Proceedings

The 5th Environmental Technology and Management Conference

Green Technology towards Sustainable Environment

23 - 24 November 2015, Bandung, Indonesia

Editor in Chief

Prof. Dr. Ir. Enri Damanhuri

Published by

Faculty of Civil and Environmental Engineering

Institut Teknologi Bandung – Indonesia
Green Technology that provides the basic needs of society in sustainable environment is essential for the survival, health and well-being of a society in developing countries. The engineers, scientists, policy makers, academics, environmental consultants, environmental contractors, industrial practitioners, businessmen, politicians, NGOs are at the epicenter in seeking means to enhance human life through modernization of technology and infrastructure. The current rate of urbanization, industrialization and environment mismanagement rise environmental issues. The problems are further aggravated with environmental degradation such as soil erosion, depletion of water resources, climate changes, and others. In order to seek answers for these multifaceted challenges, proper planning, implementation and verification exercises are required, via an integrated, multidisciplinary and holistic approach especially in the area of green infrastructure and green cities, development of eco-industry, environmental health and risk assessment, air quality, advanced technology, natural resources and mitigation of climate change. This international conference shall become a momentum for development of sustainable environment through green technology.

The 5th Environmental Technology and Management Conference (ETMC) was held on 23-24th November 2015, at Sasana Budaya Ganesha, Institut Teknologi Bandung (ITB). The ITB is located in Bandung, West Java. Bandung is the center of Sundanese culture and volcanoes surrounds city which make Bandung to be a delightful place to host this conference. More than 300 scientific participants (researcher, students, government officers and industries) had many fruitful discussions and exchange ideas that contribute to the success of the conference. Participants of the conference are coming from US, Australia, Nederland, Japan, Malaysia, Singapore and Indonesia, made the conference truly worthwhile globally. There are 4 speakers in plenary sessions covering different areas, and all the keynote speakers are well known and competent speakers; They are Ir. Mochamad Basoeki Hadimoeljono, M.Sc., Ph.D (Ministry of Public Works and Housing, Republic of Indonesia), Prof. Dr. AJM Smits (Director of Institute for Science, Innovation & Society, Radboud University Nijmegen), Albert Simanjuntak (President Director of Chevron Pacific Indonesia) and Ir. Edwan Kardena, PhD (Environmental Engineering, Institut Teknologi Bandung). There were also 5 parallel sessions with eight invited speakers : Prof. Satoshi Okabe; Prof. Ir. Mindriany Syafila, MS; Prof. Ir. Iwan Kridasanta Hadihardaja, MSc, PhD; Prof. Dr. Takeshi Fujiwara; Rene van Berkel, PhD; Prof. dr. A.M.J. Ragas; Dr. Budi Haryanto, SKM, MKM, MSc; Dr. rer.nat Armil Susandi,MT.

This volume of proceedings from the conference provides an opportunity for readers to engage with a selection of refereed papers that were presented during the conference. These proceedings divided into 6 sections of 110 abstracts as oral presentation and 23 abstracts as poster session with such topics as follows: Air Quality & Climate Change, Green Cities & Infrastructures, Eco-Industries, Appropriate & Advanced Environmental Technology, Natural Resource Management, and Environmental Health and Risk Assessment. Selected papers will be republished in the special issues of Journal of Technological and Engineering Sciences.
Generous support for the conference was provided by Chevron Pacific Indonesia, JICA, BNI, Vale, Sari Husada, Indocement, Holcim, Sabuga and Faculty of Civil and Environmental Engineering, ITB. The funds were sizeable, timely, and greatly appreciated, and allowed us to support a significant number of young scientists (students) and delegates from developing countries.

Finally, the 5th ETMC was a very successful conference. The plenary lectures, parallels session and special reports bridged the gap between the different fields of green technology, making it possible for non-experts in a given area to gain insight into new areas. Also, included among the speakers were several young scientists and students, who brought new perspectives to their fields. Given the rapid advancement of science in all areas that covered by ETMC, we expect that this ETMC was as stimulating as the previous one, as indicated by the papers contributions presented in this proceeding volume.

