636	0.213	0.098	0.031	0.017	0.006	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000
Cumulative	0.636	0.849	0.947	0.977	0.994	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Variable	PC1	PC2			
MC	-0.122	0.530	Sample	w1	w2
TPC	0.339	0.025			
CF	0.302	0.159	O12-GT-1	-0.64758	1.338824
TCC	0.327	0.038	O12-GT-2	0.160754	-0.16868
GC	-0.191	0.329			
EGC	-0.054	-0.402	O12-GT-3	3.998273	1.747896
С	0.324	0.146	012-GT-4	-2.15433	-0.75311
EC	0.339	-0.018			
EGCG	0.338	0.042	O12-GT-5	-4.11953	1.54769
GCG	0.146	0.497	O12-GT-6	-0.59076	-2.81824
ECG	0.344	-0.024			
DPPH	0.221	-0.389	012-GT-7	3.353171	-0.89438
FRAP	0.334	0.009			

Sample O12-OT, N=9

code	z1	z2	z3	z4	z5	z6	z7	z8	z9	z10	z11	z12	z13
1	0.493474972	-0.87557	-0.20807	-1.01723	-0.38898	0.605905	-1.74164	-1.64944	-0.69018	-0.61563	-1.06369	-1.150767115	-0.78756
2	-0.728794542	-0.55178	0.16774	-0.77535	1.050906	-1.10956	0.794417	-0.11625	-0.70302	0.437284	-0.64217	-0.520377535	-0.07321
3	-1.367684788	-1.0005	-0.27757	-1.65173	-1.24701	-0.53989	-0.30919	-0.89685	-1.19341	-1.48782	-1.05813	-1.062264383	-1.1657
4	0.090775369	-1.46825	0.283072	0.418259	0.23122	-1.48417	1.899449	1.484893	-0.03377	0.568709	2.056555	-1.256831143	-1.72606
5	-1.458095466	0.201906	0.120469	-0.19217	-0.98978	1.330139	-0.63478	1.374076	-1.02541	-1.30208	-0.43747	0.34305851	-0.13963
6	0.305276328	0.534271	-0.08565	0.26801	1.260381	-0.05129	-0.09052	-0.29869	0.354104	0.470884	0.056602	0.791778493	0.989751
7	0.349127006	1.173674	-0.99896	1.247785	-1.20694	-0.22622	-0.32775	-0.28378	1.782088	1.456805	0.82833	1.163548171	0.844794
8	0.755674525	1.211984	-0.02518	1.267175	1.018294	1.443417	0.326389	0.442283	0.991361	-0.37316	0.440329	1.13513226	1.350167
9	1.560246596	0.774278	0.033504	0.435257	0.27191	0.031663	0.083625	-0.05625	0.518234	0.845015	-0.18036	0.556722742	0.707453

Eigenanalysis of the Correlation Matrix

Eigenvalue	5.7745	3.4282	1.4728	1.4215	0.5753	0.1911	0.1106	0.0260	0.0000	0.0000	0.0000	0.0000	-0.0000
Proportion	0.444	0.264	0.113	0.109	0.044	0.015	0.009	0.002	0.000	0.000	0.000	0.000	-0.000
Cumulative	0.444	0.708	0.821	0.931	0.975	0.989	0.998	1.000	1.000	1.000	1.000	1.000	1.000

Variable	PC1	PC2	Sample	w1	w2
MC	0.285	-0.003	1		
TPC	0.371	-0.192	O12OT-1	-2.191690977	-1.94102
CF	-0.147	0.302	0120T-2	-1 185303723	0 997909
TCC	0.394	0.130	01201 2	1.105505725	0.777707
GC	0.126	0.205	O12OT-3	-3.66751768	-0.96079
EGC	0.147	-0.357	0120T-4	-0.759554043	4.084407
С	0.056	0.510	01201	01109001010	
EC	0.113	0.429	O12OT-5	-1.171062354	-1.15137
EGCG	0.403	0.002	O12OT-6	1.486714113	-0.17606
GCG	0.275	0.190			
ECG	0.197	0.394	O12OT-7	2.98266207	-0.53812
DPPH	0.366	-0.141	O12OT-8	2.821589779	-0.47704
FRAP	0.376	-0.170			
			O12OT-9	1.827804692	-0.12521

