Proceedings of the 24th Asian-Pacific Weed Science Society Conference
October 22-25, 2013, Bandung Indonesia

BAKI HJ. BAKAR
DENNY KURNIADIE
SOEKISMAN TJITROSOEDIRDJO
(Editors)

PUBLISHED BY ASIAN-PACIFIC WEED SCIENCE SOCIETY
IN COLLABORATION WITH
WEED SCIENCE SOCIETY OF INDONESIA
PADJADJARAN UNIVERSITY, BANDUNG, INDONESIA
CONTENTS

Preface ... iii
APWSS Executive Committee Members .. iv
Local Organizing Committee .. iv
Scientific Programme Committee .. iv
Profile of APWSS Fellow-Emeritus Prof. Dr. Muhammad Soerjani ... xi
Speakers Profile .. xiv

Keynote Paper and Invited Plenary Papers .. 1
Steve W. Adkins. Some present problems and future approaches to weed management in the Asian-Pacific region: supporting food and environment security by 2020 .. 1
N.T. Yaduraju and Adusumilli N. Rao. Implications of weeds and weed management on food security and safety in The Asia-Pacific region .. 13
A.R. Sharma, V.P. Singh and Raghwendra Singh. Weed management in conservation agriculture systems – problems and prospects .. 31
Albert J. Fischer. Management of multiple-herbicide resistant Echinochloa spp. in rice ... 53
Hisashi Kato-Noguchi. Momilactone plays a crucial role in rice allelopathy .. 60
S.Tjitrosoedirdjo, T.Setyawati, A.Susmianto, A.Subyakto, R. Irianto, and A.Witt. Weed risk assessment - a review ... 68
A.M. Baltazar and D. E. Johnson. Challenges and problems in managing weeds in rice: present and future solutions ... 116
Trevor James and Anis Rahman. Can we successfully manage weeds by manipulating the weed seed bank? .. 126
Y. Fujita. Isolation and identification of allelochemicals from traditional crops and their utilization for agriculture .. 137

Technical Papers .. 144
Invasive Weeds, Ecology and Management ... 144
Setiabudi, S.Tjitrosoedirdjo, Sri.S.Tjitrosoedirdjo, I. Mawardi, Saiful BachrI. Invasion of Acacia nilotica into savannas inside Baluran National Park, East Java, Indonesia .. 144
RM. Kathiresan and S. Deivasigamanii. Invasive spread of water hyacinth in veeranum irrigation system and the impact of herbicidal control on aquatic environment .. 151
Indah Wahyuni and Sri S. Tjitrosoedirdjo. Observation on the development of important weeds and invasive alien plant species in Indonesia ... 159
I.C. Barua, J. Deka, and M. Devi. Invasive weeds and vegetation dynamics in Assam .. 166
Yakup Parto and Erizal Sodikin. The analysis of weed community and dominant weed species changing through growing season/ crop growth stages in lowland rice field .. 171
Denny Kurniadie and Uum Umlyati. Weed mapping in two corn (Zea mays) production centers in West Java province of Indonesia .. 184
Duary, B. and Mukherjee, A. Distribution pattern of predominant weeds in wet season and their management in West Bengal, India .. 191

ASK Abeysekera, MS Wickramarathne, L Nugaliyadde and DE Johnson. Agro-morphological variations of weedy rice populations (Oryza sativa spontanea) in Sri Lanka ... 206

Swarna Herath, O.S. Namuco, Evangelina S. Ella, Aurora M. Baltazar, Abdelbagi M. Ismail and David E. Johnson. Emergence and growth of weedy (Oryza sativa f. Spontanea) and cultivated rice (Oryza sativa) in response to flooding and seed burial depths ... 214

Maria Flitiana, Yakup Parto, Munandar and Dedik Budlanta. Maize productivity and weed species shifts due to organic matter treatments and npk fertilizer applications in Sumatera uplands, Indonesia ... 221

J. Deka, I.C.Barua, N.Borah and N.C.Deka. Weed flora and their management in aquatic environments of Assam, India.. 227

Quarantine, Special Weed Problems and Weeds as Bioresources ... 235

Arifin Tasrif and Ridwan Alaydrus. Strategic management of invasive plant species with reference to the role of agricultural quarantine on the prevention of transboundary movements... 235

Sri S. Tjitrosoedirdjo and Jesus C. Fernandez. Building capacities in weed and invasive alien plant species control and management in Southeast Asia: the SEAMEO BIOTROP Experience... 239

S.Tjtrosoedirdjo, I.Mawardi, Setiabudi, Syaiful and Sri S.Tjtrosoedirdjo. Chemical control of Acacia nilotica under medium density regime populations and broadleaved weeds in bekol savanna Baluran National Park, East Java Indonesia... 246

Herbicide Resistance Weeds ... 258

M. Renton. Simulation modelling can help understand and predict how management, weed biology and genetics affect the development of herbicide resistance .. 258

Edison Purba. A population of goose grass (Eleusine indica) from oil palm field resistant to glyphosate and paraquat .. 266

Deirdre Lemerle and Hanwen Wu. Crop competition for weed management in conservation cropping systems .. 271