Bandung, 24 November 2015

Ir Agus Jatnika Effendi, PhD
LIST OF COMMITTEE

STERRING COMMITTEE
Chairman : Prof. Dr. Ir. Mindriany Syafila, MS

1. Prof. Dr. Ir. Wisjnuprapto
2. Prof. Dr. Ir. Enri Damanhuri
3. Prof Ir Suprihanto N, Ph.D
4. Prof. Dr. Ing. Ir. Prayatni Soewondo, MS
5. Prof. Dr. Ir. Arwin Sabar, MS
6. Prof. Dr. Ir Tjandra Setiadi, M.Sc
7. Dr. Ir. Dwina Roosmini, MS
8. Dr. Ir. Edwan Kardena
9. Ir. R. Driejana, MSCE, Ph.D
10. Dr. Herto Dwi Ariesyadi, ST, MT
11. Dr. Rofiq Iqbal, ST, MSc

ORGANIZING COMMITTEE
Chairman : Ir. Agus Jatnika Effendi, PhD
Secretary : Emenda Sembiring, ST, MT, MEngSc, PhD
Treasurer : Dr. Ing Marisa Handajani, ST, MT
Sponsorship coordinator : Ir. Puji Lestari, PhD

Ir. Edwan Kardena, PhD
Dr. Sukandar, SSi, MT
Dr. Asep Sofyan, ST, MT

Publication : Dr Mont Kania Dewi ST, MT

Ir. Indah Rahmatiah, MSc, PhD (proceeding)
Haryo Satriyo Tomo, ST, MT (internet media)
Ir. James Nobelia I, MT
Logistic coordinator : Dr. Ahmad Soleh, ST, MT
Dr. Helmy, ST, MT
Drs Daddy Surachman, MS
Ir. Hardjono
Drs. Moh. Irsyad, M.Si

Program Coordinator : Suharyanto, ST, MSc, PhD
Ir Yuniati, MSc, PhD
Dr. Opy K, ST., MT
Dr. Ir. Tri Padmi D

Welcome Dinner coordinator : Dr. Katharina Oginawati
Exhibition/Poster coordinator : Dr. I.M. Wahyu W, ST, MT
Dr. Mochammad Chaerul, ST, MT

SCIENTIFIC COMMITTEE
Chairman : Prof. Dr. Ir. Enri Damanhuri
Secretary : Prof. Dr. Ing. Ir. Prayatni Soewondo, MS

1. Prof. Dr. Ir. Arwin Sabar, MS
2. Prof. Ir. Suprihanto N, Ph.D
3. Prof. Dr. Ir. Mindriany Syafila, MS
4. Dr. Ir. Tri Padmi Damanhuri
5. Dr. Ir. Tresna Dermawan Kunaefi
6. Dr. Ir. Benno R, MT
7. Ir. Pudji Lestari, Ph.D
8. Dr. Ir. Priana Sudjono, MS, Dipl.Eng
9. Ir. Idris Maxdoni Kamil, M.Sc, Ph.D
10. Dra. Barti Setiani Muntalif, Ph.D
11. Dr. Ir. Indah Rahmatiah SS, MSc
12. Ir Arief Sudrajat, MSc, PhD
KEYNOTE SPEAKERS
KEYNOTE SPEAKERS

<table>
<thead>
<tr>
<th>NAME</th>
<th>THEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir. Mochamad Basoeki Hadimoeljono, M.Sc., Ph.D (Ministry of Public Work and Housing of Indonesia)</td>
<td>Green Infrastructure Research and Development in Indonesia</td>
</tr>
<tr>
<td>Prof dr A.J.M. Smits Radboud University Nijmegen</td>
<td>Water, Health, and Sustainability</td>
</tr>
<tr>
<td>Albert Simanjuntak, Chevron Pacific Indonesia</td>
<td>Eco Energy Research and Development in Oil and Gas Industry</td>
</tr>
<tr>
<td>Dr. Ir. Edwan Kardena, ITB</td>
<td>Microbial Application for Enviromental Pollution Control: “From Laboratorium into The Field”</td>
</tr>
</tbody>
</table>
INVITE SPEAKERS
INVITE SPEAKERS