IPB University

Sample O17-OT, N=17

Code	z1	z2	z3	z4	z5	z6	z7	z8	z9	z10	z11	z12	z13
1	-0.41474	0.9579	-1.00733	1.069298	0.41292	1.390625	-0.33953	0.221558	0.753989	-0.64711	0.285949	-0.31485889	0.000666
2	1.601894	-0.11669	-0.02785	0.650307	-0.14366	0.775077	-0.8304	-0.33995	1.013073	0.479703	0.232612	-0.759325955	-0.54951
3	1.290308	0.048202	-1.16725	0.132403	0.328088	0.90464	-0.14736	0.328531	-0.01356	-0.78007	-0.37602	-0.805235235	-0.78141
4	-0.43696	-0.81318	-1.35641	-0.3848	0.046186	0.628638	-0.19512	0.286659	-0.27327	-1.07823	-0.43311	-1.84519688	-1.48641
5	-0.80914	1.636787	2.129703	0.364621	-0.32998	-0.47439	1.436379	0.874125	0.609013	0.73834	2.142094	-1.122477136	0.06018
6	-0.37668	-0.01649	0.150736	0.875305	0.400448	0.531463	-0.44883	-0.04408	0.960085	1.234969	0.462132	-0.903463217	-0.63859
7	-0.76036	0.478238	-0.38045	0.540668	-3.65486	-2.67647	-3.14266	-3.41089	-2.53853	-2.94516	-2.50029	-0.801698431	-1.32476
8	1.334464	0.070526	-0.4383	-2.23963	0.796568	-1.32652	0.729012	0.848115	-1.66376	-0.37861	-1.23581	0.606279033	0.61992
9	-0.38489	-0.33935	-0.78956	-1.78264	0.572641	-1.12287	0.587865	-0.02458	-1.15535	0.000883	-0.15242	1.129863859	0.174294
10	-0.34345	-0.79226	-0.55335	-0.01053	0.05031	0.429222	0.07723	0.075773	0.124372	0.148086	-0.16137	0.226110995	-0.53718
11	-0.81698	0.753264	0.055297	0.759762	0.327782	0.542763	0.379862	0.378915	0.712046	0.228487	0.529713	1.492381504	0.930288
12	-0.8064	-0.93277	-0.65214	-0.39148	0.295742	0.050045	-0.46601	-0.67242	0.219151	0.242063	-0.25401	0.311305394	0.135201
13	1.353891	-0.34198	0.50829	-0.52923	-0.03608	-0.14377	0.007228	-0.14583	-0.04998	0.652683	-0.14853	0.438183206	0.799922
14	-0.37192	-1.60044	-0.01486	-0.71799	0.344703	-0.29807	0.113515	0.025578	-0.29807	0.296701	-0.22413	-0.35294637	-0.89753
15	-0.62365	2.032697	1.979849	1.727081	0.020502	0.785055	0.773008	1.088322	1.330778	1.030915	1.559749	1.584013155	2.384041
16	-1.15765	-1.50643	0.528676	-0.4628	-0.27675	-0.41796	0.55237	-0.28674	0.238291	0.971932	0.04324	-0.177407321	-0.2748
17	1.722283	0.481993	1.034961	0.399662	0.845455	0.422531	0.913434	0.796913	0.031725	-0.19559	0.230193	1.294472287	1.38567

Eigenanalysis of the Correlation Matrix

Eigenvalue4.90723.38072.00221.02050.86690.34620.22000.1254Proportion0.3770.2600.1540.0780.0670.0270.0170.010Cumulative0.3770.6380.7920.8700.9370.9630.9800.990

Eigenvalue	0.0671	0.0372	0.0177	0.0089	0.0000
Proportion	0.005	0.003	0.001	0.001	0.000
Cumulative	0.995	0.998	0.999	1.000	1.000

IPB University

Variable	PC1	PC2
MC	-0.075	-0.193
TPC	0.370	-0.225
CF	0.389	-0.089
TCC	0.313	0.328
GC	-0.134	-0.296
EGC	0.111	0.373
С	0.220	-0.387
EC	0.252	-0.314
EGCG	0.296	0.396
GCG	0.246	0.110
ECG	0.404	0.129
DPPH	0.158	-0.327
FRAP	0.360	-0.169

Sample	w1	w2
O17-OT-1	0.583836	-0.97051
O17-OT-2	0.166462	-0.48455
O17-OT-3	-0.58691	0.689922
O17-OT-4	-1.70331	0.762783
O17-OT-5	2.449394	-1.76749
O17-OT-6	0.782467	-0.80138
O17-OT-7	-7.41045	-3.02984
O17-OT-8	-0.75721	2.94151
O17-OT-9	-0.62208	2.002152
O17-OT-10	-0.18035	0.510604
O17-OT-11	1.778888	-0.74673
O17-OT-12	-0.53465	0.47115
O17-OT-13	0.415909	0.697352
O17-OT-14	-0.71788	1.265563
O17-OT-15	4.266085	-2.45011
O17-OT-16	-0.022	0.417045
O17-OT-017	2.091803	0.492541

ANNUM A

AN ANDIA