Abul Hashem, Catherine Borger and Peter Newman. Competitive hierarchy in weed suppression by barley (Hordeum vulgare), canola (Brassica napus) and wheat (Triticum aestivum) cultivar .. 277

New Innovation in Weed Management .. 284

S Walker, M Widderick, T. Cook, L. Price. Innovative approaches to manage glyphosate-resistant weeds in the subtropical grain region of Australia ... 284

Jin-Won Kim, Chuan-Jie Zhang, Tae-Yong Lee, and Do-Soon Kim. Plant phenomics may help herbicide research and development ... 289

Tillage Practices in Weed Management Practices .. 299
Husni Thamrin Sebayang, Titin Sumarni and Muhamad Noor Azzu. The effect of tillage systems and time of weeding on the growth and yield of corn (Zea mays L.) ... 299

Pijush K Mukherjee, Puspajit Debnath. Weed control practices in maize (Zea mays L.) Under conventional and conservation tillage practices ... 302

Fate of Herbicides and Herbicide Residues .. 312
Nghia Nguyen Khoi, Ulrike Dörfler, Metka Suhadolc, Welzi Gerhard, Jean Charles Munch, and Reiner Schroll. Soil properties governing biodegradation of the herbicide glyphosate in agricultural soils ... 312
P. C. Rao, Ch. S. Rama Lakshmi, M. Madhavi, A. Sireesha and G. Swapna. Herbicide desorption in alfisols and vertisols of Andhra Pradesh, India ... 325
K. M. Durga Devi, C.T. Abraham, S. Krishnan. Changes in chemical and biological characteristics of soil under long term application of herbicides in rice rice system ... 331

Allelopathy and Allelochemicals ... 338
A.K.M. Mominul Islam and Hisashi Kato-Noguchi. Isolation and characterization of allelopathic substance from Leucas aspera ... 338
Sobor Darana. Allelopathic activity of lantana leaf extract (Lantana camara) on the weed intea (Camellia sinensis) ... 341
S.H.S. Senarathne and I.M.P.S. Hangamudali. Effect of different agronomic practices on Vernonia zeylanica (L.) plant population changes and seedling emergence pattern in coconut plantations in Sri Lanka ... 346
M. A. Chozin, Y. Delsi, R. Saputra, N. Syariffi, S. A. Ariffin and S. Zaman. Some studies on allelopathic potential of Cyperus Rotundus L ... 353
Zahid Ata Cheema, Muhammad Naem and Muhammad Farooq. Application of allelopathy for weed management and growth promotion in wheat ... 361
M. Ameena, V.L. Geetha Kumari and Sansamma George. Potential application of nutsedge (Cyperus rotundus L.) extracts for weed suppression and identification of allelochemicals ... 370
Chamroon Laosinwattana, Jatupon Huypao, Patchanee Charoenying, Kamol Lertdetdecha and Montinee Teerarak. Herbicidal activity of Porganic™, application and its potential used as natural post-emergence herbicide in paddy rice ... 376
Montinee Teerarak, Kanokporn Changsawake, Jatupon Huypao, Pattharin Wichitrakarn, Patchanee Charoenying, Natchaya Chumsawas and Chamroon Laosinwattana. Herbicidal activity of Porganic™, phytoxic effects and its physiological mechanisms on bioassay plants ... 383
Pattharin Wichitrakarn, Montinee Teerarak and Chamroon Laosinwattana. Allelopathic potential of Tagetes erecta linn; optimal extraction solvent and its partially separation of active compounds ... 391
Ramesh K. Singh and Babu Lal Meena. Influence of rice residue management practices and herbicides on weed growth and yield in wheat (Triticum aestivum) ... 398
Fukiko Kimura, Yoshiko Fushimi and Hisashi Kato-Noguchi. Isolation and identification of allelopathic substances from the litter of japanese red pine ... 404
Y. Nornasuba and B.S. Ismail. Comparative allelopathic effects of Chromolaena odorata (L.) King & Robinson and Mikania micrantha h.b.k. on Ageratum conyzoides ... 407
Muhammad Ishfaq Khan and Muhammad Kabir. Allelopathic effects of different weeds on the seed germination of wheat and chickpea ... 412
Baki Hj Bakar, Sow Tein Leong, Muhammad Remy Othman, Mohamad Suffian Mohamad Annuar and Khalijah Awang. Allelochemicals in Cuscuta campestris Yuncker... 417

Weed Management in Rice... 424

N. Lap, S. Somsak, I.M. Yuli, Le Duy, Lee Leng Choy, Ermita, Bella Victoria, B.V. Niranjana, R.K. Mann. Efficacy and rice tolerance to pencylsulam+ cyhalofop herbicide mixtures in ASEAN countries.. 424

Kevin C. Salamanz, Aurora M. Baltazar, Evelyn B. Rodriguez, Marivic S. Lacsamana, Abdelbagi M. Ismail and David E. Johnson. Effect of propyrisulfuron on growth and acetolactate synthase activity of five weed species and three rice (Oryza Sativa L.) cultivars .. 438

Sheeja K Raj, Nimmy Jose, Reena Mathew, Sandhyadevi, C. D. and Leenakumary S. Evaluation of broad spectrum herbicide- bispyribac sodium + metamifop on weed control and productivity of direct-seeded rice in Kuttanad 447

