DAFTAR PUSTAKA

Morrison, O N. P Kanagaratnam dan V Converse. 1996. Suitability of 30 Agricultural Products and By Products as Nutrient Sources for Laboratory Production of B. thuringiensis subsp. aizawai (HD 133). Journal of Invertebrate Pathology 70 : 113-120.

1. Diterangkan mengenai peran peran dan fungsi peran peran dalam upaya upaya upaya dalam upaya upaya.
2. Peran peran dalam upaya upaya dalam upaya upaya dalam upaya upaya.
3. Peran peran dalam upaya upaya dalam upaya upaya dalam upaya upaya.
4. Peran peran dalam upaya upaya dalam upaya upaya dalam upaya upaya.
Lampiran 1. Komposisi tujuh jenis media yang digunakan dalam penelitian.

<table>
<thead>
<tr>
<th>Medium/komposisi</th>
<th>gL⁻¹</th>
<th>Medium/Komposisi</th>
<th>gL⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheaffer Sporulation Medium
 Nutrient Broth</td>
<td>8</td>
<td>Glucose Soluble starch Medium (GS)
 G₁S₁ Medium</td>
<td>
 Basal medium<sup>a)</sup></td>
</tr>
<tr>
<td>MgSO₄.7H₂O</td>
<td>0.25</td>
<td>
 G₃S₂ Medium</td>
<td>
 Basal Medium<sup>a</sup></td>
</tr>
<tr>
<td>KCl</td>
<td>1</td>
<td>
 G₄S₂ Medium</td>
<td>
 Basal Medium<sup>a</sup></td>
</tr>
<tr>
<td>FeSO₄.7H₂O 10⁻³ M</td>
<td>1 ml</td>
<td></td>
<td>
 Basal Medium<sup>a</sup></td>
</tr>
<tr>
<td>MnCl₂.4H₂O 10⁻² M</td>
<td>1 ml</td>
<td>
 a) Basal Medium</td>
<td>
 gL⁻¹</td>
</tr>
<tr>
<td>CaCl₂.2H₂O 1 M</td>
<td>1 ml</td>
<td>
 MgSO₄</td>
<td>0.3</td>
</tr>
<tr>
<td>Modified Casein Medium
 Casein acid</td>
<td>10</td>
<td>
 FeSO₄.7H₂O 10⁻³ M</td>
<td>1 ml</td>
</tr>
</tbody>
</table>
Lampiran 2. Tatacara analisa terhadap cairan kultivasi

Determinasi OD_{600nm} (Benoit et al., 1990)

Pendekatan nilai Jumlah Spora Hidup (Viable Spore Count)

Satu ml cairan kultivasi ditempatkan pada tabung eppendorf dan dipanaskan pada suhu 70°C selama 20 menit. Sepuluh μl cairan tersebut dimasukkan ke dalam 990 μl larutan Ringers (larutan garam fisiologis) yang telah disterilkan dalam tabung eppendorf. Pengenceran dilakukan hingga diperoleh 10^2, 10^4, 10^6 dan seterusnya.

Masing-masing pengenceran kultur diinokulasikan sebanyak tiga spot x 10 μl pada Nutrient Agar dan diinkubasi selama 24 jam pada suhu kamar. Nilai jumlah spora hidup adalah rata-rata jumlah koloni yang tumbuh setelah diinkubasi.

Evaluasi Toksisitas (Uji Bioesei)

Bioesei terhadap cairan kultivasi dilakukan terhadap larva A. aegypti dan C. quinquefasciatus Instar 2. Dua puluh lima ekor larva ditempatkan pada cawan petri yang berisi 25 ml air keran. Cairan kultivasi diencerkan dan ditambahkan pada masing-masing cawan petri. Kontrol dilakukan dengan menggunakan air keran tanpa bioinsektisida serta dengan menggunakan media steril sebagai koreksi nilai mortalitas. Jumlah serangga yang mati dihurit setelah 24 dan 48 jam. LC_{50} (faktor pengenceran cairan kultivasi yang menyebabkan 50 % serangga uji mati) dihurit...
dengan menggunakan Program Probit Analysis yang diperoleh dari Steve Maund, University of Wales College of Cardiff. Pengukuran juga dilakukan terhadap Vectobac sebagai standar sehingga potensi (IU/mg) bioinsektisida dapat dihitung dengan rumus:

\[\text{Potensi sampel (IU/mg)} = \frac{\text{LC}_{50} \text{ standar}}{\text{LC}_{50} \text{ sampel}} \times \text{potensi standar} \]

Rasio aktivitas antara A. aegypti dan C. quinquefasciatus dihitung sebagai berikut.

\[\text{Rasio Aa/Cx} = \frac{\text{LC}_{50} \text{Aa}}{\text{LC}_{50} \text{Cx}} \]

Verifikasi Toxisitas dengan SDS PAGE

Jika hasil perhitungan rasio aktivitas dinyatakan berbeda, penelitian dilanjutkan dengan analisis profil kristal protein menggunakan SDS PAGE. Kristal dipisahkan dari cairan fermentasi menggunakan metode Yamamoto dan Iizuka (1983). Cairan kultivasi disentrifugasi pada kecepatan 10000 g selama 20 menit dan dicuci dengan NaCl 1 N dilanjutkan dengan akuades steril. Kristal kemudian diisolasi dari spora dengan menggunakan teknik sentrifugasi gradien densitas menggunakan Urografin (50% - 20%) dan kemudian disentrifugasi pada kecepatan 20000 rpm selama 60 menit. Spora dari Bti akan tertinggal di dasar tabung sentrifus sedangkan kristal akan tertinggal pada lapisan bagian atas. Dengan hati-hati kristal dipisahkan dan kemudian dicuci dengan akuades steril dan disimpan di dalam freezer bersuhu - 20°C. Protein dalam kristal diukur dengan metode Lowry, kemudian dipekatkan dengan PEG 8000 (bila perlu). Sebanyak 10-20 kristal dengan konsentrasi protein sama disuntikkan pada slab gel poliacrilamid 12% (16x14x0.15 cm) pada Mini Protean SDS PAGE Kit. Elektroforesis dilakukan menggunakan kekuatan arus listrik 20-40mA. Gel diwarnai.
selama tiga jam menggunakan pewarna **comassie brilliant blue** 0.05 % dalam larutan metanol : asam asetat : air (5:1.5). Proses destaining dilakukan dengan larutan etanol: asam asetat : air (10:7.5:82.5). Dalam penelitian ini digunakan standar protein dengan BM 30-200 kDa (Sigma Co, UK).

Analysis Enzym Protease

Enzim protease dari kultur yang diperoleh dari media standar SSM diukur sebagai berikut.

Tab. Lampiran 2a. Bahan-bahan yang dicampurkan pada tahap pertama pengukuran enzim protease

<table>
<thead>
<tr>
<th></th>
<th>Blanlko (ml)</th>
<th>Standar (ml)</th>
<th>Sampel (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer asam borat 0.01 M pH 8.0</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Casein (20 mg/ml, pH 8.0)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Enzim dalam CaCl₂ 2 mM/l</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>Tirosina (5 mmol/l)</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>Akuades</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Campuran diinkubasi pada suhu 37°C selama 10 menit.

<table>
<thead>
<tr>
<th></th>
<th>Blanlko (ml)</th>
<th>Standar (ml)</th>
<th>Sampel (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triasik asetat 0.1 M</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>CaCl₂ 2 mM/l</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>Enzim dalam CaCl₂ 2 mM/l</td>
<td>0.20</td>
<td>0.20</td>
<td>-</td>
</tr>
</tbody>
</table>
Campuran diinkubasi pada suhu 37°C selama 10 menit dan disentrifugasi pada kecepatan putaran 4000 rpm selama 10 menit.

Tabel Lampiran 2c. Bahan-bahan yang dicampurkan pada tahap ketiga pengukuran enzim protease.

<table>
<thead>
<tr>
<th></th>
<th>Blanko (ml)</th>
<th>Standar (ml)</th>
<th>Sampe (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtir (ml)</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Na$_2$CO$_3$ 0.4 M</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Folin (50 %)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Campuran diinkubasi pada suhu 37°C selama 20 menit dan dibaca absorbansinya pada panjang gelombang 575 nm.

Protease (Unit/ml) = \(\frac{(Abs_{\text{sampe}} - Abs_{\text{blanko}})/(Abs_{\text{standar}} - Abs_{\text{blanko}}) \times p \times 1/T}{p = \text{faktor pengenceran}} \)

\(T = \text{waktu inkubasi} \)

Analisis Komposisi Asam Amino

Analisis komposisi asam amino terhadap kristal protein dilakukan di Laboratorium Kimia Terpadu, Institut Pertanian Bogor. Kristal protein yang diperoleh dari tipe liar dan tipe mutan dihidrolisa dengan 1 ml HCl 6 N di dalam wadah tertutup yang berisi nitrogen dan diotokolat pada suhu 110°C dengan tekanan 4-5 psi selama 24 jam, kemudian dikering bekukan. Dengan cara ini, triptofan terdestruksi sehingga tidak dapat terdeteksi dalam analisa.
Asam amino diderivatisasi menggunakan OPA (ortophtaldehyda reagent).

Sampel yang telah terhidrolisis dilarutkan dengan menggunakan HCl 0.01 N dan disaring melalui milipore berukuran 0.45 μm. Bufer kalium borat pH 10.4 ditambahkan dengan perbandingan 1:1. Sepuluh μl campuran tersebut ditambahkan dengan 25 μl reagen OPA dan diibarkan selama 1 menit. Dengan cara ini, prolin tidak dapat terdeteksi. Sampel kemudian disuntikkan pada HPLC (Shimadzu, Jepang) dengan kondisi sebagai berikut.

<table>
<thead>
<tr>
<th>Kolom</th>
<th>ODS (Ultra Techspere, UK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang dan diameter</td>
<td>7.5 cm, 47 mm id</td>
</tr>
<tr>
<td>Eluen</td>
<td>Bufer A (buffer asetat 0.025 M, pH 6.5)</td>
</tr>
<tr>
<td>Bufer B (methanol 95 %)</td>
<td></td>
</tr>
<tr>
<td>Laju elusi</td>
<td>1 ml/menit</td>
</tr>
<tr>
<td>Detektor</td>
<td>Fluoresens, Shimadzu, Jepang</td>
</tr>
<tr>
<td>Kondisi elusi</td>
<td>gradien</td>
</tr>
</tbody>
</table>

Analisis Gula Sisa dengan Metode Fenol

Tahap pembuatan kurva standar.