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Satoshi Okabe</td>
<td>Advance In Biological Nitrogen Removal Process – Anamox – Based Process</td>
</tr>
<tr>
<td>Prof. Dr. Ir. Mindriany Syafila, MS</td>
<td>Advance Oxidation Processes (AOPs) For Wastewater Treatment Application</td>
</tr>
<tr>
<td>Prof. Ir. Iwan Krisdasantausa Hadihardaja, MSc, PhD</td>
<td>River Regime Change and the Basin Land Use Development Regarding To Healthy River Performance</td>
</tr>
<tr>
<td>Prof. Dr. Takeshi Fujiwara</td>
<td>Study On Impact Analysis Of Recycling – Based Municipal Solid Waste Management On Recycling Business Of Informal Sector In Bandung</td>
</tr>
<tr>
<td>Rene van Berkel, PhD</td>
<td>Competitive Advantage Through Industrial Resource Efficiency : Pathway Towards Inclusive and Sustainable Industrialization</td>
</tr>
<tr>
<td>Prof. dr. A.M.J. Ragas</td>
<td>Modelling Human and Ecological Risks Of Chemicals</td>
</tr>
<tr>
<td>Dr. Budi Haryanto, SKM, MKM, MSc</td>
<td>Blood Lead Levels For Human Health Risk Assessment: A Case Of Used Battery Recycling In Indonesia</td>
</tr>
<tr>
<td>Dr. rer.nat Armi Susandi, MT</td>
<td>Impact Of International Climate Policy On Air Pollution In Indonesia</td>
</tr>
</tbody>
</table>
CONTENTS

ORAL PRESENTATION

APPROPRIATE AND ADVANCED ENVIRONMENTAL TECHNOLOGY

SITI AINUN
M. RANGGA SURURI
KASIH SAKINAH

Leachate Treatment Using Conventional Ozonation Process And Advanced Oxidation Process At Old Cell Of Landfill In Indonesia

ADILLA MUTIA FATIMAH
BARTI SETIANI MUNTALIF

Cultivation Of Chlorella Vulgaris As Biofuel Potential In Wastewater For The Removal Of Cod, TKN, And Total Phosphate

PUTRI NUR ANNISA
RUFAIDAH
WELLY HERUMURTI

The Effect Of Organic Loading Rate On Anaerobic Baffled Reactor-Anaerobic Filter In Increasing Efficiency Of Domestic Wastewater

ALJUMRIANA
WELLY HERUMURTI

Effect Of Aerobic-Anoxic Duration In SBR And MBBR For Leachate Treatment

DIMAS BRILLIANT
SUNARNO
ALI MASDUQI
ATIEK MOESRIATI

Influence Of Inlet Flow Velocity And Amount Of Inlet On Hydrocyclone To Reduce Total Suspended Solid

ANDY MIZWAR
GINA LOVA SARI
SRI RACHMANIA
JULIASTUTI
YULINAH
TRIHADININGRUM

Bioremediation of Polycyclic Aromatic Hydrocarbons in Coal Contaminated Soils Using In-Vessel Composting Method

ROSETYATI RETNO UTAMI
GERTJAN GEERLING
A.M.J. RAGAS
LUFIANDI
DWINA ROOSMINI
YOKE PEAN THYE

Evaluation Of Passive Sampling Method For Organic Contaminant Monitoring In Upper Citarum River West Java Indonesia

Survey On The Implementation Of Tools
AGUS JATNIKA EFFENDI
PRAYATNI SOEWONDO
DAMIR BRDJANOVIC
TJANDRA SETIADI

To Support The Development Of Emergency Sanitation Products

EDWAN KARDENA
LUHUR AKBAR DEVIANTO
KURNIA ASIH
HERTO DWI ARIESYADY
AMINUDIN SULAEMAN

Biosorption And Desorption Of Chromium From Immobilized Microalgae Biosorbent

HERLIAN ERISETA PUTRA
KANIA DEWI
ARI DARMAWAN PASEK
ENRI DAMANGHURI

Hydrochar Production From Municipal Solid Waste By Hydrothermal Carbonization Under Low Temperature Condition

HERLIAN ERISETA PUTRA
KANIA DEWI
ARI DARMAWAN PASEK
ENRI DAMANGHURI

Decolorization Of Black Liquor From Bioethanol G2 Production Using Iron Oxide Coating Sands

