View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Animal Science
      • UT - Nutrition and Feed Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Animal Science
      • UT - Nutrition and Feed Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengujian Pemalsuan Dedak Padi Dengan Sekam Padi Menggunakan Metode Image Analysis

      Thumbnail
      View/Open
      Cover (483.6Kb)
      Fullteks (1.177Mb)
      Lampiran (484.2Kb)
      Date
      2022-07-24
      Author
      Albarki, Hajrian Rizqi
      Jayanegara, Anuraga
      Permana, Asep Tata
      Metadata
      Show full item record
      Abstract
      Dedak padi sering dipalsukan dengan sekam padi giling yang dapat mengakibatkan kerugian dan penurunan produksi dari ternak. Pengujian pemalsuan dedak padi masih dijalankan secara manual yang bersifat subjektif dan kurang praktis sehingga diperlukan pengujian dengan metode image analysis berbasis Convolutional Neural Network (CNN) melalui proses analisis citra secara visual. Tujuan dari penelitian ini adalah mengukur akurasi data training, validasi, dan uji pada pemalsuan dedak padi dengan sekam menggunakan Image Analysis berbasis CNN. Penelitian ini dibagi menjadi dua perlakuan yaitu perlakuan pewarnaan menggunakan phloroglucinol dan tanpa pewarnaan. Tahapan penelitian ini terdiri atas proses pencampuran pemalsuan, pemalsuan perlakuan, pembagian data, dan pembangunan model CNN. Penelitian ini mendapatkan hasil bahwa hasil akurasi data training, data validasi, dan data uji pada perlakuan pewarnaan phloroglucinol lebih tinggi dibandingkan tanpa perlakuan pewarnaan. Namun hasil akurasi pada perlakuan pewarnaan tersebut masih jauh dari akurasi 100%, sehingga pengujian dengan metode image analisis berbasis CNN ini belum dapat digunakan
       
      Rice bran is often adulterated with milled rice husks which can lead to losses and decreased production of livestock. Testing of rice bran forgery is still carried out manually which is subjective and less practical, so testing with image analysis methods based on Convolutional neural network (CNN) through a visual image analysis process is needed. The purpose of this study was to measure the accuracy of training, validation, and test data on rice bran fabrication with husks using Image Analysis based on CNN. This study was divided into two treatments, namely staining treatment using phloroglucinol and without staining. The stages of this research consist of the mixing process of falsification, falsification, treatment of data sharing, and CNN development model. This study found that the results of training accuracy, data validation, and data testing on phloroglucinol treatment were higher than those without treatment. However, the results of the accuracy of the treatment are still far from 100% accuracy, so testing with the CNN-based image analysis method cannot be used.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/112777
      Collections
      • UT - Nutrition and Feed Technology [1839]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository