MODELING OF FLOOD FOR LAND USE MANAGEMENT
(Case Study of Ciliwung Watershed)

I PUTU SANTIKAYASA

GRADUATE SCHOOL
BOGOR AGRICULTURAL UNIVERSITY
2006
MODELING OF FLOOD FOR LAND USE MANAGEMENT

(Case Study of Ciliwung Watershed)

I PUTU SANTIKAYASA

A Thesis submitted for the degree of Master of Science
of Bogor Agricultural University

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY
FOR NATURAL RESOURCES MANAGEMENT
GRADUATE SCHOOL
BOGOR AGRICULTURAL UNIVERSITY
August 2006
STATEMENT

I, I Putu Santikayasa, here by stated that this thesis entitled

Modeling of Flood for Land Use Management

(Case Study of Ciliwung Watershed)

are result of my own work during the period February 2005 until April 2006 and
that it has not been published before. The content of the thesis has been examined
by the advising committee and the external examiner.

Bogor, August 2006

I Putu Santikayasa
ACKNOWLEDGMENT

All the praises and thanks be to Hyang Widhi, The Lord of Heaven. The title of the research, which was held in January to September 2005 is “Modeling of Flood for Land Use Management (Case Study of Ciliwung Watershed)”. I would like to thank to Dr. Ir Handoko, M.Sc as my supervisor, for the guidance and encouragement during research and also for providing scholarship for my study, Dr. Ir. Hartrisari, H. as my co-supervisor for the guidance and encouragement during research and Dr. Yuli Suharnoto as the examiner of this thesis for the positive ideas and inputs.

I would like to thank to all MIT secretariat that support our administration, technical and facility. I would also thank to all MIT lecturer who taught me with very important knowledge during my study. Thank you to Idung Risdiyanto, M.Sc, for programming guidance and also thank you to Supri for data support.

High appreciation goes to Bogor Agriculture University, SEAMEO BIOTROP, Bioresources Management Center (BrMC) for the facilities especially computer of this study.

I would like also thank to all my colleagues in Department of Geophysics and Meteorology, IPB. To all my friends in Asrama Bali, thank for your support.

Hopefully, this hardwork can be usefull.
CURRICULUM VITAE

I Putu Santikayasa was born in Pohsanten, Jembrana - Bali at February 24, 1979. He received his undergraduate from Bogor Agricultural University in 2002 in the field of Agrometeorology. Since 2005 until now, he works as lecturer in Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University.

In the year 2003, he a scholarship from SEAMEO BIOTROP to continue his study for master degree in MIT IPB. He receive his Master of Science in Information Technology for Natural Resources Management from Bogor Agriculture University in 2006 respectively. His thesis was on title “Modeling of Flood for Land Use Management (Case Study of Ciliwung Watershed)”.
ABSTRACT

Floods are one of the major disasters affecting many countries in the world year after year. It is an inevitable natural phenomenon occurring from time to time in all rivers and natural drainage systems. It causes damage to lives, natural resources and environment as well as the loss of economy and health. Floods represent complex problems because of its variety. Therefore, this variety cannot be studied or controlled only by one or two specific methods.

The objectives of this research are to understand the process of flood events and its interaction with hydrometeorological components, to develop flood model for watershed management and to determine the effect of land use change to watershed discharge which indicates flood event.

The research consists of four processes those are 1) Data Preparation, 2) Model Development, 3) Model Simulation and 4) Model Calibration and Validation. Data preparation was conducted for two kinds of data namely spatial data and tabular data. Model developed as numerical model of the hydrology of a river basin system. This model includes the response of watershed to precipitation, the actions of the river network as water flows through the river, the effect of land use changes, and the effect of engineering structures to the watershed. Model simulated by change land use as an input. Model calibrated by using water level data of field measurement in year 1996 and model validated by using water level data of field measurement in year 2000.

The result of this research showed how the process based modeling is useful to model hydrological processes over the watershed. Precipitation is the main input for hydrology simulation and land use change gives the effect of water level in the watershed. The model which is built in this research can be used to evaluate runoff from different land use areas. For assessing the hydrological effects of land use changes on floods, three hypothetical scenarios, namely urbanization, deforestation and afforestation scenario, were considered made. It was found from the model simulation that the urbanization scenario has the highest negative impact on increasing water level. Deforestation has the second largest negative impact, while afforestation causes positive impact shown by decreasing water level. The result indicated that the urbanization produce the highest peak flow, followed by the deforestation and afforestation scenario. The simulated water level for the present land use is 84 cm, for the urbanization scenario 135 cm, deforestation scenario 92 cm, and afforestation scenario 59 cm. Accordingly, the urbanization scenario increases the peak discharge by 61%, the deforestation scenario increase 15%, and afforestation decrease by 19%.
Research Title : Modeling of Flood for Land Use Management (Case Study of Ciliwung Watershed)

Student Name : I Putu Santikayasa

Student ID : G 051024021

Study Program : Master of Science in Information Technology for Natural Resources Management

Approved by,
Advisory Board:

Dr. Ir. Handoko, M.Sc
Supervisor

Dr. Ir. Hartrisari H.
Co-Supervisor

Endorsed by,

Program Coordinator
Dean of the Graduate School

Dr. Ir. Tania June, M.Sc.
Dr. Ir. Khairil A. Notodiputro, M.S.

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>ii</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>vii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objective</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Thesis Structure</td>
<td>4</td>
</tr>
<tr>
<td>II. LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Watershed</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Watershed Definition</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Watershed as a System</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Watershed Modeling</td>
<td>8</td>
</tr>
<tr>
<td>2.1.4 Watershed and Drainage Basin</td>
<td>10</td>
</tr>
<tr>
<td>2.1.5 Basin Characteristics Affecting Runoff</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Process-Based Hydrology Modeling</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Hydrology Cycle</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Physically Based Hydrology</td>
<td>12</td>
</tr>
</tbody>
</table>
2.2.3 Hydrometeorology Component

2.2.4 Classification of Hydrology Modeling

2.3 Flood

2.3.1 Flood Definition

2.3.2 Flood Routing

2.3.3 Flood Modeling

2.3.4 Step in Hydrology Modeling Development

2.4 Land Use Effect Runoff

2.5 The Influenced of Land Use Management on Flood Risk

III. RESEARCH METHODOLOGY

3.1 Time and Location of research

3.2 Data Collection

3.3 Required Tools

3.3.1 Software

3.3.2 Hardware

3.4 Method

3.4.1 Data Preparation

3.4.2 Model Development

3.4.2.1 Model Description

3.4.2.2 Model Construction

3.4.3 Model Calibration and Validation

IV. RESULT AND DISCUSSION

4.1 Result

4.1.1 Physical and Environment Condition
4.1.2 Climate... 39
4.1.3 Soil... 41
4.1.4 Landuse Change.. 42
4.1.5 Water Level... 45
4.1.6 Model Calibration... 47
4.1.7 Model Structure.. 49
4.2 Discussion.. 52
4.2.1 Physical and Environment Condition....................... 52
4.2.2 Climate.. 53
4.2.3 Soil.. 53
4.2.4 Landuse Change... 54
4.2.5 Water Level.. 55
4.2.6 Model Calibration and Validation............................. 55
4.2.7 Model Structure... 56
4.3 Model Simulation using Scenario................................. 56

V. CONCLUSION AND RECOMMENDATION

5.1 Conclusion.. 61
5.2 Recommendation.. 62

REFERENCE.. 63
LIST OF FIGURES

Figure 1. Physical Characteristics Of Watershed.................................7
Figure 2. Conceptual of Hydrologic Cycle Diagram11
Figure 3. Relationship of each Hydrologic Component16
Figure 4. Flood in Jakarta ...19
Figure 5. Map of Study Area ...25
Figure 6. Forester Diagram of Flood Modeling29
Figure 7. Topography map of Ciliwung Watershed39
Figure 8. Daily (left) and Monthly (right) Precipitation of Ciliwung Watershed..40
Figure 9. Monthly average temperature (left) and relative humidity (right)41
Figure 10. Soil Map of Ciliwung watershed ..41
Figure 11. Land Use Map of Ciliwung Watershed in year 1996 and 200043
Figure 12. Land Use Change of Ciliwung Watershed in year 1996 and 200044
Figure 13. Water Level in Manggarai and Area Precipitation in Ciliwung Watershed.. 45
Figure 14. Measured water level in 1996 and 2000..46
Figure 15 The simulated and observed water level in location, year : (A) Katulampa, 1996 ; (B Depok, 1996; (C) Manggarai, 1996........... 47
Figure 16 The simulated water level in location: (A) Katulampa (B) Depok (C) Manggarai .. 48
Figure 17. Main Window of Flood Model..50
Figure 18. Land Use Map Of Ciliwung Watershed For Each Scenario; (A) Urbanization, (B) Deforestation, (C) Afforestation, (D) Present....... 58
Figure 19. Simulated Hydrograph For Each Scenario in Manggarai..........59
Figure 20. Comparison of water level of each Scenario60
LIST OF TABLES

Table 1. Percentages of Interception by Various Crops and Grass 14
Table 2. Effect Of Some Landuse Treatment And Treatment Measure On The Direct Runoff ... 23
Table 3. List of data Required in developing Flood Model 26
Table 4. Soil Type of Ciliwung Watershed ... 42
Table 5. Input Data of Flood Model ... 49
Table 6. Output of Flood Model ... 49
Table 7. Toolbar of the Interface ... 51
Table 8. Menu on the Interface .. 51
Table 9. Listed of the percentages area on each scenario 58