OP/AE/016

OP/AE/020

OP/AE/022

OP/AE/023

OP/AE/025

OP/AE/026

OP/AE/030
HANA PUSPITASARI
NURINA FITRIANI
NIEKE KARNANINGROEM

Test in Using Animal Bones as Natural Coagulant for River Water Treatment

ANNISA ATHIFAH
INDAH RACHMATIARAH
SITI SALAMIS

Quality Improvement Evaluation Of Textile Waste Water Bodies Receiver With Simple Filtration Process (Case Study: Cikakembang River)

HERMAWATI
WIDYAPRATAMI
MINDRIANY SYAFILA

Chemical Oxygen Demand (COD) Kinetics and Removal Efficiency of Biologically Treated Landfill Leachate Bantargebang Landfill with Advanced Oxidation Process of Ozone and Hydrogen Peroxide

RISYANA SUKARMA

Pressurized Ceramic Filter And Its Impact In Filtrating Effectiveness

AMRINI AMALIA
SHAFDAR
HERTO DWI ARIESYADY

The Optimization Of Active Cultivated Bacterial Consortium Application In The Activated Sludge Process Of Painting Wastewater Treatment

LITA DAMAYANTI
EDY SAPUTRA
SUPRIHANTO
NOTODARMODJO
ENRI DAMANHURI
ADE ANGGRIAWAN

Kaolin-Based Geopolymeric Adsorbent For Fe And Mn Removal From Peat Water (Research Ongoing)

ANDRI GUMILAR
MARISA HANDAJANI
MINDRIANY SYAFILA

Influence Of N2 Flushing For The Ethanol Production From High Concentration Of Organic Waste