Nimmy Jose, C T Abraham, Reena Mathew1 and Leenakumary S. Biology and management of weedy rice in direct-seeded puddled rice.. 454

Sharif Ahmed, Bhagirath Singh Chauhan and E. Humphreys. Effect of application timings of soil applied herbicides on weed growth and crop yield in dry-seeded rice in Bangladesh .. 462

Weed Management Field Crops.. 470

M.T. Sanjay, T.V. Ramachandra Prasad, Sannathimanna and R. Devendra. Bio-efficacy of ethoxysulfuron 15 WG (Sunrice 15 WG) for management of sedge and broadleafed weeds in sugarcane.. 477

Chuah, T.S, Siti Nurul, M.S and Dilipkumar, M. Effects of oil palm rachis residue mulch in combination with pretilachlor on control of goosegrass (Eleusine indica) .. 482

K.Sivagamy and C. Chinnusamy. Evaluation of bio-efficacy, weed control efficiency and yield in herbicide resistant transgenic-stacked corn hybrids (tc1507 x nk603) for crop productivity.. 487

V. Pratap Singh, S.P. Singh, V.C. Dhyani, Neeta Tripathi, A. Banga and Vimal Raj Yadav. Effect of establishment methods on shifting of weed flora in rice-wheat cropping system.. 494

Economics and Weed Management... 500

M. Madhavi, T. Ramprakash, A. Srinivas and M. Yakadrl. Integrated weed management in maize (Zea mays L.) For supporting food security in Andhra Pradesh, India.. 510

Posters ... 517

Weed Invasives and Ecology.. 517

Tomoko Ohno, Hisayuki Maenaka, Takashi Kimata, Kosuke Ito, Naoki Kiyota, Sousuke Ono, Shinya Shiomi and Hirofumi Yamaguchi. Weed invasion in airport concrete pavement and weed control issues... 517

Zhen Song, Weidong Fu, Guoliang Zhang. Rhizosphere functional microorganisms analysis of Flaveria bidentis (L.) Kuntze... 525
S.Childs, C.P.D. Borger, P.J Michael, A. Hashem, M.Renton. Understanding how weed species, diversity and communities vary with weather, climate, soil, land use and time in South-West Western Australia ... 527

Cho Kwang-Min, Lee Sang-Bok, Back Nam-Hyun, Moon Yae-Jin, Yang Chang-Hyu, Shin Pyung, Lee Kyung-Bo, Park Ki-Hun and Jung Nam-Jin. Salt accumulation capacity comparison by the parts of the plant of the forage barnyard grass under the salt stress .. 530

Cho Kwang-Min, Lee Sang-Bok, Back Nam-Hyun, Moon Yae-Jin, Yang Chang-Hyu, Shin Pyung, Lee Kyung-Bo, Park Ki-Hun and Jung Nam-Jin. Seed germination of the forage barnyard millet collected for seeding under the salt stress .. 533

Sun Kim, Jae-Hyeok Jeong, Weon-Young Choi, Jang-Hee Lee, Kyeong-Bo Lee, and Il-Bin Im. Change of vegetation characteristics and soil chemical properties at Saemangeum reclaimed land Ge-Hwa area in Korea .. 536

Merry Antralina, Yuyun Yuwarialah, Tualar Simarmata. Weed identification on rice cultivation of SOBARI system ... 539

Shigenori Okawa. Vegetation changes and weeds management of farmland after the tsunami of Great East Japan Earthquake in Miyagi Prefecture ... 543

Inder Dev, K.B. Sridhar, Rupali Tiwari and S.K. Dhyani. Weeds diversity in bamboo based agroforestry system in semi-arid central India ... 547

Jasmin G. Packer, Sue M. Carthew, José M. Facelli. Evidence-based impact assessments: benefits and threats of weeds for native fauna ... 531

Yu hullin, Niu hongbo, Yang xinhao, and Li xiangju. A comparison of arthropod communities in herbicide-tolerant and conventional soybean .. 553

Amin K Pathan, Brian Quinn, Nick Ward, Sheree Christian, David Galloway, Dagmar Goetz, Gary Houllston and Ines Schönberger. Biosecurity threats from asian weed incursions in New Zealand ... 555

Denny Kurniadie and Dedi Widayat. Weed mapping in two corn (Zea mays) production center in West Java province of Indonesia ... 559

Weed Management in Economic Crops ... 564

Teguh Wibowo and Eka A.P. Iskandar. Broadleaved weeds in turf grass blocks of Cibodas Botanic Garden, Cianjur, Indonesia ... 578

E. Akhmad Syaliftudin. Weed management in integrated rice-based cultivation models in Tenggarong Seberang Kutai Kartanegara, Indonesia ... 583

S. Malik and B. Duary. Chemical weed management of groundnut and its residual effect on succeeding yellow sarson under lateritic soil of West Bengal, India ... 587

J. Riry, M.R.Uluputty and Y.V.Manuputty. Effects of weeding regimes on seed quality of soybean (Glycine max (L) merill.) in Ambon, Maluku, Indonesia ... 593