Larutan glukosa yang mengandung 0, 10, 20, 30, 40 dan 60 mg / L glukosa diambil sebanyak 2 mililiter, lalu dimasukkan ke dalam tabung reaksi dan ditambahkan satu mililiter larutan fenol 5 % dan dilakukan pengocokan. Setelah itu ditambahkan 5 ml larutan asam sulfat pekat secara cepat dengan cara menuangkan setara tegak lurus ke permukaan larutan. Setelah itu dibiarkan selama 10 menit dan dilakukan dengan melakukan pengocokan terhadap larutan tersebut. Larutan kemudian ditempatkan dalam penangas air selama 15 menit. Setelah dingin,
dilakukan pengukuran absorbansi menggunakan spektrofotometer dengan panjang gelombang 490 nm untuk heksosa dan 480 nm untuk pentosa dan asam uronat. Kurva standar dibuat dengan memplot data absorbansi terhadap konsentrasi glukosa.

Tahap Penetapan Sampel

Penetapan sampel dilakukan seperti pada pembuatan kurva standar.

Konsentrasi gula dalam sampel dihitung dengan bantuan kurva standar.

Analisis Total Nitrogen dengan Metode Kjeldhal (AOAC, 1984)

Sebanyak 0.2 gram sampel dimasukkan ke dalam labu Kjeldahl, kemudian ditambah dengan 1 gram CuSO₄, 1.2 gram Na₂SO₄ serta 2.5 ml H₂SO₄ pekat.

Campuran diseduh selama kira-kira 1 jam sampai berwarna hijau jernih. Setelah dingin, larutan diencerkan dalam labu ukur 100 ml menggunakan akuades.

Sebanyak 5 ml dipipet dan dimasukkan ke dalam labu destilasi, kemudian ditambahkan dengan NaOH 50 %. Destilat ditampung di dalam labu erlenmeyer 25 ml yang berisi 25 ml larutan HCl 0.02 N. Destilat ditambah dengan indikator mengesel, lalu dititrasi dengan larutan NaOH 0.02 N.

% Total N = \(\frac{(ml \ blanko - ml \ NaOH) \times N \ NaOH \times 0.014 \times FP \times 100}{gram \ sampel} \)

FP = Faktor Pengenceran

Analisis Total Organik Karbon

Tahap pertama adalah mempersiapkan larutan inorganik karbon dan organik karbon masing-masing dengan konsentrasi 200 ppm. Kemudian disuntikkan standar inorganik karbon pada kolom inorganik. Demikian juga disuntikkan blanko
(0 ppm) nya. Hal yang sama dilakukan terhadap standar organik karbon 200 ppm dan blanko 0 ppm yang disuntikkan pada kolom organik. Contoh lalu disuntikkan pada kolom organik maupun inorganik. Total organik karbon adalah jumlah konsentrasi sampel inorganik dan organik.
Lampiran 3. OD_{600nm} dan Viable Spore count/ml dari cairan kultivasi Bti tipe liar menggunakan medium SSM

<table>
<thead>
<tr>
<th>Waktu kultivasi (hari)</th>
<th>OD_{600nm}</th>
<th>VSC/ml (x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulangan I</td>
<td>ulangan II</td>
</tr>
<tr>
<td>1</td>
<td>3.47</td>
<td>3.46</td>
</tr>
<tr>
<td>2</td>
<td>2.67</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>3.25</td>
<td>3.24</td>
</tr>
<tr>
<td>4</td>
<td>3.08</td>
<td>3.13</td>
</tr>
<tr>
<td>5</td>
<td>2.67</td>
<td>2.67</td>
</tr>
<tr>
<td>6</td>
<td>3.41</td>
<td>3.41</td>
</tr>
</tbody>
</table>
Lampiran 4a. Faktor pengenceran yang menyebabkan 50% Mortalitas *A aegypti* Larva Dalam bioesai menggunakan cairan kultivasi *Bti* tipe liar dengan medium SSM

<table>
<thead>
<tr>
<th>hari</th>
<th>LC₅₀ 24 h</th>
<th>LC₅₀ 24 h</th>
<th>LC₅₀ 48 h</th>
<th>LC₅₀ 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan I</td>
<td>ulangan II</td>
<td>ulangan I</td>
<td>ulangan II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410 904.86</td>
<td>499 022.59</td>
<td>519 389.92</td>
<td>694 537.15</td>
<td></td>
</tr>
<tr>
<td>430 055.67</td>
<td>535 873.59</td>
<td>707 129.35</td>
<td>793 766.10</td>
<td></td>
</tr>
<tr>
<td>368 900.00</td>
<td>345 468.72</td>
<td>491 822.05</td>
<td>512 726.97</td>
<td></td>
</tr>
<tr>
<td>323 738.31</td>
<td>416 877.72</td>
<td>408 590.48</td>
<td>544 087.19</td>
<td></td>
</tr>
<tr>
<td>125 062.49</td>
<td>127 476.19</td>
<td>153 851.87</td>
<td>158 635.07</td>
<td></td>
</tr>
<tr>
<td>108 247.31</td>
<td>130 654.02</td>
<td>177 833.77</td>
<td>209 243.01</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 4b. Faktor pengenceran yang menyebabkan 50% Mortalitas *C quinquefasciatus* Larva Dalam bioesai menggunakan cairan kultivasi *Bti* tipe liar dengan medium SSM

<table>
<thead>
<tr>
<th>hari</th>
<th>LC₅₀ 24 h</th>
<th>LC₅₀ 24 h</th>
<th>LC₅₀ 48 h</th>
<th>LC₅₀ 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>ulangan I</td>
<td>ulangan II</td>
<td>ulangan I</td>
<td>ulangan II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>718 868.47</td>
<td>728 699.13</td>
<td>764 359.6</td>
<td>800 962.53</td>
<td></td>
</tr>
<tr>
<td>1 357 810.93</td>
<td>1 642 251.47</td>
<td>1 646 469.58</td>
<td>1 834 490.48</td>
<td></td>
</tr>
<tr>
<td>1 092 546.54</td>
<td>1 242 006.26</td>
<td>2 450 353.52</td>
<td>2 281 838.18</td>
<td></td>
</tr>
<tr>
<td>1 237 759.14</td>
<td>1 153 732.70</td>
<td>1 231 364.54</td>
<td>1 375 632.91</td>
<td></td>
</tr>
<tr>
<td>1 045 827.67</td>
<td>1 045 827.67</td>
<td>1 587 283.69</td>
<td>1 620 391.66</td>
<td></td>
</tr>
<tr>
<td>1 000 000.63</td>
<td>1 068 983.46</td>
<td>1 266 788.83</td>
<td>1 182 179.02</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 5.

Sporulation Synchrony Ratio dari cairan kultivasi yang berasa dan nilai pH saat panen, OD₇₀₀₀, Viable Spore count/ml dan Sponrfatioon Synchrony Ratio dari tujuh formulasi media

<table>
<thead>
<tr>
<th>Formulasi Media</th>
<th>SSM</th>
<th>SMM</th>
<th>Medium 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.2</td>
<td>2.5</td>
<td>7.23</td>
</tr>
<tr>
<td>II</td>
<td>1.9</td>
<td>2.6</td>
<td>6.35</td>
</tr>
<tr>
<td>III</td>
<td>1.3</td>
<td>2.7</td>
<td>6.33</td>
</tr>
<tr>
<td>IV</td>
<td>1.3</td>
<td>2.4</td>
<td>8.14</td>
</tr>
<tr>
<td>V</td>
<td>1.7</td>
<td>2.5</td>
<td>8.20</td>
</tr>
<tr>
<td>VI</td>
<td>1.1</td>
<td>1.4</td>
<td>8.59</td>
</tr>
<tr>
<td>VII</td>
<td>0.6</td>
<td>0.8</td>
<td>8.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>II</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>III</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>IV</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>V</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>VI</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>VII</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD₇₀₀₀</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>II</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>III</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>IV</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>V</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>VI</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>VII</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VSC (x10⁷/ml)</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>II</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>III</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>IV</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>V</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>VI</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>VII</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSR (%)</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4.7</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>II</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>III</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IV</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>V</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>VI</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>VII</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Lampiran 6. Analisis ragam pengaruh formulasi media pada pH saat panen

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>6</td>
<td>9.18334153</td>
<td>1.53055692</td>
<td>279.37</td>
<td>0.0001**</td>
</tr>
<tr>
<td>Error</td>
<td>7</td>
<td>0.03835006</td>
<td>0.00547858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>13</td>
<td>9.22169159</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Too significantly different

Duncan's Multiple Range Test for variable: pH

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.61000</td>
<td>2</td>
<td>7th Med</td>
</tr>
<tr>
<td>B</td>
<td>8.17000</td>
<td>2</td>
<td>Mod.Cas</td>
</tr>
<tr>
<td>B</td>
<td>8.16500</td>
<td>2</td>
<td>SSM</td>
</tr>
<tr>
<td>C</td>
<td>7.06500</td>
<td>2</td>
<td>G1S2</td>
</tr>
<tr>
<td>C</td>
<td>6.96500</td>
<td>2</td>
<td>G1S1</td>
</tr>
<tr>
<td>D</td>
<td>6.75000</td>
<td>2</td>
<td>G2S2</td>
</tr>
<tr>
<td>E</td>
<td>6.29000</td>
<td>2</td>
<td>G2S1</td>
</tr>
</tbody>
</table>
Lampiran 7. Analisis ragam pengaruh formulasi media pada nilai VSC

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>6</td>
<td>7.00000021</td>
<td>1.16666670</td>
<td>34.03</td>
<td>0.0001**</td>
</tr>
<tr>
<td>Error</td>
<td>7</td>
<td>0.24000001</td>
<td>0.03428572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>13</td>
<td>7.24000022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Too significantly different