HIDAYATUL MUSTAFIDAH
BIEBY VOIJANT TANGAHU

Growth Rate Of Scirpus Grossus Egeria Densa And Salvinia Molesta For Wastewater Treatment Of Soil Washing Oil Contaminated
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIKAKUMALA SARI, ALIA DAMAYANTI</td>
<td>Filtration Laundry Waste Water Using Zeolite Nanofiltration Membrane To Remove Turbidity And Phosphate</td>
<td>OP/AE/053</td>
</tr>
<tr>
<td>IPUNG FITRI PURWANTI, SITI ZULAIKAH, DIDIK BAMBANG, SUPRIYADI, SETYO BUDI KURNIAWAN</td>
<td>Minimum Inhibitory Consentration of Chromium (III) By Bacteria as Preliminary Test of Chromium Biosorption</td>
<td>OP/AE/055</td>
</tr>
<tr>
<td>YUNIATI ZEVI, REFNILDA FADHILAH</td>
<td>Heavy Metals Removal From Urban Stormwater Runoff Using Lab-Scale Biofiltration Systems: Influence Of Filter Media Combination</td>
<td>OP/AE/059</td>
</tr>
<tr>
<td>QOMARUDIN HELMY, MUSFIANDINI ZAHRA, SUPRIHANTO, NOTODARMOJO</td>
<td>A Small-Scale, Low-Technology Water Treatment Plant: The Treatment Of Raw Water With High Suspended Clay, Iron, And Manganese</td>
<td>OP/AE/060</td>
</tr>
<tr>
<td>AINI ZAHRA, MARISA HANDAJANI</td>
<td>Water Flow Characterization In Longitudinal Section Of Oxidation Ditch Reactor Using Cfd Simulation</td>
<td>OP/GC/003</td>
</tr>
<tr>
<td>SINARDI, PRAYATNI SOEWONDO, SUPRIHANTO, NOTODARMOJO, CYNTHIA RADIMAN</td>
<td>Chitosan from Mytilus virdis linneaus Shell as a Natural Coagulant</td>
<td>OP/GC/004</td>
</tr>
<tr>
<td>ENDAH WAHYUNI, BUDI SUSWANTO, INDRA KOMARA</td>
<td>Effects Of Angle Of Inclination Cables On The Performance Of Submerged Floating Tunnel Under Hydrodynamic Load</td>
<td>OP/GC/015</td>
</tr>
<tr>
<td>AINI ZAHRA, MARISA HANDAJANI</td>
<td>Nitrification Kinetics In Aquaculture Wastewater Treatment Using Batch Reactor</td>
<td>OP/GC/025</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Request Number</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Emission Reduction From Implementation Of Bus Rapid Transit Corridor 13th In Jakarta</td>
<td>ASEP SOFYAN, LAILATUS SIAMI, RUSS BONA FRAZILA</td>
<td>OP/AQ/001</td>
</tr>
<tr>
<td>Modeling Of Wet Deposition In Chemical Transport Simulation</td>
<td>T. KITADA</td>
<td>OP/AQ/006</td>
</tr>
<tr>
<td>The Role Of Construction Supply Chain To The Climate Change</td>
<td>HERMAWAN, PUTI FARIDA MARZUKI, MUHAMAD ABDUH, R. DRIEJANA, KANIA DEWI, MOH. IRSYAD</td>
<td>OP/AQ/010</td>
</tr>
<tr>
<td>Development of Time Correction Factors for Measurement of TSP and PM10 Ambient Concentration in Complying Indonesian Air Quality Standard</td>
<td>MADE SANDHYANA, ANGGA, ARIEF SUDRADJAT</td>
<td>OP/AQ/011</td>
</tr>
<tr>
<td>Vehicle Emission Modeling Use Cohort Modeling In Bali Province</td>
<td>WIWIEK SETYAWATI, ENRI DAMANHURI</td>
<td>OP/AQ/016</td>
</tr>
<tr>
<td>Correlation Between The Depth And Physical-Chemical Properties Of Tropical Peat (Study Case: Pontianak, West Kalimantan)</td>
<td>WIWIEK SETYAWATI, ENRI DAMANHURI</td>
<td>OP/NR/017</td>
</tr>
<tr>
<td>Life Cycle Assessment Of Integrated Palm Oil Industry With Scenarios Of Liquid And Solid Wastes Utilization And Integration With Cattle Farm</td>
<td>SUPRIHATIN, ANDRE WAHYU, NUGROHO, ONO SUPARNO, SARONO</td>
<td>OP/NR/035</td>
</tr>
<tr>
<td>Risk Of Rice Production Due To Climate Change In Indonesia (Case Study: District Of Karawang, West Java)</td>
<td>JOKO WIRATMO, RUMINTA</td>
<td>OP/NR/036</td>
</tr>
<tr>
<td>30”-Grid Resolution Of Domestic Emission Mapping In Bandung City</td>
<td>DRIEJANA, MIRANTI MAYANGSARI, AKHMAD RIQQI</td>
<td>OP/NR/045</td>
</tr>
<tr>
<td>ECO-INDUSTRIES</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>AYU NINDYAPUSPA MASRULLITA YULINAH TRIHADININGRUM</td>
<td>Stabilization/Solidification Of Waste Containing Heavy Metals And Hydrocarbon Using Portland Cement And Bentonit</td>
<td>OP/EI/002</td>
</tr>
<tr>
<td>ELZAVIRA FELAZA CINDY RIANTI PRIADI</td>
<td>Implementation Of Cleaner Production In A Natural Dye Batik Industry Sme: A Way To Enhance Biodegradability Of Batik Wastewater?</td>
<td>OP/EI/003</td>
</tr>
<tr>
<td>SRI GUSTIANI QOMARUDIN HELMY SUPRIHANTO NOTODARMOJO</td>
<td>Treatment Of Textile Wastewater By Uv/Zno Nanoparticle As An Advanced Oxidation Process</td>
<td>OP/AE/058</td>
</tr>
<tr>
<td>R.FATKHURRAHMAN ERLANGGA SYAIFFUL AMRI KEMALA OKTAVIANI YOHAN</td>
<td>A New Prospective Soil Remediation Contaminated By Mercury From Artisanal Gold Mining Using Natural Zeolite As A Microtechnology</td>
<td>OP/NR/022</td>
</tr>
<tr>
<td>YUYUN ISMAWATI LELITASARI SARAH E. ROTHENBERG SONIA BUFTHEIM</td>
<td>Gold Production In Rural Areas Of Bogor Regency And Its Hidden Hazards Implication</td>
<td>OP/NR/042</td>
</tr>
<tr>
<td>BIEBY VOIJANT TANGAHA ARSETYO YEKTI BAGASTYO ELSITA OCTARINA NAREGA HERMANIAR HIDAYATUL MUSTAFIDAH</td>
<td>Batik Industry Wastewater Preliminary Toxicity Test Against of Aquatic Plants</td>
<td>OP/AE/043</td>
</tr>
</tbody>
</table>
GREEN CITIES & INFRASTRUCTURES