Innovative Technology... 598

Lee, Jeongran, Chang-Seok Kim, Jeong-Sook Yeon, Young-Woo Han, and In-Yong Lee. DNA Barcode of the agricultural weeds of Korean Panicoideae, Poaceae ... 598
So Hyun Park, Su Min Hwang, A Ram Kim, Min Ju Lee, Yong Ho Lee and Tae Wan Kim. Low molecular peptide-based biomarker discovery for classification of barnyardgrass species using surface enhanced laser desorption/ionization time-of-flight mass spectrometry .. 602

Hye-Ryun Kim, Jin-Hwan Son, Bo-Ra Kim, Il-Doo Kim and Dong-Hyun Shin. Utility of Lespedeza Cuneata as a functional plant ... 611

So Hyun Park, Sung Yung Yoo, Ki Bae Park and Tae Wan Kim. Nanostructural difference of starch granule of barnyardgrass species studied by high resolution non-contact atomic force microscope.. 617

Herbicide and Herbicide Resistant Weeds .. 624

Yuki Nishim, Yoshiko Shimono, Yoshiki Ishida and Tohru Tominaga. Mechanisms of glyphosate resistance in Italian ryegrass (Lolium multiflorum) found in levees of rice paddy fields in Japan.. 624

Park, Kee Woong, Ok Jae Won, Su Hyuk Park, Ki Seon Hwang, Jeung Joo Lee, and Jong Yeong Pyon. Identifications of herbicide-resistant barnyardgrass (Echinochloa crus-galli) biotypes in Korea .. 627

Hailan Cui, Liang Chen, Cangyue Wang, Yujiao Han, Xinhao Yang, Huilin Yu, and Xiangju Li. Detection of resistance populations of Japanese foxtail (Alopecurus japonicus) in China to ACCase-inhibitors and ALS-inhibitor 629

Mayu Ishibashi, Shin-Ichiro Ando and Ayako Mikami. Optimum application timing of bentazon for broadleaved weed control in soybean crop in Miyagi prefecture, Japan ... 633

Allelopathy and Allelochemicals .. 636

Fukiko Kimura, Osamu Ohno and Hisashi Kato-Noguchi. A potent growth inhibitory substance occurred in decomposition process of Japanese red pine litter ... 636

A K M Mominul Islam and Hisashi Kato-Noguchi. Herbicidal potentiality of five lamiaceae plant species on Echinochloa crus-galli .. 639

Y. Nipaporn, W. Patharin, T. Montinee, L. Chamroon. Effect of aqueous extract from durian leaves and partially separation of active compounds.......................... 642

Shinya Kitajima and Hisashi Kato-Noguchi. Momiilactone B responsive proteins in Arabidopsis ... 645

H. Kato-Noguchi and N. Hamada. Allelopathy and novel allelopathic substance in java tea (Orthosiphon stamineus) ... 648

Wei-dong Fu, Ying Han and Guo-liang Zhang. Studies on allelopathy of Phyla nodiflora on several crops ... 650

Patharin Wichitrakarn, Montinee Teerarak and Chamroon Laosinwattana. Allelopathic potential of Tagetes erecta Linn; optimal extraction solvent and its partial separation of active compounds .. 653

Kanokporn Changsaweak, Chamroon Laosinwattana and Montinee Teerarak. Residual Effects of synthetic alachlor herbicide and its cytogenetic on root tip cell of Allium Cepa L ... 660

Author Index ... xviii
SOME STUDIES ON ALLELOPHATIC POTENTIAL OF CYPERUS ROTUNDUS L

M. A. Chozin¹, Y. Delsi², R. Saputra², N. Syarifi², S. A. Arifin¹ and S. Zaman¹

¹Department of Agronomy and Horticulture, Bogor Agricultural University
Kampus IPB Darmaga, Bogor, Indonesia
²Formerly student of Department Agronomy, Bogor Agricultural University
*Email: ma_chozin@yahoo.com

ABSTRACT Cyperus rotundus (sedge weed) that exhibit allelophatic behaviour represent potential options for sustainable weed management. Previous study has shown that application of mulch from the weed suppressed broadleaved weed. Hence, in this study we carried out a series of experiments to elaborate whether the weed has an allelophatic potential for broadleaved weed control. Consistent with the previous study, the result of a field experiment in this study show that biomass application of C. rotundus as mulch, compost and soil ameliorant suppressed broad leaved weed in soybean cultivation. However, a green house experiment show that biomass application had no negative effect on the growth and biomass production of 3 common broadleaved weeds, Asystasia gangetica, Mimosa pigra and Borreria alata, and soybean. Study on the effect of the concentration of water extract of C. rotundus (0.5 - 4.5 kg/L) show that up to 1.0 kg/L concentration significantly decreased (more than 60%) seed germination of the three common broadleaf weeds in upland; but had no effect on seed germination of soybean. Analysis of allelochemical compounds indicated that phenolic compounds from C. rotundus, cyperene and culmorin were specific compounds that only found in fresh C. rotundus with aquadest sovent. The study indicates that C. rotundus may be used as an option for seed germination control of broad leaf weeds.

Keywords: Allelochemicals, bioherbicide, weed management, Asystasia gangetica, Borreria alata, Mimosa pigra, Cyperus rotundus

INTRODUCTION

There is a growing interest in allelophatic study especially on their potential ability to support sustainable agriculture system (Junaedi et al 2006). Commonly, allelophaty form as secondary metabolites on several plant organs such as roots, stems, leaves, flowers and seeds. Allelophaty of crops and weeds can be expressed in the form of exudates from roots, pollens, decomposition of plant organs, volatiles from leaf, stem and root, and also through the leaching of plant organs.

