DEVELOPMENT OF GIS-BASED DECISION SUPPORT SYSTEM FOR SMALL ISLAND
(A Case Study in Ndana Island, Nusa Tenggara Timur)

ATI RAHADIATI

GRADUATE SCHOOL
BOGOR AGRICULTURAL UNIVERSITY
2006
DEVELOPMENT OF GIS-BASED DECISION SUPPORT SYSTEM FOR SMALL ISLAND
(A Case Study in Ndana Island, Nusa Tenggara Timur)

ATI RAHADIATI

A thesis submitted for the degree of Master of Science of
Bogor Agricultural University

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY
FOR NATURAL RESOURCES MANAGEMENT
GRADUATE SCHOOL
BOGOR AGRICULTURAL UNIVERSITY
August 2006
STATEMENT

I, Ati Rahadiati, here by stated that this thesis entitled:

Development of GIS-based Decision Support System for Small Island

(A Case Study in Ndana Island, Nusa Tenggara Timur)

are results of my own work during the period of February until July 2006 and that it has not been published before. The content of the thesis has been examined by the advising committee and the external examiner.

Bogor, August 2006

Ati Rahadiati
ACKNOWLEDGEMENT

Alhamdulillah. Thanks to The Almighty Allah who always give His endless Grace and Blessing on me. The success of this study would not have been possible without various contribution and support from many individuals that I would like to express my deep gratitude to all of them.

First, I would like to express my thanks and gratitude to BAKOSURTANAL especially for Chief of Center for Marine Resources Survey for gave me the opportunity to join this program and also for facilities and financial support during my study.

Many thanks go to my supervisors Dr. Tania June, M.Sc. and Dr. Dewayany Sutrisno, M.App.Sc. for their valuable suggestions, guidance and word of encouragement and scientific support. Without their contribution and guidance, this thesis would be of less quality.

My sincere thank to external examiner Dr. Gatot H. Pramono for suggestions and comments that improve this thesis. High appreciation goes to the lectures of MIT who taught me with important knowledge. Thanks also to The MIT management and staffs as well as IPB post graduate for supported our administration, technical aspects and the facilities.

I wish also to thanks to my friends and colleagues at Center for Marine Resources Survey for their support, for gave positive ideas and great discussion and supported data needs for this thesis.

Special thanks to all of MIT students especially my class mates, with whom I share laughs and pressures during my study, for our togetherness, helpful, and solidarities.

Finally, my special heartfelt gratitude goes to my family for their prayer, support, encouragement, and everything.

Hopefully this thesis can be useful.
CURRICULUM VITAE

Ati Rahadiati was born in Bogor, West Java, at July 18, 1969. She received her undergraduate diploma from Bogor Agricultural University in 1993 in the field of Agrometeorology. Since 1995 to present, she works for National Coordinating Agency for Survey and Mapping (BAKOSURTANAL).

In the year of 2004, she received a financial support from Center for Marine Resources Survey – BAKOSURTANAL to pursue her graduate study. She received her Master of Science in Information Technology for Natural Resources Management from Bogor Agricultural University in 2006. Her thesis entitles “Development of GIS based Decision Support System for Small Island (A Case Study in Ndana Island, Nusa Tenggara Timur)".
ABSTRACT

Ndana Island in East Nusa Tenggara province is selected as the study area, because the island was classified as small island, located in the Australian border, and need a special management for achieving sustainable natural resources especially at marine area. The development of GIS-based DSS will be has some advantages for Ndana Island such as increasing and protecting the carrying capacity of border territory; using natural resources potencies with sustainable management; increasing income of local people; and developing an isolated island.

The objectives of this research are to identify and analyze potencies of Ndana Island, to develop prototype of GIS-based Decision Support System as a tool for analysis of decision making and to propose potential solutions based on sustainable management of Ndana Island.

There are four main activities to comply this research are data collection and preparation, database design and implementation, data analysis, and graphical user interface. The suitable area for coral reef conservation area in Ndana Island will be analyzed based on ecology, economic and social factors using GIS analysis. Results from this analysis are three zones in conservation area: core zone, buffer zone and use zone which core zone should be a closed area for development, accessible only for research activity. Buffer zone and use zone areas can be analyzed further for diving suitability.