Duncan's Multiple Range Test for variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.6500</td>
<td>2</td>
<td>G1S2</td>
</tr>
<tr>
<td>A</td>
<td>2.5500</td>
<td>2</td>
<td>G2S2</td>
</tr>
<tr>
<td>A</td>
<td>2.4500</td>
<td>2</td>
<td>G2S1</td>
</tr>
<tr>
<td>B</td>
<td>1.8000</td>
<td>2</td>
<td>G1S1</td>
</tr>
<tr>
<td>C</td>
<td>1.3000</td>
<td>2</td>
<td>7thMed</td>
</tr>
<tr>
<td>C</td>
<td>1.0000</td>
<td>2</td>
<td>SSM</td>
</tr>
<tr>
<td>C</td>
<td>0.8500</td>
<td>2</td>
<td>Mod.Cas</td>
</tr>
</tbody>
</table>
Lampiran 8. Analisis ragam pengaruh formulasi media terhadap OD

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>6</td>
<td>172.66134446</td>
<td>28.77689074</td>
<td>22.48</td>
<td>0.0003**</td>
</tr>
<tr>
<td>Error</td>
<td>7</td>
<td>8.95980090</td>
<td>1.27997156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>13</td>
<td>181.62114536</td>
<td>1.27997156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Too significantly different

Duncan's Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.300</td>
<td>2</td>
<td>G2S1</td>
</tr>
<tr>
<td>B</td>
<td>10.350</td>
<td>2</td>
<td>G2S2</td>
</tr>
<tr>
<td>B</td>
<td>10.205</td>
<td>2</td>
<td>G1S2</td>
</tr>
<tr>
<td>B</td>
<td>9.875</td>
<td>2</td>
<td>G1S1</td>
</tr>
<tr>
<td>C</td>
<td>6.165</td>
<td>2</td>
<td>7th Med</td>
</tr>
<tr>
<td>C</td>
<td>4.495</td>
<td>2</td>
<td>Mod.Cas</td>
</tr>
<tr>
<td>D</td>
<td>2.630</td>
<td>2</td>
<td>SSM</td>
</tr>
</tbody>
</table>

Data milik IPB (Institut Pertanian Bogor)

1. Dicari nilai rentang dan nilai kritis dari kriteria yang telah ditentukan.
2. Dikali dengan nilai kritis dari kriteria yang telah ditentukan.
3. Mencari nilai kritis dari kriteria yang telah ditentukan.
4. Nilai kritis dari kriteria yang telah ditentukan.
5. Nilai kritis dari kriteria yang telah ditentukan.
6. Nilai kritis dari kriteria yang telah ditentukan.
7. Nilai kritis dari kriteria yang telah ditentukan.
8. Nilai kritis dari kriteria yang telah ditentukan.
10. Nilai kritis dari kriteria yang telah ditentukan.
11. Nilai kritis dari kriteria yang telah ditentukan.
12. Nilai kritis dari kriteria yang telah ditentukan.
13. Nilai kritis dari kriteria yang telah ditentukan.
15. Nilai kritis dari kriteria yang telah ditentukan.
17. Nilai kritis dari kriteria yang telah ditentukan.
18. Nilai kritis dari kriteria yang telah ditentukan.
20. Nilai kritis dari kriteria yang telah ditentukan.
22. Nilai kritis dari kriteria yang telah ditentukan.
23. Nilai kritis dari kriteria yang telah ditentukan.
24. Nilai kritis dari kriteria yang telah ditentukan.
25. Nilai kritis dari kriteria yang telah ditentukan.
27. Nilai kritis dari kriteria yang telah ditentukan.
28. Nilai kritis dari kriteria yang telah ditentukan.
29. Nilai kritis dari kriteria yang telah ditentukan.
30. Nilai kritis dari kriteria yang telah ditentukan.
31. Nilai kritis dari kriteria yang telah ditentukan.
32. Nilai kritis dari kriteria yang telah ditentukan.
33. Nilai kritis dari kriteria yang telah ditentukan.
34. Nilai kritis dari kriteria yang telah ditentukan.
35. Nilai kritis dari kriteria yang telah ditentukan.
36. Nilai kritis dari kriteria yang telah ditentukan.
37. Nilai kritis dari kriteria yang telah ditentukan.
38. Nilai kritis dari kriteria yang telah ditentukan.
39. Nilai kritis dari kriteria yang telah ditentukan.
40. Nilai kritis dari kriteria yang telah ditentukan.
41. Nilai kritis dari kriteria yang telah ditentukan.
42. Nilai kritis dari kriteria yang telah ditentukan.
43. Nilai kritis dari kriteria yang telah ditentukan.
44. Nilai kritis dari kriteria yang telah ditentukan.
45. Nilai kritis dari kriteria yang telah ditentukan.
46. Nilai kritis dari kriteria yang telah ditentukan.
47. Nilai kritis dari kriteria yang telah ditentukan.
48. Nilai kritis dari kriteria yang telah ditentukan.
49. Nilai kritis dari kriteria yang telah ditentukan.
50. Nilai kritis dari kriteria yang telah ditentukan.
51. Nilai kritis dari kriteria yang telah ditentukan.
52. Nilai kritis dari kriteria yang telah ditentukan.
53. Nilai kritis dari kriteria yang telah ditentukan.
54. Nilai kritis dari kriteria yang telah ditentukan.
55. Nilai kritis dari kriteria yang telah ditentukan.
56. Nilai kritis dari kriteria yang telah ditentukan.
57. Nilai kritis dari kriteria yang telah ditentukan.
58. Nilai kritis dari kriteria yang telah ditentukan.
59. Nilai kritis dari kriteria yang telah ditentukan.
60. Nilai kritis dari kriteria yang telah ditentukan.
61. Nilai kritis dari kriteria yang telah ditentukan.
62. Nilai kritis dari kriteria yang telah ditentukan.
63. Nilai kritis dari kriteria yang telah ditentukan.
64. Nilai kritis dari kriteria yang telah ditentukan.
65. Nilai kritis dari kriteria yang telah ditentukan.
66. Nilai kritis dari kriteria yang telah ditentukan.
67. Nilai kritis dari kriteria yang telah ditentukan.
68. Nilai kritis dari kriteria yang telah ditentukan.
69. Nilai kritis dari kriteria yang telah ditentukan.
70. Nilai kritis dari kriteria yang telah ditentukan.
71. Nilai kritis dari kriteria yang telah ditentukan.
72. Nilai kritis dari kriteria yang telah ditentukan.
73. Nilai kritis dari kriteria yang telah ditentukan.
74. Nilai kritis dari kriteria yang telah ditentukan.
75. Nilai kritis dari kriteria yang telah ditentukan.
76. Nilai kritis dari kriteria yang telah ditentukan.
77. Nilai kritis dari kriteria yang telah ditentukan.
78. Nilai kritis dari kriteria yang telah ditentukan.
79. Nilai kritis dari kriteria yang telah ditentukan.
80. Nilai kritis dari kriteria yang telah ditentukan.
81. Nilai kritis dari kriteria yang telah ditentukan.
82. Nilai kritis dari kriteria yang telah ditentukan.
83. Nilai kritis dari kriteria yang telah ditentukan.
84. Nilai kritis dari kriteria yang telah ditentukan.
85. Nilai kritis dari kriteria yang telah ditentukan.
86. Nilai kritis dari kriteria yang telah ditentukan.
87. Nilai kritis dari kriteria yang telah ditentukan.
88. Nilai kritis dari kriteria yang telah ditentukan.
89. Nilai kritis dari kriteria yang telah ditentukan.
90. Nilai kritis dari kriteria yang telah ditentukan.
91. Nilai kritis dari kriteria yang telah ditentukan.
92. Nilai kritis dari kriteria yang telah ditentukan.
93. Nilai kritis dari kriteria yang telah ditentukan.
94. Nilai kritis dari kriteria yang telah ditentukan.
95. Nilai kritis dari kriteria yang telah ditentukan.
96. Nilai kritis dari kriteria yang telah ditentukan.
97. Nilai kritis dari kriteria yang telah ditentukan.
98. Nilai kritis dari kriteria yang telah ditentukan.
99. Nilai kritis dari kriteria yang telah ditentukan.
100. Nilai kritis dari kriteria yang telah ditentukan.
Lampiran 9. Analisis ragam pengaruh formulasi media pada SSR

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>6</td>
<td>6.29857149</td>
<td>1.04976192</td>
<td>2.71</td>
<td>0.1090</td>
</tr>
<tr>
<td>Error</td>
<td>7</td>
<td>2.71000011</td>
<td>0.38714287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>13</td>
<td>9.00857161</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan’s Multiple Range Test for variable: SSR

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A</td>
<td>3.850</td>
<td>2</td>
<td>SSM</td>
</tr>
<tr>
<td>B A</td>
<td>2.600</td>
<td>2</td>
<td>G1S2</td>
</tr>
<tr>
<td>B A</td>
<td>2.500</td>
<td>2</td>
<td>G2S2</td>
</tr>
<tr>
<td>B</td>
<td>2.100</td>
<td>2</td>
<td>7thMed</td>
</tr>
<tr>
<td>B</td>
<td>1.900</td>
<td>2</td>
<td>Mod.Cas</td>
</tr>
<tr>
<td>B</td>
<td>1.850</td>
<td>2</td>
<td>G2S1</td>
</tr>
<tr>
<td>B</td>
<td>1.800</td>
<td>2</td>
<td>G1S1</td>
</tr>
</tbody>
</table>
Lampiran 10a. Faktor pengenceran yang menyebabkan 50 % Mortalitas *C. quinquefasciatus* dalam bioesai menggunakan cairan kultivasi dari tujuh formulasi media

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>LC₅₀ 24 h ulangan I</th>
<th>LC₅₀ 24 h ulangan II</th>
<th>LC₅₀ 48 h ulangan I</th>
<th>LC₅₀ 48 h ulangan II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>1 500 031.20</td>
<td>1 119 386.39</td>
<td>1 740 480.03</td>
<td>1 278 046.69</td>
</tr>
<tr>
<td>Mod Casein medium 7</td>
<td>775 683.51</td>
<td>904 374.65</td>
<td>866 397.58</td>
<td>977 200.37</td>
</tr>
<tr>
<td>G₁S₁</td>
<td>1 301 797.85</td>
<td>1 919 186.58</td>
<td>1 596 114.50</td>
<td>2 102 304.91</td>
</tr>
<tr>
<td>G₂S₁</td>
<td>1 557 152.75</td>
<td>1 495 877.59</td>
<td>1 688 637.86</td>
<td>1 736 097.67</td>
</tr>
<tr>
<td>G₁S₂</td>
<td>1 619 249.32</td>
<td>2 06 392.39</td>
<td>1 853 030.15</td>
<td>2 301 561.02</td>
</tr>
<tr>
<td>G₂S₂</td>
<td>1 360 275.57</td>
<td>2 861 872.09</td>
<td>1 531 752.96</td>
<td>3 088 488.63</td>
</tr>
</tbody>
</table>