Nutsedge (Cyperus rotundus L.) is important weed in the world that distributed widely in all tropical and sub-tropical area. Holmet al. (1977) reported that C. rotundus is the member of the worst weeds, had become a serious problem in 90 countries on more than 50 kind of crops. This weed can cause serious problem because of its ability to suppress several crop production significantly and its difficulty to be controlled. This suppression is caused by the high competition to get resources, allelochemical of C. rotundus, and the combination of both factor.

Allelophaty of C. rotundus is not only to suppress crop growth and production, but also to suppress several weeds growth. Some literatures reported that allelophaty of C. rotundus is able to suppress the growth of crop or other plant including weeds (Izah, 2009;; Elrokiek, 2010; Palapa, 2009). However, specific and systematic studies regarding the use of allelophaty of C. rotundus as agent for controlling weeds growth in an environmentally friendly agricultural system is still lacking.

This study was aimed at studying the potency of allelophaty of C. rotundus as biological controll of weeds in environmentally friendly crops production system.
MATERIALS AND METHODS

In order to assess the potency and prospective of C. rotundus allelopathy in weed control, a series of studies was done at Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Bogor, Indonesia, including field trials, greenhouse trials and laboratory experiments.

Experiment 1. This experiment was a preliminary study that has been carried out in the field to identify several important prospective candidates that can be used to suppress weed growth and development in soybean production. The experiment was designed block design. The treatment was different mulches developed from several kind of weed that was applied in soybean production. The mulches were developed from paddy (Oryza sativa), cogongrass (Imperata cylindrica), nut sedge (C. rotundus), and waterhyacinth (Eichhorniaceae). Black plastic mulch and no-mulch were used as control. Vegetation analysis was done at three and sixth week after planting to determine the growing weeds species and their growth and development.

Experiment 2. This field experiment was to know the effects of teki as organic material to weed growth and development on soybean field. The experiment was designed in a block design using three replications. The treatment was the formula of organic matter from C. rotundus as follow: (1) fresh of C. rotundus as mulch (2) dried C. rotundus as mulch, (3) fresh of C. rotundus incorporated with soil, (4) dried C. rotundus incorporated with soil, (5) composted C. rotundus. In addition (6) manually weeding and (7) non-weeding beds were used as controls. Vegetation analysis was done using quadran methods at fourth and eight weeks after planting.

Experiment 3. This experiment was a greenhouse experiment that was aimed at determining the effects of teki organic matter to growth and development of weeds, and to biomass production of several broad leaf weeds. This experiment was designed using complete randomized design. The treatment was several forms of organic materials from C. rotundus applied to three kind of broad leaf weeds and soybean planted in a polybag under greenhouse condition. The organic matters from C. rotundus(CR) were: (1) fresh CR incorporated with soil , (2) dried CR incorporated with soil, (3) fresh CR as mulch, (4) dried CR as mulch, (5) composted CR (6) powder of CR (7) extract of CR, (8) control. Three important weeds species were used as trial plant, those were Asystasia gangetica, Borreria alata, Mimosa pigra, dan soybean (Glycine max). Growth and development of plant were observed until generative stage, then were harvested to measure the biomass of each plant sample.

Experiment 4. This experiment was conducted at laboratory to study the effect of C. rotundus extract to the germination rate of broad leaf weeds and soybean seeds. The experiment was conducted using a complete randomized design with three replications. The treatment used in this experiment was the concentration of C. rotundus extract (using water as the solvent) ranging from 0.0 - 4.5 kg fresh teki/liter water with interval of 0.5 kg/liter. Asystasia gangetica, Borreria alata, Mimosa pigra, dan soybean (Glycine max) were used as object plants. Teki extract treatment was done to the 50 seeds of weeds, which have already broken for their dormancy and soybean on petridish in an incubator. The observation was made on the number of germinating seeds, plumule length, radicule length, and speed of germination periodically until 30 days old.

Experiment 5. This experiment is to analyze the allelochemical content of C. rotundus. The analysis was conducted on fresh and dried of C. rotundus, C. rotundus powder and C. rotundus compost. Analysis was done at Health Laboratorium using GC-MS analysis. Every sample was analyzed duplo.
RESULTS AND DISCUSSION

Experiment 1. The effect of weed mulches to the growth and development of weeds in a soybean field

This experiment showed that generally the weed mulches able to increase the growth and production of soybean. Besides that, all mulches can suppress the growth of weeds significantly. There was an indication that C. rotundus mulch can suppress broad leaf weeds more effectively than paddy mulches, waterhyacinth mulches, and cogongrass mulches (Table 1). At second time of observation (six week after transplanting), weed biomass on teki mulch treatment was 16.18 g, the lowest compare to that of paddy mulch (45.55g), waterhyacinth mulch (34.35g) and cogongrass mulch (26.25 g). From this study, it is known that the production of soybean using weed mulches is lower than that using black plastic mulch (data not shown). The production of soybean using C. rotundus mulch was 158.90 g/plot, significantly lower than that of black plastic mulch (1023.00 g/plot), but still higher compare to that of control (without mulch/no weeding) (99.23 g/plot).