Result of this research is the suitable area for coral reef conservation in Ndana island are S1 (highly suitable) for core zone, S2 (moderately suitable) for buffer zone, S3 (marginally suitable) for use zone and N (not suitable) for non-conservation area. Percentage of S1 is 0.29%, S2 is 3.01%, S3 is 75.58% and N is 21.12%. In buffer and use zone of conservation area, there are 31.33 hectares is moderately suitable (S2) and 146.27 hectares is marginally suitable (S3) for diving suitability.

Based on spatial suitability and economic valuation, scenario IV is the best management to apply in coral reef area of Ndana Island, which has the biggest value of NPV, Rp. 86,767,185,416. In scenario IV there are zonation area for tourism, fisheries and protected area with ecology, economic and social consideration. Hopefully this scenario can increase income of local people with sustainable management of natural resources. With this method can help improve coral reef conservation and management, but the level of detailed analysis required depend on the use of data and the value estimation.

This research has been developed graphical user interface using Microsoft Visual Basic and MapObject that makes the system easy to understand, handle and use by the user means it can be helpful for the user.
Research Title : Development of GIS-based Decision Support System for Small Island (A Case study in Ndana Island, Nusa Tenggara Timur)

Name : Ati Rahadiati

Student ID : G 051040121

Study Program : Master of Science in Information Technology for Natural Resource Management

Approved by,

Advisory Board

Dr. Ir. Tania June, M.Sc.
Supervisor

Dr. Ir. Dewavany Sutrisno, MApp.Sc.
Co-supervisor

Endorsed by,

Program Coordinator
Dean of the Graduate School

Date: August 25, 2006
TABLE OF CONTENTS

STATEMENT ... ii
ACKNOWLEDGEMENT .. iii
CURRICULUM VITAE .. iv
ABSTRACT ... v
TABLE OF CONTENTS ... vii
LIST OF TABLE .. ix
LIST OF FIGURE .. x
LIST OF APPENDIX .. xi
I. INTRODUCTION .. 1
 1.1. Background ... 1
 1.2. Problem Identification ... 3
 1.3. Location .. 5
 1.4. Objectives ... 6
 1.5. Advantages ... 6
II. LITERATURE REVIEW ... 7
 2.1. Small Island .. 7
 2.1.1. Definition and Characteristic ... 7
 2.1.2. Potencies of Small Island .. 8
 2.1.3. Island Directory ... 10
 2.2. Tools for Analysis of Small Island .. 12
 2.2.1. Decision Support System .. 12
 2.2.2. Geographic Information System .. 15
 2.3. Research Dealing with GIS–based DSS ... 18
 2.4. Sustainable Development of Natural Resources 20
III. METHODOLOGY .. 23
 3.1. Method .. 23
 3.1.1. User Identification .. 25
3.1.2. Need Assessment ... 25
3.1.3. Database ... 26
3.1.4. Data Analysis ... 27
3.1.5. Graphical User interface .. 35
3.2. Data Source ... 35
3.3. Tools Used ... 36

IV. DATABASE DESIGN AND CONSTRUCTION 37
4.1. Data Preparation... 37
4.2. Database Building ... 39
 4.2.1. Conceptual Design ... 39
 4.2.2. Logical Design .. 41
 4.2.3. Physical Design .. 42

V. RESULTS AND DISCUSSION ... 43
5.1. Data Analysis ... 43
 5.1.1. Spatial Analysis .. 43
 5.1.2. Economic Analysis .. 50
 5.1.3. Development Alternatives .. 52
5.2. Graphical User Interface (GUI) .. 63