Lampiran 10b. Faktor pengenceran yang menyebabkan 50 % Mortalitas *A. aegypti* dalam bioesai menggunakan cairan kultivasi dari tujuh formulasi media

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>LC₅₀ 24 h ulangan I</th>
<th>LC₅₀ 24 h ulangan II</th>
<th>LC₅₀ 48 h ulangan I</th>
<th>LC₅₀ 48 h ulangan II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>484 964.63</td>
<td>429 008.71</td>
<td>750 447.73</td>
<td>476 248.98</td>
</tr>
<tr>
<td>Mod Casein medium 7</td>
<td>382 339.21</td>
<td>405 091.73</td>
<td>412 058.68</td>
<td>426 594.45</td>
</tr>
<tr>
<td>G₁S₁</td>
<td>349 505.48</td>
<td>275 188.96</td>
<td>392 945.39</td>
<td>282 520.63</td>
</tr>
<tr>
<td>G₂S₁</td>
<td>552 809.28</td>
<td>896 732.75</td>
<td>547 444.07</td>
<td>1155 546.37</td>
</tr>
<tr>
<td>G₁S₂</td>
<td>635 036.64</td>
<td>562 458.47</td>
<td>624 055.47</td>
<td>585 256.11</td>
</tr>
<tr>
<td>G₂S₂</td>
<td>363 893.42</td>
<td>289 500.64</td>
<td>391 193.47</td>
<td>336 142.27</td>
</tr>
<tr>
<td>G₂S₂</td>
<td>244 587.91</td>
<td>243 024.04</td>
<td>273 431.99</td>
<td>259 970.79</td>
</tr>
</tbody>
</table>
Lampiran 11. Rasio aktivitas *A. aegypti* terhadap *C. quinquefasciatus* dari cairan kultivasi yang berasal dari tujuh formulasi media

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>Rasio Aa/Cx 24 h</th>
<th></th>
<th>Rasio Aa/Cx 48 h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>SSM</td>
<td>0.323</td>
<td>0.383</td>
<td>0.431</td>
<td>0.373</td>
</tr>
<tr>
<td>Mod. Casein</td>
<td>0.493</td>
<td>0.448</td>
<td>0.475</td>
<td>0.436</td>
</tr>
<tr>
<td>medium 7</td>
<td>0.719</td>
<td>0.521</td>
<td>0.698</td>
<td>0.503</td>
</tr>
<tr>
<td>G1S1</td>
<td>0.424</td>
<td>0.467</td>
<td>0.342</td>
<td>0.550</td>
</tr>
<tr>
<td>G2S1</td>
<td>0.408</td>
<td>0.376</td>
<td>0.370</td>
<td>0.337</td>
</tr>
<tr>
<td>G1S2</td>
<td>0.225</td>
<td>0.131</td>
<td>0.211</td>
<td>0.146</td>
</tr>
<tr>
<td>G2S2</td>
<td>0.180</td>
<td>0.085</td>
<td>0.179</td>
<td>0.085</td>
</tr>
</tbody>
</table>
Lampiran 12. AbsorbanSI 280nm dari fraksi protein yang berasal dari isolasi parsial kristal yang diperoleh dari medium ke 7, G1S1 dan G2S2

<table>
<thead>
<tr>
<th>Nomor fraksi</th>
<th>Abs 280nm G1S1</th>
<th>Abs 280nm G2S2</th>
<th>Abs 280nm medium 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.045</td>
<td>0.11</td>
<td>0.57</td>
</tr>
<tr>
<td>2</td>
<td>0.042</td>
<td>0.115</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>0.037</td>
<td>0.116</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>0.034</td>
<td>0.113</td>
<td>0.59</td>
</tr>
<tr>
<td>5</td>
<td>0.042</td>
<td>0.12</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>0.048</td>
<td>0.129</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.062</td>
<td>0.126</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>0.07</td>
<td>0.135</td>
<td>0.59</td>
</tr>
<tr>
<td>9</td>
<td>0.075</td>
<td>0.12</td>
<td>0.59</td>
</tr>
<tr>
<td>10</td>
<td>0.077</td>
<td>0.118</td>
<td>0.59</td>
</tr>
<tr>
<td>11</td>
<td>0.069</td>
<td>0.119</td>
<td>0.58</td>
</tr>
<tr>
<td>12</td>
<td>0.067</td>
<td>0.121</td>
<td>0.58</td>
</tr>
<tr>
<td>13</td>
<td>0.066</td>
<td>0.193</td>
<td>0.58</td>
</tr>
<tr>
<td>14</td>
<td>0.065</td>
<td>0.153</td>
<td>0.58</td>
</tr>
<tr>
<td>15</td>
<td>0.067</td>
<td>0.128</td>
<td>0.58</td>
</tr>
<tr>
<td>16</td>
<td>0.062</td>
<td>0.151</td>
<td>0.57</td>
</tr>
<tr>
<td>17</td>
<td>0.061</td>
<td>0.135</td>
<td>0.57</td>
</tr>
<tr>
<td>18</td>
<td>0.06</td>
<td>0.131</td>
<td>0.57</td>
</tr>
<tr>
<td>19</td>
<td>0.065</td>
<td>0.11</td>
<td>0.58</td>
</tr>
<tr>
<td>20</td>
<td>0.064</td>
<td>0.151</td>
<td>0.59</td>
</tr>
<tr>
<td>21</td>
<td>0.071</td>
<td>0.102</td>
<td>0.61</td>
</tr>
<tr>
<td>22</td>
<td>0.078</td>
<td>0.111</td>
<td>0.62</td>
</tr>
<tr>
<td>23</td>
<td>0.069</td>
<td>0.099</td>
<td>0.64</td>
</tr>
<tr>
<td>24</td>
<td>0.062</td>
<td>0.108</td>
<td>0.67</td>
</tr>
<tr>
<td>25</td>
<td>0.058</td>
<td>0.144</td>
<td>0.68</td>
</tr>
<tr>
<td>26</td>
<td>0.067</td>
<td>0.186</td>
<td>0.7</td>
</tr>
<tr>
<td>27</td>
<td>0.563</td>
<td>0.203</td>
<td>0.79</td>
</tr>
<tr>
<td>28</td>
<td>0.716</td>
<td>0.154</td>
<td>0.69</td>
</tr>
<tr>
<td>29</td>
<td>0.683</td>
<td>0.112</td>
<td>0.68</td>
</tr>
<tr>
<td>30</td>
<td>0.387</td>
<td>0.113</td>
<td>0.68</td>
</tr>
<tr>
<td>31</td>
<td>0.37</td>
<td>0.193</td>
<td>0.68</td>
</tr>
<tr>
<td>32</td>
<td>0.21</td>
<td>0.4</td>
<td>0.78</td>
</tr>
<tr>
<td>33</td>
<td>0.06</td>
<td>0.647</td>
<td>0.83</td>
</tr>
<tr>
<td>34</td>
<td>0.073</td>
<td>0.48</td>
<td>0.8</td>
</tr>
<tr>
<td>35</td>
<td>0.07</td>
<td>0.316</td>
<td>0.72</td>
</tr>
<tr>
<td>36</td>
<td>0.358</td>
<td>0.27</td>
<td>0.65</td>
</tr>
<tr>
<td>37</td>
<td>0.233</td>
<td>0.625</td>
<td>0.63</td>
</tr>
<tr>
<td>38</td>
<td>0.209</td>
<td>0.575</td>
<td>0.6</td>
</tr>
<tr>
<td>39</td>
<td>0.206</td>
<td>0.637</td>
<td>0.59</td>
</tr>
<tr>
<td>40</td>
<td>0.167</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>Waktu (jam)</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ulangan I</td>
<td>7.23</td>
<td>7.56</td>
<td>5.52</td>
</tr>
<tr>
<td>Ulangan II</td>
<td>7.23</td>
<td>8.59</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Lampiran 13. OD (mm)

ODversi terhadap waktu kultivasi dan mutan Bi pada medium SSM.
Lampiran 14. Faktor pengenceran yang menyebabkan 50 % Mortalitas *A. aegypti* dan *C. quinquefasciatus* dalam bioesai pada paparan waktu 24 jam dari cairan kultivasi yang berasal dari medium SSM diinokulasi mutan *Bti*.

<table>
<thead>
<tr>
<th>Hari</th>
<th>LC₅₀ C. quinquefasciatus</th>
<th>LC₅₀ A. aegypti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>216 830.00</td>
<td>262 338.5</td>
</tr>
<tr>
<td>2</td>
<td>284 564.10</td>
<td>305 762.7</td>
</tr>
<tr>
<td>3</td>
<td>254 912.60</td>
<td>242 231.4</td>
</tr>
</tbody>
</table>

Lampiran 15. Rata-rata Enzim Protease yang diproduksi oleh mutan dan *Bti* tipe liar dalam medium SSM

<table>
<thead>
<tr>
<th>Waktu kultivasi (hari)</th>
<th>Protease mutan (U/ml)</th>
<th>Protease tipe liar (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>1</td>
<td>0.105</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>0.099</td>
<td>0.139</td>
</tr>
<tr>
<td>3</td>
<td>0.159</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Lampiran 16. pH saat panen, OD_{600nm}, Viable Spore count/ml dari cairan kultivasi menggunakan tujuh formulasi media yang diinokulasi dengan mutan Bti

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>VSC (x 10^6)/ml</th>
<th>pH</th>
<th>OD_{600nm}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>SSM</td>
<td>1.2</td>
<td>1.2</td>
<td>8.99</td>
</tr>
<tr>
<td>Mod. Casein</td>
<td>1.9</td>
<td>0.9</td>
<td>8.13</td>
</tr>
<tr>
<td>Medium 7</td>
<td>1.8</td>
<td>1.0</td>
<td>7.75</td>
</tr>
<tr>
<td>G1S1</td>
<td>1.2</td>
<td>1.4</td>
<td>8.44</td>
</tr>
<tr>
<td>G2S1</td>
<td>0.8</td>
<td>0.9</td>
<td>7.85</td>
</tr>
<tr>
<td>G1S2</td>
<td>1.2</td>
<td>1.3</td>
<td>8.10</td>
</tr>
<tr>
<td>G2S2</td>
<td>2.2</td>
<td>2.0</td>
<td>7.91</td>
</tr>
</tbody>
</table>
Analisis Ragam Pengaruh Fomulasi Media Terhadap VSC Mutan @ti