This results strengthen the hypothesis that teki has allelophatic effects to broad leaf plant. Negative effects of teki to broad leaf plants has been reported before (Izah, 2009; Fitria et al. 2011).

Experiment 2. The effects of several organic matter of C. rotundus to the growth of weeds in a soybean cultivation

Weed biomass of C. rotundus can be used as mulch, compost, or soil ameliorant material in crops productions. This also has been shown in Experiment 2. The result of this experiment shows that C. rotundus that was applied in different formulas can be used to suppress the growth and development of broad leaf weeds. Table 2 show that weeds biomass in several treatments of C. rotundus were significantly lower than that in control beds. At 8 weeks after planting, broad leaf weeds biomass harvested in both fresh and dried C. rotundus as mulches, both fresh and dried C. rotundus as soil amelorant and compost were 8.7, 6.7, 2.6, 10.5 and 4.4 g per plot, respectively, in which significantly lower than that on control (302.3 g/plot).
Table 1: Weed growth on several weed organic mulch treatments

<table>
<thead>
<tr>
<th>Mulch resources</th>
<th>Time (WAT)</th>
<th>Number of weed species</th>
<th>Summed Dominance Ratio (SDR) (%)</th>
<th>Biomass (gram)</th>
<th>Total biomass (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>G</td>
<td>BL</td>
<td>S</td>
</tr>
<tr>
<td>Rice straw</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>15</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>6.54</td>
</tr>
<tr>
<td>Waterhyacinth</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6.30</td>
</tr>
<tr>
<td>Black polyethylene</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>Cogongrass</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>6.87</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>4.88</td>
</tr>
<tr>
<td>No mulch</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes

- **S**: Sedges
- **G**: Grasses
- **BL**: Broadleaf
However, contrary with Experiment 1 and other studies, the result of this study showed that the addition of teki organic matter did not produce significant effects on vegetative development of soybean, except at early growth stages. The highest increase was found on fresh teki plots. The possible explanation of this is that organic material treatment as full coverage can function optimally as mulches.

The result of this experiment strengthen the hypothesis that C. rotundus has allelopathic potential to suppress the growth of broad leaf weeds. In its application, teki can be applied through several formulas, such as as mulches and compost.

Experiment 3. The effects of organic materials from teki to the growth of broad leaf weeds and soybean (under greenhouse condition)

There was no negative effect of C. rotundus to the growth of weeds, except the application of C. rotundus extract 1 kg/L that can suppress Borrella alata (Table 3). Even the application of C. rotundus organic materials or extract of C. rotundus can increase the growth and biomass of soybean.

Table 2. Growth of weeds on several treatment of C. rotundus organic matter

<table>
<thead>
<tr>
<th>Treatment of CR organic matter</th>
<th>Time (WAT)</th>
<th>Number of weed species</th>
<th>Summed Dominance Ratio (SDR) (%)</th>
<th>Biomass (g/0.25 m²)</th>
<th>Total biomass (g/0.25 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual weeding</td>
<td>4</td>
<td>S: 1 G: 4 BL: 6</td>
<td>18.90 27.60 53.50</td>
<td>34.30 43.50 174.50</td>
<td>252.50</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 1 G: 1 BL: 8</td>
<td>4.50 6.70 88.90</td>
<td>1.00 1.20 28.20</td>
<td>30.40</td>
</tr>
<tr>
<td>No weeding</td>
<td>4</td>
<td>S: 1 G: 3 BL: 6</td>
<td>9.50 13.20 77.40</td>
<td>11.60 20.80 239.70</td>
<td>272.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 0 G: 1 BL: 5</td>
<td>0.00 4.70 95.30</td>
<td>0.00 3.20 302.40</td>
<td>305.60</td>
</tr>
<tr>
<td>Fresh of CR as mulch</td>
<td>4</td>
<td>S: 1 G: 6 BL: 7</td>
<td>20.10 26.50 53.40</td>
<td>35.40 57.80 104.50</td>
<td>197.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 1 G: 2 BL: 7</td>
<td>8.60 24.10 67.40</td>
<td>0.60 4.10 8.70</td>
<td>13.40</td>
</tr>
<tr>
<td>Dry of CR as mulch</td>
<td>4</td>
<td>S: 0 G: 5 BL: 10</td>
<td>0.00 37.10 63.00</td>
<td>0.00 36.10 103.60</td>
<td>139.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 1 G: 4 BL: 6</td>
<td>4.90 40.90 54.30</td>
<td>0.20 7.40 6.70</td>
<td>13.40</td>
</tr>
<tr>
<td>Fresh of CR incorporated in soil</td>
<td>4</td>
<td>S: 1 G: 4 BL: 7</td>
<td>45.10 23.50 31.40</td>
<td>125.50 69.00 77.20</td>
<td>271.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 1 G: 2 BL: 3</td>
<td>22.00 47.60 30.40</td>
<td>0.90 6.60 2.60</td>
<td>10.10</td>
</tr>
<tr>
<td>Dry of CR incorporated in soil</td>
<td>4</td>
<td>S: 1 G: 5 BL: 8</td>
<td>41.00 21.60 37.40</td>
<td>120.30 44.10 54.30</td>
<td>218.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 1 G: 3 BL: 5</td>
<td>4.50 32.40 67.60</td>
<td>0.50 5.00 10.50</td>
<td>16.00</td>
</tr>
<tr>
<td>Composted CR</td>
<td>4</td>
<td>S: 0 G: 3 BL: 7</td>
<td>0.00 31.50 68.50</td>
<td>0.00 96.50 172.20</td>
<td>268.70</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>S: 0 G: 3 BL: 4</td>
<td>0.00 53.20 46.80</td>
<td>0.00 6.00 4.40</td>
<td>10.40</td>
</tr>
</tbody>
</table>