ANNI ROCHAENI
ENRI DAMANHURI
MOCHAMMAD CHAERUL
TRI PADMI

Factor Analysis Of Solid Waste Collecting System In Bandung City

HAFNIDAR A. RANI
SUPRIATNA

Green Infrastructure Innovation Towards Sustainable Environment In Aceh

WARMADEWANTHI
WILUJENG S.
PANDEBESIE E.
HERUMURTI W.
TRIHADININGRUM Y

The Analysis of Household and Commercial Waste Reduction in Surabaya (Case study : Gudeng, Simokerto, and Wonokromo District)

MOHD. SYARIF HIDAYAT

Ecological Evaluation Of The Several Urban Green Spaces In Jakarta

JUN SAKAMOTO
KAZUKATA KUBOTA
SHOTARO YADA

Time Series Analysis on Mass Media Report and Utilization on Social Media - Case Of Local Railway

FRANSISCA A.D
ANGGRAENI
NURINA FITRIANI
EDDY S. SOEDJONO

Study Of Successful To Stop Open Defecation Free (Odf) In Tutur Subdistrict And Duplication Of Successful In Pandaan Subdistrict, Pasuruan District, Indonesia

IENDRA SOFYAN
PRAYATNI SOEWONDO
TRESNA DARMAWAN
KUNAEFI
MARISA HANDAJANI

A Review Of Waste Water Treatment Management In Slum Area (Case Study: Greater Bandung Area)

DONNY DHONANTO
TRIANA SHARLY
PERMAISURI ARIFIN
CITRA ANGGITA

Master Plan Road Network In The Border Region Of Malinau Regency Of The North Kalimantan Province

HERU PURBOYO HIDAYAT
PUTRO
NUR IDA FITRIANTI

The Role Of Public Participation In Improving Bike Lanes In Taman Ayodya And Banjir Kanal Timur In Jakarta, Indonesia

AYU LISTIANI
EMENDA SEMBIRING

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmein Rahman</td>
<td>Asphalt Substitution Material In Asphalt Concrete-Wearing Course Layer</td>
<td></td>
</tr>
<tr>
<td>Nieke Karnaaninggroem</td>
<td>The Assessment Of River Capacity And Capability In Surabaya City As Basic Determination Of Typical On Site Infiltration System</td>
<td>OP/AE/034</td>
</tr>
<tr>
<td>Nurina Fitriani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yulia Puspa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rachmaniati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dien F. Awaliyah</td>
<td>The Effectivity Of Biopore Infiltration Hole Applications To Increase Water Infiltration Rate In Soil</td>
<td>OP/AE/036</td>
</tr>
<tr>
<td>Marisa Handajani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elvita Sari Saragi</td>
<td>Reduction Of Organic Solid Waste By Black Soldier Fly (Hermetia Illucens) Larvae</td>
<td>OP/AE/044</td>
</tr>
<tr>
<td>Arseto Yekti Bagastyo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siti Boedi Darma</td>
<td>Appropriate Waste Water Infrastructure For Sustainable Informal Housing Settlement In Bandung</td>
<td>OP/AE/048</td>
</tr>
<tr>
<td>Emenda Sembiring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marisa Handajani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong Li Hun</td>
<td>Municipal Sanitary Landfill Leachate Characterization And Its Acute And Chronic Effects On Survival, Development And Growth Of Larval Dark-Sided Chorus Frog, Microhyla Heymonsì</td>
<td>OP/NR/016</td>
</tr>
<tr>
<td>Fauzia Shahul Hamid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Maryati</td>
<td>Co-Benefits Of Community Based Water Supply Management</td>
<td>OP/NR/018</td>
</tr>
<tr>
<td>An Nisaa’ Siti Humaira</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiyoshi Wada</td>
<td>Development Of The Siphon System Pipe-Type Fishway And Monitoring Of Fish Migration</td>
<td>OP/NR/019</td>
</tr>
<tr>
<td>Yukio Ota</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNISA NUR SABRINA
INDAH RACHMATIAH S. S.
Evaluation Of Raw Water Quality In Pdam Bandung (Study Area: Dago Bengkok, Bantar Awi, Dan Cikalong) OP/NR/023