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>7</td>
<td>161.2034927</td>
<td>23.03628259</td>
<td>2.10</td>
<td>0.1741</td>
</tr>
<tr>
<td>Error</td>
<td>26</td>
<td>260.2957143</td>
<td>10.00240595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>33</td>
<td>421.4992110</td>
<td>12.7414273</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for Variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>20.833</td>
<td>2</td>
</tr>
<tr>
<td>Mod.Cas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G1S2</td>
<td>14.167</td>
<td>2</td>
</tr>
<tr>
<td>G1S1</td>
<td>14.333</td>
<td>2</td>
</tr>
<tr>
<td>G2S1</td>
<td>13.333</td>
<td>2</td>
</tr>
<tr>
<td>SSM</td>
<td>12.833</td>
<td>2</td>
</tr>
<tr>
<td>G2S2</td>
<td>12.000</td>
<td>2</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for Variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>20.833</td>
<td>2</td>
</tr>
<tr>
<td>Mod.Cas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G1S2</td>
<td>14.167</td>
<td>2</td>
</tr>
<tr>
<td>G1S1</td>
<td>14.333</td>
<td>2</td>
</tr>
<tr>
<td>G2S1</td>
<td>13.333</td>
<td>2</td>
</tr>
<tr>
<td>SSM</td>
<td>12.833</td>
<td>2</td>
</tr>
<tr>
<td>G2S2</td>
<td>12.000</td>
<td>2</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for Variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>20.833</td>
<td>2</td>
</tr>
<tr>
<td>Mod.Cas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G1S2</td>
<td>14.167</td>
<td>2</td>
</tr>
<tr>
<td>G1S1</td>
<td>14.333</td>
<td>2</td>
</tr>
<tr>
<td>G2S1</td>
<td>13.333</td>
<td>2</td>
</tr>
<tr>
<td>SSM</td>
<td>12.833</td>
<td>2</td>
</tr>
<tr>
<td>G2S2</td>
<td>12.000</td>
<td>2</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for Variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>20.833</td>
<td>2</td>
</tr>
<tr>
<td>Mod.Cas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G1S2</td>
<td>14.167</td>
<td>2</td>
</tr>
<tr>
<td>G1S1</td>
<td>14.333</td>
<td>2</td>
</tr>
<tr>
<td>G2S1</td>
<td>13.333</td>
<td>2</td>
</tr>
<tr>
<td>SSM</td>
<td>12.833</td>
<td>2</td>
</tr>
<tr>
<td>G2S2</td>
<td>12.000</td>
<td>2</td>
</tr>
</tbody>
</table>
Lampiran 18. Faktor pengenceran yang menyebabkan 50 % Mortalitas Larva *C. quinquefasciatus* dan *A. aegypti* dalam bioseis untuk waktu paparan 24 jam dari cairan kultivasi yang berasal dari tujuh media yang diinokulasi mutan *Bti*

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>LC50 Aa Ulangan I</th>
<th>LC50 Aa Ulangan II</th>
<th>LC50 Cx Ulangan I</th>
<th>LC50 Cx Ulangan II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>345 465.10</td>
<td>276 455.00</td>
<td>284 564.10</td>
<td>305 762.70</td>
</tr>
<tr>
<td>Mod Casein</td>
<td>262 201.00</td>
<td>318 556.10</td>
<td>973 050.00</td>
<td>1 033 751</td>
</tr>
<tr>
<td>medium7</td>
<td>863 158.90</td>
<td>639 917.30</td>
<td>414 039.40</td>
<td>425 597.10</td>
</tr>
<tr>
<td>G1S1</td>
<td>839 155.00</td>
<td>763 696.60</td>
<td>246 546.00</td>
<td>327 191.30</td>
</tr>
<tr>
<td>G2S1</td>
<td>367 542.30</td>
<td>427 001.10</td>
<td>291 716.3</td>
<td>308 224.50</td>
</tr>
<tr>
<td>G1S2</td>
<td>406 139.00</td>
<td>398 675.60</td>
<td>311 687.2</td>
<td>215 726.50</td>
</tr>
<tr>
<td>G2S2</td>
<td>285 017.10</td>
<td>205 706.60</td>
<td>185 760.2</td>
<td>196 537.70</td>
</tr>
</tbody>
</table>
Lampiran 19. Rasio aktivitas *A. aegypti* terhadap *C. quinquefasciatus* dari cairan kultivasi yang berasal dari tujuh formulasi media yang diinokulasi mutan *Bti*.

<table>
<thead>
<tr>
<th>Jenis medium</th>
<th>Rasio Aa/Cx 24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>SSM</td>
<td>1.02</td>
</tr>
<tr>
<td>Mod. Casein</td>
<td>0.30</td>
</tr>
<tr>
<td>medium 7</td>
<td>2.08</td>
</tr>
<tr>
<td>G1S1</td>
<td>3.40</td>
</tr>
<tr>
<td>G2S1</td>
<td>1.23</td>
</tr>
<tr>
<td>G1S2</td>
<td>1.30</td>
</tr>
<tr>
<td>G2S2</td>
<td>1.53</td>
</tr>
</tbody>
</table>
Lampiran 20. pH saat panen, VSC, dan OD₆₈₀nm dari cairan kultivasi yang berasal dari nilai pH awal yang berbeda

<table>
<thead>
<tr>
<th>pH awal medium</th>
<th>VSC (x 10⁸)/ml</th>
<th>pH</th>
<th>OD₆₈₀nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>6.5</td>
<td>1.6</td>
<td>1.5</td>
<td>8.00</td>
</tr>
<tr>
<td>7.0</td>
<td>1.9</td>
<td>1.7</td>
<td>6.93</td>
</tr>
<tr>
<td>7.5</td>
<td>2.0</td>
<td>2.1</td>
<td>8.59</td>
</tr>
<tr>
<td>8.0</td>
<td>1.7</td>
<td>1.9</td>
<td>8.43</td>
</tr>
</tbody>
</table>
Lampiran 21. Analisis ragam pengaruh pH awal medium terhadap OD

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium pH</td>
<td>3</td>
<td>4.65693735</td>
<td>1.55231245</td>
<td>7.43</td>
<td>0.0411*</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>0.83535027</td>
<td>0.20883757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>7</td>
<td>5.49228762</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Medium pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.8750</td>
<td>2</td>
<td>7.0</td>
</tr>
<tr>
<td>A</td>
<td>9.4550</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>B</td>
<td>8.2950</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>C</td>
<td>8.0600</td>
<td>2</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Lampiran 22a. Faktor pengenceran yang menyebabkan 50 % mortalitas larva A. aegypti dari cairan kultivasi yang berasal dari nilai pH awal yang berbeda

<table>
<thead>
<tr>
<th>pH Awal</th>
<th>LC<sub>50</sub> 24 h</th>
<th>LC<sub>50</sub> 24 h</th>
<th>LC<sub>50</sub> 48 h</th>
<th>LC<sub>50</sub> 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ulangan I</td>
<td>Ulangan II</td>
<td>Ulangan I</td>
<td>Ulangan II</td>
</tr>
<tr>
<td>6.5</td>
<td>251 277.11</td>
<td>228 368.32</td>
<td>269 685.02</td>
<td>274 933.82</td>
</tr>
<tr>
<td>7.0</td>
<td>552 809.28</td>
<td>896 732.75</td>
<td>547 444.07</td>
<td>1155 546.37</td>
</tr>
<tr>
<td>7.5</td>
<td>223 909.48</td>
<td>296 768.27</td>
<td>230 700.57</td>
<td>370 695.52</td>
</tr>
<tr>
<td>8.0</td>
<td>257 034.93</td>
<td>315 465.14</td>
<td>256 935.28</td>
<td>304 143.85</td>
</tr>
</tbody>
</table>

Lampiran 22b. Faktor pengenceran yang menyebabkan 50 % mortalitas larva C. quinquiangustus dari cairan kultivasi yang berasal dari nilai pH awal yang berbeda

<table>
<thead>
<tr>
<th>pH Awal</th>
<th>LC<sub>50</sub> 24 h</th>
<th>LC<sub>50</sub> 24 h</th>
<th>LC<sub>50</sub> 48 h</th>
<th>LC<sub>50</sub> 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ulangan I</td>
<td>Ulangan II</td>
<td>Ulangan I</td>
<td>Ulangan II</td>
</tr>
<tr>
<td>6.5</td>
<td>629 764.88</td>
<td>662 118.17</td>
<td>709 437.64</td>
<td>685 621.67</td>
</tr>
<tr>
<td>7.0</td>
<td>1 301 797.85</td>
<td>1 919 186.58</td>
<td>1 596 114.50</td>
<td>2 102 304.91</td>
</tr>
<tr>
<td>7.5</td>
<td>1 063 311.81</td>
<td>1 345 073.85</td>
<td>1 352 073.57</td>
<td>1 548 574.55</td>
</tr>
<tr>
<td>8.0</td>
<td>1 169 503.00</td>
<td>927 748.85</td>
<td>1 299 052.21</td>
<td>1 088 481.26</td>
</tr>
</tbody>
</table>
Lampiran 23a. Analisis ragam pengaruh nilai pH awal media terhadap LC$_{50}$ Aa 24 jam

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium pH</td>
<td>3</td>
<td>323210256657.0510</td>
<td>07736752219.0170</td>
<td>6.76</td>
<td>0.0480*</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>63765329298.5068</td>
<td>15941332324.6267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>7</td>
<td>3869755585955.5580</td>
<td>59017820.4267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>3869755585955.5580</td>
<td>59017820.4267</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*significantly different

Duncan’s Multiple Range Test for variable: LCAA24H

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Medium pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>724771</td>
<td>2</td>
<td>7.0</td>
</tr>
<tr>
<td>B</td>
<td>266250</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>B</td>
<td>260339</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>B</td>
<td>239823</td>
<td>2</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Lampiran 23 b. Analisis ragam pengaruh nilai pH awal media terhadap LC₅₀ Aa 48jam