Notes

CR: C. rotundus
S: Sedges
G: Grasses
BL: Broadleaves

These results are in line with the result of Experiment 2 that show that organic matter from C. rotundus does not have negative effect to the seedling. The low population of broad leaf weeds in soybean cultivation (Experiment 1 and 2) probably caused by the effects of C. rotundus allelopathy to their germination. Therefore, the mechanism of C. rotundus suppression to the broad leaf weeds might be expressed during germination periods.
Table 3. Biomass of weeds *A. gangetica*, *B. alata*, *M. pigra* and soybean on different organic matter treatment of *C. Rotundus*

<table>
<thead>
<tr>
<th>Organic matter treatment of C. rotundus</th>
<th>A. gangetica</th>
<th>M. pigra</th>
<th>B. alata</th>
<th>Soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>34.41a</td>
<td>10.53a</td>
<td>12.28dc</td>
<td>19.23d</td>
</tr>
<tr>
<td>Extract of C. rotundus (1kg/1L)</td>
<td>46.38a</td>
<td>8.28a</td>
<td>6.85d</td>
<td>30.72bc</td>
</tr>
<tr>
<td>Fresh CR incorporated with soil</td>
<td>41.66a</td>
<td>8.11a</td>
<td>22.07ab</td>
<td>37.19ab</td>
</tr>
<tr>
<td>Dried CR incorporated with soil</td>
<td>44.35a</td>
<td>13.97a</td>
<td>14.78bc</td>
<td>25.71cd</td>
</tr>
<tr>
<td>Fresh CR as mulch</td>
<td>48.24a</td>
<td>13.04a</td>
<td>29.15a</td>
<td>39.60a</td>
</tr>
<tr>
<td>Dried CR as mulch</td>
<td>51.88a</td>
<td>8.71a</td>
<td>18.57bc</td>
<td>30.66bc</td>
</tr>
<tr>
<td>Composted CR</td>
<td>32.12a</td>
<td>15.86a</td>
<td>22.31ab</td>
<td>25.68cd</td>
</tr>
<tr>
<td>Powder of CR</td>
<td>53.96a</td>
<td>15.58a</td>
<td>21.19b</td>
<td>23.58cd</td>
</tr>
</tbody>
</table>

Notes: CR: *C. rotundus*

*Value with different letters in each column indicate significant difference among sectors by DMRT $p<0.05$

Experiment 4. The effect of *Cyperus rotundus* extract to the germination of broad leaf weeds and soybean

Extract of *C. rotundus* treatment, concentration 0 – 4.5 kg/l, significantly affected seed germination, speed of germination, plumule length, radicule length of broad leaf weeds: *Asystasia gigangtea*, *Mimosa pigra* dan *Boreria alata*, but does not affect soybean. The effect of teki extract to the germination of *Asystasia gigangtea* and *Boreria alata* can be seen on Table 4 and Table 5.

Table 4 shows that the *C. rotundus* extract, concentration 0.5 kg/l, can suppress the germination percentage as 42.67% and germination speed as 12.53%, but does not significantly decrease the length of its plumule and radicule. On higher concentration (1 kg/l), teki extract can suppress the germination rate as 69.33%, while on concentration 1.5 kg/l, it can decrease the germination rate as 92.67%. The increase of extract concentration from 2 kg/l to 4.5 kg/l can caused the seed of weed failed to germinate.

Table 4. Effects of *Cyperus rotundus* extract to the germination percentage (%), speed of germination (% normal seedling/etmal), length of plumule (cm) and length of radicule of *A. gangetica*

<table>
<thead>
<tr>
<th>Cyperus rotundus extract (kg/L)</th>
<th>Germination Percentage</th>
<th>Speed of germination</th>
<th>Length of plumule</th>
<th>Length of radicule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (kontrol)</td>
<td>97.33a</td>
<td>18.26a</td>
<td>1.50a</td>
<td>1.76a</td>
</tr>
<tr>
<td>0.5</td>
<td>54.66b</td>
<td>5.73b</td>
<td>1.36ab</td>
<td>1.83a</td>
</tr>
<tr>
<td>1.0</td>
<td>28.00c</td>
<td>2.36c</td>
<td>1.13ab</td>
<td>2.33a</td>
</tr>
<tr>
<td>1.5</td>
<td>6.66d</td>
<td>0.43d</td>
<td>0.83bc</td>
<td>0.76ab</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00b</td>
</tr>
<tr>
<td>2.5</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00b</td>
</tr>
<tr>
<td>3.0</td>
<td>6.66d</td>
<td>0.33d</td>
<td>0.43dc</td>
<td>0.86b</td>
</tr>
<tr>
<td>3.5</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00b</td>
</tr>
<tr>
<td>4.0</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00b</td>
</tr>
<tr>
<td>4.5</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.00b</td>
</tr>
</tbody>
</table>