VI. CONCLUSION AND RECOMMENDATION 68
6.1. Conclusion ... 68
6.2. Recommendation .. 69

REFERENCES ... 70

APPENDICES ... 73
<table>
<thead>
<tr>
<th>No.</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Computerized support for decision making (adapted from Turban, 1995)</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Question from need assessment</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Criteria for coral reef conservation area</td>
<td>29</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Criteria for diving activity</td>
<td>30</td>
</tr>
<tr>
<td>Table 5.</td>
<td>Criteria for seaweed cultivation</td>
<td>30</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Economic value of alternatives in coral reef area</td>
<td>34</td>
</tr>
<tr>
<td>Table 7.</td>
<td>List of software</td>
<td>36</td>
</tr>
<tr>
<td>Table 8.</td>
<td>Classification and standardization data for non spatial data</td>
<td>38</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Classification and standardization data for spatial data</td>
<td>38</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Master data list</td>
<td>40</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Area and percentage of coral reef conservation</td>
<td>44</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Area of diving and seaweed cultivation suitability</td>
<td>46</td>
</tr>
<tr>
<td>Table 13.</td>
<td>Number of boat in Rote Barat Daya District</td>
<td>51</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Economic valuation of coral reef ecosystem in Ndana Island</td>
<td>52</td>
</tr>
<tr>
<td>Table 15.</td>
<td>Revenue and cost components</td>
<td>56</td>
</tr>
<tr>
<td>Table 16.</td>
<td>Result from economic analysis of four scenarios</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

No. Caption Page

Figure 1. General scheme for management of Ndana Island.. 4
Figure 2. Location index and Quickbird image of Ndana Island (Acquisition February 26, 2005).. 5
Figure 3. Conceptual model of DSS (Turban, 1995)... 13
Figure 4. General research scheme ... 23
Figure 5. Framework of research .. 24
Figure 6. Hybrid system design .. 27
Figure 7. Flowchart of decision support process ... 28
Figure 8. Context diagram ... 39
Figure 9. Entity Relationship Diagram ... 41
Figure 10. Sample of table design using Microsoft Access... 42
Figure 11. Relationship of non-spatial data in Microsoft Access..................................... 42
Figure 12. Map of suitable area for coral reef conservation .. 47
Figure 13. Map of suitable area for diving ... 48
Figure 14. Map of suitable area for seaweed cultivation .. 49
Figure 15. Spatial scenario 1 and 2 ... 54
Figure 16. Spatial scenario 3 and 4 ... 55
Figure 17. NPV of four scenarios ... 57
Figure 18. NPV of four scenarios at the 1st of five years... 59
Figure 19. Map of Scenario I ... 61
Figure 20. Map of Scenario II ... 62
Figure 21. Map of Scenario III .. 62
Figure 22. Map of Scenario IV .. 63
Figure 23. Flowchart of application system ... 64
Figure 24. Main form of GUI ... 64
Figure 25. Display the tabular data ... 65
Figure 26. Interface to display indicator and graphic data.. 65
Figure 27. Spatial analysis form ... 66
Figure 28. Form of buffer and query functions .. 66
Figure 29. Flow process form .. 66
Figure 30. Result of conservation suitability .. 66
Figure 31. Input economic data of four scenarios .. 67
Figure 32. Table and graph from NPV analysis ... 67
Figure 33. TEV of Ndana Island ... 67
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>No.</th>
<th>Title of Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1.</td>
<td>Comparison of characteristics of study area with references</td>
<td>73</td>
</tr>
<tr>
<td>Appendix 2.</td>
<td>Map of administrative boundary</td>
<td>74</td>
</tr>
<tr>
<td>Appendix 3.</td>
<td>Thematic maps</td>
<td>75</td>
</tr>
<tr>
<td>Appendix 4.</td>
<td>Logical design of database</td>
<td>78</td>
</tr>
<tr>
<td>Appendix 5.</td>
<td>Economic Valuation of Scenario I</td>
<td>81</td>
</tr>
<tr>
<td>Appendix 6.</td>
<td>Economic Valuation of Scenario II</td>
<td>83</td>
</tr>
<tr>
<td>Appendix 7.</td>
<td>Economic Valuation of Scenario III</td>
<td>85</td>
</tr>
<tr>
<td>Appendix 8.</td>
<td>Economic Valuation of Scenario IV</td>
<td>87</td>
</tr>
<tr>
<td>Appendix 9.</td>
<td>Detail of User Interface</td>
<td>89</td>
</tr>
</tbody>
</table>