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium pH Error</td>
<td>3</td>
<td>483052046259.0600</td>
<td>161017348753.0200</td>
<td>3.29</td>
<td>0.1401</td>
</tr>
<tr>
<td>Corrected Total</td>
<td>4</td>
<td>195821596136.8380</td>
<td>48955399034.2097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>7</td>
<td>678873642395.8990</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: LCAA48H

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Medium pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>851495</td>
<td>2</td>
<td>7.0</td>
</tr>
<tr>
<td>A</td>
<td>300698</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>A</td>
<td>280540</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>A</td>
<td>272309</td>
<td>2</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Lampiran 23c. Analisis ragam pengaruh nilai pH awal media terhadap LC₉₀ Cₓ 24 jam

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium pH</td>
<td>3</td>
<td>9545585629566.0290</td>
<td>318188543189.6760</td>
<td>4.89</td>
<td>0.0795</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>260025247766.0110</td>
<td>65006311941.5029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>7</td>
<td>1214590877335.0400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>2476448366913.5300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan’s Multiple Range Test for variable: LCCX24H

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Medium pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>610492</td>
<td>2</td>
<td>7.0</td>
</tr>
<tr>
<td>B</td>
<td>1204193</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>B</td>
<td>1048626</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>B</td>
<td>645942</td>
<td>2</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Lampiran 23d. Analisis ragam pengaruh nilai pH awal media terhadap LC$_{50}$ Cx 48 jam

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>3</td>
<td>1396927249527.4300</td>
<td>465642416509.1450</td>
<td>10.96</td>
<td>0.0212*</td>
</tr>
<tr>
<td>PH</td>
<td>4</td>
<td>169874345863.9370</td>
<td>42468586465.9843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>7</td>
<td>156801595391.3700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1396927249527.4300</td>
<td>465642416509.1450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: LCCX48H

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Medium pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A</td>
<td>1849210</td>
<td>2</td>
<td>7.0</td>
</tr>
<tr>
<td>B A</td>
<td>1450324</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>B C</td>
<td>1193767</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>C C</td>
<td>697530</td>
<td>2</td>
<td>6.5</td>
</tr>
<tr>
<td>Suhu Inkubasi</td>
<td>pH</td>
<td>VSC (\times 10^6)/mL</td>
<td>OD</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>28°C</td>
<td>8.0</td>
<td>1.4</td>
<td>18</td>
</tr>
<tr>
<td>30°C</td>
<td>8.2</td>
<td>1.7</td>
<td>19</td>
</tr>
<tr>
<td>32°C</td>
<td>8.2</td>
<td>1.5</td>
<td>18</td>
</tr>
</tbody>
</table>

Lampiran 24. pH saat panen, VSC, dan ODbwm dari cairan kultivasi yang berbeda
Lampiran 25. Analisis ragam pengaruh suhu inkubasi pada OD

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>2</td>
<td>11.35630134</td>
<td>5.67815067</td>
<td>13.90</td>
<td>0.0304</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>1.22530010</td>
<td>0.40843337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>5</td>
<td>12.58160144</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duncan’s Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13.2400</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B A</td>
<td>11.7150</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>9.8750</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
Duncan's Multiple Range Test for variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6000</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>A</td>
<td>1.6500</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>A</td>
<td>1.8000</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>2</td>
<td>0.04333333</td>
<td>0.02166667</td>
<td>0.6756</td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>5</td>
<td>0.14500000</td>
<td>0.04833333</td>
<td>0.45</td>
<td>0.6756</td>
</tr>
<tr>
<td>Source of Temperature</td>
<td>3</td>
<td>0.00433333</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of Mean Square</td>
<td>1</td>
<td>0.00433333</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- Duncan's Multiple Range Test is used to determine if there are significant differences between group means.
- The test results show no significant difference in VSC means across different temperatures and mean squares.

Source: Duncan, G. 1955. Duncan's Multiple Range Test.
<table>
<thead>
<tr>
<th>Kecepatan Agitasi (rpm)</th>
<th>VSC (x 10^3/ml)</th>
<th>pH</th>
<th>OD_600nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2.8</td>
<td>6.45</td>
<td>8.11</td>
</tr>
<tr>
<td>200</td>
<td>6.63</td>
<td>6.48</td>
<td>11.28</td>
</tr>
<tr>
<td>240</td>
<td>7.32</td>
<td>7.00</td>
<td>7.32</td>
</tr>
<tr>
<td>280</td>
<td>7.35</td>
<td>7.00</td>
<td>7.35</td>
</tr>
<tr>
<td>320</td>
<td>8.163</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>250</td>
<td>10.52</td>
<td>6.23</td>
<td>6.23</td>
</tr>
<tr>
<td>300</td>
<td>13.92</td>
<td>6.23</td>
<td>6.23</td>
</tr>
<tr>
<td>350</td>
<td>12.62</td>
<td>6.23</td>
<td>6.23</td>
</tr>
</tbody>
</table>

Lampiran 28. VSC, pH saat panen dan OD_600nm dari cairan kultivasi yang berbeda
Lampiran 29a. Faktor pengenceran yang menyebabkan 50 % Larva A. aegypti mati dari cairan kultivasi yang berasal dari kecepatan agitasi yang berbeda

<table>
<thead>
<tr>
<th>Kecepatan Agitasi (rpm)</th>
<th>LC50 24 h</th>
<th>Ulangan I</th>
<th>LC50 24 h</th>
<th>Ulangan II</th>
<th>LC50 48 h</th>
<th>Ulangan I</th>
<th>LC50 48 h</th>
<th>Ulangan II</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>382 533.09</td>
<td>339 199.69</td>
<td>424 439.29</td>
<td>440 394.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>552 809.28</td>
<td>896 732.75</td>
<td>547 444.07</td>
<td>11 555 46.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>748 443.54</td>
<td>649 839.48</td>
<td>851 689.41</td>
<td>743 053.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 29b. Faktor pengenceran yang menyebabkan 50 % Larva C. quinquefasciatus mati dari cairan kultivasi yang berasal dari kecepatan agitasi yang berbeda

<table>
<thead>
<tr>
<th>Kecepatan Agitasi (rpm)</th>
<th>LC50 24 h</th>
<th>Ulangan I</th>
<th>LC50 24 h</th>
<th>Ulangan II</th>
<th>LC50 48 h</th>
<th>Ulangan I</th>
<th>LC50 48 h</th>
<th>Ulangan II</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>619 702.46</td>
<td>534 394.46</td>
<td>664 993.4</td>
<td>622 151.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1 301 797.85</td>
<td>1 919 186.58</td>
<td>1 596 114.50</td>
<td>2 102 304.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>1 070 145.15</td>
<td>1 146 910.24</td>
<td>1 228 209.89</td>
<td>1 268 117.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 30. Nilai pH cairan Kultivasi dari bioreaktor STR (Tangki berpengaduk) dan BC (Bubble Column) dengan variasi tiga laju aerasi

<table>
<thead>
<tr>
<th>Jam ke</th>
<th>STR 1 vvm</th>
<th>STR 1.5 vvm</th>
<th>BC 0.5 vvm</th>
<th>BC 1 vvm</th>
<th>BC 1.5 vvm</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI1</td>
<td>UI1</td>
<td>UI2</td>
<td>Rata2</td>
<td>UI1</td>
<td>UI2</td>
</tr>
<tr>
<td>0</td>
<td>7.7</td>
<td>7.05</td>
<td>6.72</td>
<td>6.9</td>
<td>7.02</td>
</tr>
<tr>
<td>3</td>
<td>7.7</td>
<td>6.65</td>
<td>6.54</td>
<td>6.6</td>
<td>6.76</td>
</tr>
<tr>
<td>6</td>
<td>6.44</td>
<td>5.54</td>
<td>5.13</td>
<td>5.3</td>
<td>5.46</td>
</tr>
<tr>
<td>9</td>
<td>6.07</td>
<td>5.98</td>
<td>4.98</td>
<td>5.21</td>
<td>5.34</td>
</tr>
<tr>
<td>12</td>
<td>6.51</td>
<td>6.42</td>
<td>5.2</td>
<td>5.81</td>
<td>5.31</td>
</tr>
<tr>
<td>24</td>
<td>7.59</td>
<td>6.92</td>
<td>6.43</td>
<td>5.7</td>
<td>6.07</td>
</tr>
<tr>
<td>72</td>
<td>8.42</td>
<td>7.98</td>
<td>8.1</td>
<td>8.04</td>
<td>8.53</td>
</tr>
</tbody>
</table>
Lampiran 31.

Nilai gula sisa (g/L) cairan Kultivasi dari bioreaktor STR (Tangki berpengaduk) dan BC (Bubble Column) dengan variasi tiga laju aerasi,

<table>
<thead>
<tr>
<th>Jam ke</th>
<th>STR 1 vvm</th>
<th>STR 1.5 vvm</th>
<th>BC 0.5 vvm</th>
<th>BC 1 vvm</th>
<th>BC 1.5 vvm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.63</td>
<td>2.47</td>
<td>2.47</td>
<td>2.41</td>
<td>2.46</td>
</tr>
<tr>
<td>3</td>
<td>2.27</td>
<td>1.68</td>
<td>1.65</td>
<td>1.77</td>
<td>2.07</td>
</tr>
<tr>
<td>6</td>
<td>2.43</td>
<td>1.06</td>
<td>1.47</td>
<td>1.33</td>
<td>1.62</td>
</tr>
<tr>
<td>9</td>
<td>1.49</td>
<td>0.85</td>
<td>0.90</td>
<td>0.96</td>
<td>1.03</td>
</tr>
<tr>
<td>12</td>
<td>1.40</td>
<td>0.83</td>
<td>0.74</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>24</td>
<td>1.33</td>
<td>0.81</td>
<td>0.64</td>
<td>0.72</td>
<td>0.94</td>
</tr>
<tr>
<td>48</td>
<td>0.47</td>
<td>0.82</td>
<td>0.45</td>
<td>0.62</td>
<td>0.77</td>
</tr>
<tr>
<td>72</td>
<td>0.34</td>
<td>0.78</td>
<td>0.45</td>
<td>0.61</td>
<td>0.50</td>
</tr>
<tr>
<td>Jam</td>
<td>STR</td>
<td>STR</td>
<td>BC</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.66</td>
<td>0.66</td>
<td>0.65</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

Nilai asam asetat (g/L) cairan Kultur dan bioreaktor STR (Tangki pengaduh) dan BC (Bubble Column) dengan variasi laju aerasi.
Lampiran 33. Analisis Ragam Pengaruh Tipe Bioreaktor terhadap pH.