Notes: value with different letters in each column indicate significant difference among sectors by DMRT $p<0.05$
Table 5 shows that the responses of *Borreria alata* seed to the teki extract treatment are similar with those of *A. gangetica*. The number of *B. alata* that successfully germinated on concentration 0.5 kg/l and 1 kg/l are 52.00% and 32.00%. Different with *A. gangetica*, plumule and radicule length of *B. alata* were significantly decreased by application of *C. rotundus* extract. Plumule length of this species on *C. rotundus* extract concentration 1 kg/l was 0.86 cm, significantly different with control (1.63 cm); while its radicule length, on concentration 1 kg/L was 0.86 cm, significantly lower than that of control (2.33 cm). Although *C. rotundus* extract significantly suppress the germination of those three species of broad leaf weeds, there was no effect on seed germination of soybean. On all treatment (0.0 – 4.5 kg/l), the number of soybean seed that germinated were not-significantly ranging from 78.66–96.00%. It is known from this experiment that in line with the result of experiment 3 that the hypothesis that suppression mechanism of teki to broad leaf weeds (*A. gangetica, B. alata, M. pigra*) is operated on the germination stages. Another information from this experiment, similar with Weston (1996), is that allelopathy has specific or selective effects.

Table 5. The effects of *Cyperus rotundus* extract on the germination percentage (%), speed of germination (% normal seedling/etaln), length of plumule (cm) and length of radicule of *Borreria alata*.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Germination Percentage</th>
<th>Speed of germination</th>
<th>Length of plumule</th>
<th>Length of radicule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>96.00a</td>
<td>15.63a</td>
<td>1.63a</td>
<td>2.33a</td>
</tr>
<tr>
<td>0.5</td>
<td>52.00b</td>
<td>6.33b</td>
<td>0.96b</td>
<td>0.60c</td>
</tr>
<tr>
<td>1.0</td>
<td>32.00c</td>
<td>2.73c</td>
<td>0.86b</td>
<td>0.86b</td>
</tr>
<tr>
<td>1.5</td>
<td>14.66d</td>
<td>1.06d</td>
<td>1.03b</td>
<td>0.7bc</td>
</tr>
<tr>
<td>2.0</td>
<td>0.00f</td>
<td>0.00e</td>
<td>0.00d</td>
<td>0.00d</td>
</tr>
<tr>
<td>2.5</td>
<td>1.33ef</td>
<td>0.03e</td>
<td>0.10d</td>
<td>0.13d</td>
</tr>
<tr>
<td>3.0</td>
<td>5.33ef</td>
<td>0.23e</td>
<td>0.56c</td>
<td>0.53c</td>
</tr>
<tr>
<td>3.5</td>
<td>0.00f</td>
<td>0.00e</td>
<td>0.00d</td>
<td>0.00d</td>
</tr>
<tr>
<td>4.0</td>
<td>5.33ef</td>
<td>0.23e</td>
<td>1.06b</td>
<td>0.76cd</td>
</tr>
<tr>
<td>4.5</td>
<td>9.33ed</td>
<td>0.40e</td>
<td>1.03b</td>
<td>0.53c</td>
</tr>
</tbody>
</table>

*Notes: Value with different letters in each column indicate significant difference among sectors by DMRT p<0.05

Experiment 5. Analysis of allelochemical compounds of *C. rotundus*

GC-MS analysis using aquadest as solvent was able to detect 16 compounds on fresh *C. rotundus*, while using etanol as solvent was able to detect 10 compounds on fresh *C. rotundus*, 12 compounds on dried *C. rotundus*, 19 compounds on compost of *C. rotundus*, and 3 compounds on *C. rotundus* powder. The difference of the number of compounds detected might be caused by the difference in the processing of the sample. The processing step such as drying and powdering could possible cause the loss and formation of some compounds.

Table 6. Analysis of allelochemical compounds of *C. rotundus*

<table>
<thead>
<tr>
<th>Content of C. Rotundus</th>
<th>Aquadest fresh</th>
<th>etanol 96 % fresh</th>
<th>dried</th>
<th>compost</th>
<th>powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-vinyl-2-methoxy-phenol</td>
<td>1.88</td>
<td>1.39</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cedranone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.61</td>
<td>-</td>
</tr>
<tr>
<td>Choleste-5-en-3-oI (3.bet) propanoate(CAS)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.91</td>
</tr>
</tbody>
</table>
From this analysis, it is known that cyperene and culmorin only can be identified on fresh C. rotundus using aquadest as solvent, and cannot be detected on other formula of C. rotundus. Lawal & Oyedeji (2009); Elrokiek (2010) have reported that C. rotundus contains phenolic compounds such as cyperene and culmorin. Phenolic compounds with high solubility in water have reported to have low allelophyaty activities (Seigler 1996). Therefore, although teki extract could be very effective to suppress broad leaf weeds germination, for its application in the field as bioherbicide, further studies to solve these issues are needed.

LITERATURE CITED