Variances Analysis of pH as The Result of Different Reactor and Aeration

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor</td>
<td>1</td>
<td>0.85333336</td>
<td>0.8533336</td>
<td>19.69</td>
<td>0.0044</td>
</tr>
<tr>
<td>Aeration</td>
<td>2</td>
<td>0.09500000</td>
<td>0.04750000</td>
<td>1.10</td>
<td>0.3929</td>
</tr>
<tr>
<td>Reactor*Aeration</td>
<td>2</td>
<td>1.06166670</td>
<td>0.5308335</td>
<td>12.25</td>
<td>0.0076</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.26000001</td>
<td>0.0433333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11</td>
<td>2.27000007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means: Different type of bioreactor too significantly affected the pH

Duncan's Multiple Range Test for variable: pH

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.7167</td>
<td>6</td>
<td>STR</td>
</tr>
<tr>
<td>B</td>
<td>7.1833</td>
<td>6</td>
<td>BC</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: pH

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.5750</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td>7.4000</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>A</td>
<td>7.3750</td>
<td>4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: pH

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR*AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.2500</td>
<td>2</td>
<td>STR 0.5</td>
</tr>
<tr>
<td>B</td>
<td>7.5500</td>
<td>2</td>
<td>STR 1.0</td>
</tr>
<tr>
<td>C</td>
<td>7.4000</td>
<td>2</td>
<td>BC 1.0</td>
</tr>
<tr>
<td>C</td>
<td>7.3500</td>
<td>2</td>
<td>STR 1.0</td>
</tr>
<tr>
<td>C</td>
<td>7.2500</td>
<td>2</td>
<td>BC 1.5</td>
</tr>
<tr>
<td>C</td>
<td>6.9000</td>
<td>2</td>
<td>BC 0.5</td>
</tr>
</tbody>
</table>
Lampiran Nilai OD 560nm cairan Kultivasi dari bioreaktor STR (Tangki berpengaduk) dan BC (Bubble Column) dengan variasi tiga laju aerasi

<table>
<thead>
<tr>
<th>Jam ke</th>
<th>UI 1</th>
<th>UI 2</th>
<th>Rata2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.09</td>
<td>0.21</td>
<td>0.185</td>
<td>0.155</td>
<td>0.17</td>
<td>0.60</td>
<td>0.35</td>
<td>0.48</td>
<td>0.17</td>
<td>0.47</td>
<td>0.32</td>
<td>0.67</td>
<td>0.81</td>
<td>0.74</td>
<td>0.31</td>
</tr>
<tr>
<td>30</td>
<td>0.38</td>
<td>0.57</td>
<td>0.75</td>
<td>1.02</td>
<td>0.75</td>
<td>0.60</td>
<td>0.78</td>
<td>0.89</td>
<td>0.19</td>
<td>0.10</td>
<td>0.14</td>
<td>1.01</td>
<td>0.90</td>
<td>0.96</td>
<td>0.39</td>
</tr>
<tr>
<td>60</td>
<td>0.23</td>
<td>0.22</td>
<td>0.90</td>
<td>1.21</td>
<td>1.06</td>
<td>1.04</td>
<td>1.16</td>
<td>1.10</td>
<td>0.20</td>
<td>0.43</td>
<td>0.32</td>
<td>0.70</td>
<td>0.50</td>
<td>0.60</td>
<td>0.53</td>
</tr>
<tr>
<td>90</td>
<td>1.14</td>
<td>1.11</td>
<td>1.43</td>
<td>1.81</td>
<td>1.62</td>
<td>1.63</td>
<td>1.21</td>
<td>1.42</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>1.09</td>
<td>0.93</td>
<td>1.01</td>
<td>0.82</td>
</tr>
<tr>
<td>120</td>
<td>1.92</td>
<td>1.75</td>
<td>2.17</td>
<td>3.86</td>
<td>3.02</td>
<td>3.90</td>
<td>3.76</td>
<td>3.83</td>
<td>1.94</td>
<td>1.74</td>
<td>1.84</td>
<td>2.27</td>
<td>2.45</td>
<td>2.36</td>
<td>1.93</td>
</tr>
<tr>
<td>240</td>
<td>3.10</td>
<td>3.30</td>
<td>4.75</td>
<td>4.43</td>
<td>4.59</td>
<td>3.21</td>
<td>4.39</td>
<td>3.80</td>
<td>5.89</td>
<td>4.60</td>
<td>5.25</td>
<td>6.54</td>
<td>6.44</td>
<td>6.49</td>
<td>3.68</td>
</tr>
<tr>
<td>480</td>
<td>1.87</td>
<td>1.46</td>
<td>3.38</td>
<td>3.81</td>
<td>3.60</td>
<td>3.18</td>
<td>5.52</td>
<td>4.35</td>
<td>5.22</td>
<td>3.12</td>
<td>4.17</td>
<td>7.90</td>
<td>7.31</td>
<td>7.61</td>
<td>4.26</td>
</tr>
<tr>
<td>720</td>
<td>1.01</td>
<td>1.95</td>
<td>2.29</td>
<td>2.40</td>
<td>2.35</td>
<td>2.45</td>
<td>1.01</td>
<td>1.73</td>
<td>3.74</td>
<td>2.25</td>
<td>3.00</td>
<td>5.51</td>
<td>5.11</td>
<td>5.31</td>
<td>1.68</td>
</tr>
<tr>
<td>Jam</td>
<td>STR</td>
<td>STR</td>
<td>BC</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 vvm</td>
<td>1.5 vvm</td>
<td>0.5 vvm</td>
<td>vvm</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>UI2</td>
<td>UI1</td>
<td>UI2</td>
<td>UI1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rata2</td>
<td>UI1</td>
<td>UI2</td>
<td>Rata2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.1</td>
<td>1.8</td>
<td>1.70</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
<td>2.1</td>
<td>1.90</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.1</td>
<td>2.5</td>
<td>1.65</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>1.9</td>
<td>1.55</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.7</td>
<td>2.4</td>
<td>2.00</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.6</td>
<td>3.25</td>
<td>2.30</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.8</td>
<td>3.00</td>
<td>2.75</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3.00</td>
<td>2.10</td>
<td>2.00</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 36a. Analisis Ragam Pengaruh Tipe Bioreaktor dan laju Aerasi terhadap OD.

Variances Analysis of OD as The Result of Different Reactor and Aeration

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor</td>
<td>1</td>
<td>11.72163360</td>
<td>11.72163360</td>
<td>10.74</td>
<td>0.0169</td>
</tr>
<tr>
<td>Aeration</td>
<td>2</td>
<td>15.71201680</td>
<td>7.85600840</td>
<td>7.20</td>
<td>0.0255</td>
</tr>
<tr>
<td>Reactor*Aeration</td>
<td>2</td>
<td>12.36171642</td>
<td>6.18085821</td>
<td>5.66</td>
<td>0.0415</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>6.54779973</td>
<td>1.09129996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11</td>
<td>46.34316655</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means: Different type of bioreactor and reaction rates too significantly affected the OD

Duncan's Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.1100</td>
<td>6</td>
<td>BC</td>
</tr>
<tr>
<td>B</td>
<td>3.1333</td>
<td>6</td>
<td>STR</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.6000</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>A</td>
<td>3.9525</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>B</td>
<td>2.8125</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: OD

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR*AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.605</td>
<td>2</td>
<td>BC 1.0</td>
</tr>
<tr>
<td>B</td>
<td>4.350</td>
<td>2</td>
<td>STR 1.5</td>
</tr>
<tr>
<td>C</td>
<td>3.595</td>
<td>2</td>
<td>STR 1.0</td>
</tr>
<tr>
<td>C</td>
<td>3.555</td>
<td>2</td>
<td>BC 1.5</td>
</tr>
<tr>
<td>C</td>
<td>1.455</td>
<td>2</td>
<td>STR 0.5</td>
</tr>
</tbody>
</table>
Tampiran 36b. Analisis Ragam Pengaruh Tipe Bioreaktor dan laju Aerasi terhadap Biomassa

Variances Analysis of Biomassa as The Result of Different Reactor and Aeration

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor</td>
<td>1</td>
<td>0.13020835</td>
<td>0.13020835</td>
<td>0.22</td>
<td>0.6549</td>
</tr>
<tr>
<td>Aeration</td>
<td>2</td>
<td>3.21125011</td>
<td>1.60562505</td>
<td>2.72</td>
<td>0.1439</td>
</tr>
<tr>
<td>Reactor*Aeration</td>
<td>2</td>
<td>7.70291679</td>
<td>3.85145840</td>
<td>6.53</td>
<td>0.0311</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>3.53624993</td>
<td>0.58937499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11</td>
<td>14.58062518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means: Different type of bioreactor and reaction rates didn’t affect the biomass

Duncan’s Multiple Range Test for variable: Biomassa

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.3917</td>
<td>6</td>
<td>BC</td>
</tr>
<tr>
<td>A</td>
<td>3.1833</td>
<td>6</td>
<td>STR</td>
</tr>
</tbody>
</table>

Duncan’s Multiple Range Test for variable: Biomassa

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.9500</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>A</td>
<td>3.2250</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>A</td>
<td>2.6875</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Duncan’s Multiple Range Test for variable: Biomassa

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR*AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.1750</td>
<td>2</td>
<td>BC 1.0</td>
</tr>
<tr>
<td>A</td>
<td>3.8250</td>
<td>2</td>
<td>STR 1.5</td>
</tr>
<tr>
<td>B</td>
<td>3.0000</td>
<td>2</td>
<td>STR 0.5</td>
</tr>
<tr>
<td>B</td>
<td>2.7250</td>
<td>2</td>
<td>STR 1.0</td>
</tr>
<tr>
<td>B</td>
<td>2.6250</td>
<td>2</td>
<td>BC 1.5</td>
</tr>
<tr>
<td>B</td>
<td>2.3750</td>
<td>2</td>
<td>BC 0.5</td>
</tr>
<tr>
<td>Jam ke</td>
<td>STR 1 vvm</td>
<td>STR 1.5 vvm</td>
<td>BC 0.5 vvm</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>12.5</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>14</td>
<td>23.5</td>
<td>22</td>
</tr>
<tr>
<td>72</td>
<td>8</td>
<td>9.5</td>
<td>14</td>
</tr>
</tbody>
</table>

3.3 C (x 10^5)/ml cairan Kultivasi dari bioreaktor STR (Tangki berpengaduk) dan BC (Kolom Gelembung) dengan variasi laju aerasi.

<table>
<thead>
<tr>
<th></th>
<th>UI I</th>
<th>UI II</th>
<th>Rata I</th>
<th>UI I</th>
<th>UI II</th>
<th>Rata I</th>
<th>UI I</th>
<th>UI II</th>
<th>Rata I</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>12.5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>21</td>
<td>26.5</td>
<td>22</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
<td>9.5</td>
<td>11</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Lampiran 37: Niiai VSC (A0~1m1 cairan Kultivasi dari bioreaktor STR (Tangki berpengaduk) dan BC (Kolom Gelembung) dengan variasi laju aerasi.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UI I</td>
<td>UI II</td>
<td>Rata I</td>
<td>UI I</td>
<td>UI II</td>
<td>Rata I</td>
<td>UI I</td>
<td>UI II</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>12.5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>21</td>
<td>26.5</td>
<td>22</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>11</td>
<td>9.5</td>
<td>11</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Bogor Agricultural University
Variance Analysis of VSC as the Result of Different Reactor and Aeration

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor</td>
<td>1</td>
<td>85.3333333333</td>
<td>85.3333333333</td>
<td>5.39</td>
<td>0.0593</td>
</tr>
<tr>
<td>Aeration</td>
<td>2</td>
<td>72.6666666667</td>
<td>36.3333333333</td>
<td>2.29</td>
<td>0.1819</td>
</tr>
<tr>
<td>Reactor*Aeration</td>
<td>2</td>
<td>82.6666666667</td>
<td>41.3333333333</td>
<td>2.61</td>
<td>0.1529</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>95.0000000000</td>
<td>15.8333333333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11</td>
<td>335.6666666667</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means for different type of bioreactor and reaction rates didn't affect the VSC.

Duncan's Multiple Range Test for variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.833</td>
<td>6</td>
<td>BC</td>
</tr>
<tr>
<td>A</td>
<td>19.500</td>
<td>6</td>
<td>STR</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25.000</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>A</td>
<td>22.500</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>A</td>
<td>19.000</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Duncan's Multiple Range Test for variable: VSC

<table>
<thead>
<tr>
<th>Duncan Grouping</th>
<th>Mean</th>
<th>N</th>
<th>REACTOR*AERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>29.000</td>
<td>2</td>
<td>BC 1.5</td>
</tr>
<tr>
<td>B</td>
<td>24.000</td>
<td>2</td>
<td>BC 0.5</td>
</tr>
<tr>
<td>B</td>
<td>23.500</td>
<td>2</td>
<td>STR 1.0</td>
</tr>
<tr>
<td>B</td>
<td>21.500</td>
<td>2</td>
<td>BC 1.0</td>
</tr>
<tr>
<td>B</td>
<td>21.000</td>
<td>2</td>
<td>STR 1.5</td>
</tr>
<tr>
<td>B</td>
<td>14.000</td>
<td>2</td>
<td>STR 0.5</td>
</tr>
<tr>
<td>Serangga</td>
<td>UI1</td>
<td>UI2</td>
<td>Rata2</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>STR 0.5 vvm</td>
<td>169540.43</td>
<td>154410.89</td>
<td>139280.96</td>
</tr>
<tr>
<td>STR 1 vvm</td>
<td>306950.18</td>
<td>324662.74</td>
<td>289237.63</td>
</tr>
<tr>
<td>STR 1.5 vvm</td>
<td>32094.83</td>
<td>426711.25</td>
<td>479627.75</td>
</tr>
</tbody>
</table>

Lampiran 35a: Faktor Pengenceran yang menyebabkan 50% serangga uji mati cairan Kultivasi dan bioreaktor STR (Tangki berpengaduk) dengan variasi laju aerasi.
Lampiran 39

<table>
<thead>
<tr>
<th>Faktor Pengenceran yang menyebabkan 50% serangga uji mati cairan KuHivasi dari bioreaktor 8C (Kolam Gelernburg) dengan vaki laju aerasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 0 vvm</td>
</tr>
<tr>
<td>BC 1 vvm</td>
</tr>
<tr>
<td>BC 1.5 vvm</td>
</tr>
</tbody>
</table>

Bogor Agricultural University

Hak cipta milik IP (Institut Pertanian Bogor)
<table>
<thead>
<tr>
<th>Unit</th>
<th>Rasio Aktivitas</th>
<th>STR 1vvm</th>
<th>STR 1.5vvm</th>
<th>STR 0.5vvm</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>0.78</td>
<td>0.91</td>
<td>0.79</td>
<td>0.48</td>
</tr>
<tr>
<td>U2</td>
<td>0.81</td>
<td>0.90</td>
<td>0.79</td>
<td>0.48</td>
</tr>
<tr>
<td>STR 2</td>
<td>0.80</td>
<td>0.90</td>
<td>0.62</td>
<td>0.48</td>
</tr>
<tr>
<td>STR 3</td>
<td>0.84</td>
<td>1.09</td>
<td>1.09</td>
<td>1.00</td>
</tr>
<tr>
<td>STR 4</td>
<td>1.09</td>
<td>1.09</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Keterangan:
- Lampiran 40
- Rasio aktivitas dari toksin yang diperoleh dari bioreaktor STR dan BC dengan tiga laju aerasi

Bogor Agricultural University
Diagram menunjukkan bagian bagian reaktor bioreaktor. Komponen-komponen di dalam diagram berfungsi sebagai berikut:

1. **Tabung Alkohol**
 - Untuk mengonsumsi alkohol.

2. **Rotameter**
 - Untuk mengukur aliran udara.

3. **Kompresor**
 - Untuk menghasilkan udara.

4. **Filter Udara**
 - Untuk menjaga kualitas udara.

5. **Tabung Pengumpul**
 - Untuk mengumpulkan alkohol yang terbentuk.

6. **Bioreaktor**
 - Tempat proses fermentasi terjadi.

7. **Penangas Air**
 - Untuk menangkal efek peningkatan suhu.

Diagram ini menunjukkan bagaimana udara yang dihasilkan oleh kompresor melalui filter udara, kemudian dialirkan ke bioreaktor. Aliran udara ini akan mengalir melalui rotameter untuk mengukur alirannya sebelum masuk ke tabung alkohol. Selain itu, air juga akan dialirkan melalui tabung pengumpul untuk mengumpulkan alkohol yang terbentuk.
Kromatogram Standaar Asam amino yang digunakan pada saat analisis asam amino pada Kristal dari Ati Tibet Liar
<table>
<thead>
<tr>
<th>TIME</th>
<th>AREA</th>
<th>METHOD NAME</th>
<th>REPORT NO</th>
<th>FILE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.325</td>
<td>85657</td>
<td>1.65116977</td>
<td>3.675</td>
<td>9.142</td>
<td>4440</td>
</tr>
</tbody>
</table>

Lampiran 43: Kromatogram Asam amino pada protein yang diolahan dan DIL TYPE 181
Kromatogram Standar Asam amino yang digunakan pada saat analisis asam amino pada kristal dari Bti Mutan

<table>
<thead>
<tr>
<th>TIME</th>
<th>AREA</th>
<th>MK</th>
<th>IDNO</th>
<th>CONC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.308</td>
<td>424460</td>
<td>1</td>
<td></td>
<td>7.1649</td>
</tr>
<tr>
<td>1.633</td>
<td>435743</td>
<td>V1</td>
<td></td>
<td>7.3965</td>
</tr>
<tr>
<td>3.75</td>
<td>509798</td>
<td>5</td>
<td></td>
<td>8.2542</td>
</tr>
<tr>
<td>4.275</td>
<td>456880</td>
<td>V</td>
<td></td>
<td>7.6107</td>
</tr>
<tr>
<td>5.525</td>
<td>452198</td>
<td>5</td>
<td></td>
<td>7.6343</td>
</tr>
<tr>
<td>6.175</td>
<td>466760</td>
<td>V</td>
<td></td>
<td>6.6671</td>
</tr>
<tr>
<td>8.55</td>
<td>431250</td>
<td>5</td>
<td></td>
<td>7.2893</td>
</tr>
<tr>
<td>9.208</td>
<td>397399</td>
<td>V</td>
<td></td>
<td>6.7891</td>
</tr>
<tr>
<td>9.925</td>
<td>7648</td>
<td>V</td>
<td></td>
<td>0.1291</td>
</tr>
<tr>
<td>10.458</td>
<td>8063</td>
<td>V</td>
<td></td>
<td>0.1361</td>
</tr>
<tr>
<td>10.858</td>
<td>388588</td>
<td>V3</td>
<td></td>
<td>6.4253</td>
</tr>
<tr>
<td>13.825</td>
<td>10153</td>
<td></td>
<td></td>
<td>0.1714</td>
</tr>
<tr>
<td>14.583</td>
<td>347601</td>
<td>V</td>
<td></td>
<td>5.8583</td>
</tr>
<tr>
<td>14.858</td>
<td>435834</td>
<td>V</td>
<td></td>
<td>7.2588</td>
</tr>
<tr>
<td>15.983</td>
<td>312829</td>
<td>V</td>
<td></td>
<td>5.2813</td>
</tr>
<tr>
<td>17.558</td>
<td>483142</td>
<td>13</td>
<td></td>
<td>6.8861</td>
</tr>
<tr>
<td>18.242</td>
<td>351967</td>
<td>V</td>
<td></td>
<td>5.9421</td>
</tr>
<tr>
<td>18.958</td>
<td>7519</td>
<td>V</td>
<td></td>
<td>6.1269</td>
</tr>
<tr>
<td>21.058</td>
<td>159185</td>
<td>V</td>
<td></td>
<td>2.6875</td>
</tr>
</tbody>
</table>
Kromatogram Asam amino pada kristal yang diperoleh dari Bt Mutan

2. Diolokan mengumpulkan dan memperpanjang ekspresi asam amino tertentu dalam kolom bentuk agregat tumpang tindih.

3. Perlu inkubasi untuk mendapatkan reaksi dengan air yang kaya terhadap MA 'Agung' dan MA 'Agung'

4. Penjelasaneksplorasi ekspresi asam amino yang dapat diikuti oleh MA 'Agung' dan MA 'Agung'.