LAURENTIA MUTIARA SANI WIDYAWATI
HERTO DWI ARIESYADY MOCHAMMAD CHAERUL
Seasonal Variation Impact of Leachate Contamination to Shallow Groundwater in Burangkeng, Bekasi District, West Java, Indonesia OP/NR/027

PUTRI CHISSY RAEZA Rianti
HERTO DWI ARIESYADY SISKA WIDYA DEWI KUSUMAH
I M A K SALAIN I K SUDARSA NA W MUSTIKA
Study On Bacterial Contamination And Its Dispersion In Groundwater Of Burangkeng Landfill Site, Bekasi Regency, West Java, Indonesia OP/NR/028

YOSHITAKA EBIE KEIZOU NIKI HIROSHI YAMAZAKI
Japanese Decentralized Domestic Wastewater Treatment System And Its Resilience To Natural Disaster OP/NR/039

DEWI SARTIKA
Safety Study Of Using Salmonella Phage As A Natural Anti Microbe To Decrease Salmonella Contaminant On Food And Environmental OP/OS/005

MUHAMMAD IQBAL ANINDYA NASTITI BARTI SETIANI MUNTALIF
Improved But Not Always Safe: A Microbial Water Quality Analysis In Bandung Peri-Urban Households OP/OS/009

NATURAL RESOURCES
JEFRI FERLIANDE IDRIS MAXDONI KAMIL AKHMAD RIQQI
Application of Ordinary Kriging And Idw For Predicting Soil Contaminants Distribution in Industrial Area, Case Study: Rancaekek – Indonesia OP/NR/001

MARIANA MARSELINA ARWIN SABAR INDAH RACHMATIAH SITI SALAMI
Optimization Management Of Hydroelectric Energetic Exploitation Saguling Reservoir In Upper Citarum Cascade OP/NR/002
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYAH MARGANINGRUM MOCHAMAD ADI SEPTIONO DWINA ROOSMINI</td>
<td>Heavy Metal Distribution in Water, Sediment, and Fish at Upper Citarum River and Its Potential Exposure Pathway to Human</td>
<td>OP/NR/003</td>
</tr>
<tr>
<td>EVI AFIATUN SUPRIHANTO NOTODARMOJO AGUS JATNIKA EFFENDI DENI RUSMAYA SABAR SUPENDI</td>
<td>Determination of Surface Water Dominant Parameters to Optimize Drinking Water Source Management - Cikapundung River and Cisangkuy River, Bandung-Indonesia As a Case Study</td>
<td>OP/NR/004</td>
</tr>
<tr>
<td>HARY PRADIKO ARWIN PRAYATNI SOEWONDO YADI SURYADI</td>
<td>Runoff Coefficient Determination By Using The Scoring And Weighting Method In Upper Cikapundung Watershed</td>
<td>OP/NR/005</td>
</tr>
<tr>
<td>YONIK MEILAWATI YUSTIANI LEONY LIDYA</td>
<td>Development of River Water Quality Modeling Tool for Urban Rivers-Case Study of Cikapundung River, Bandung, Indonesia</td>
<td>OP/NR/006</td>
</tr>
<tr>
<td>SUHENRA MAULANA EMENDA SEMBIRING</td>
<td>Valuation of Flood By Means of Damage and Loss Method Case Study: Baleendah District Bandung Regency</td>
<td>OP/NR/007</td>
</tr>
<tr>
<td>CORNELIS H. VAN GINKEL GÜL ÖZEROL LUFIANDI</td>
<td>Water Quality Monitoring In The Upper Citarum River Basin: Rethinking The Role Of Stakeholders</td>
<td>OP/NR/008</td>
</tr>
<tr>
<td>FARADILLAH SAVES NADJADJI ANWAR MAS AGUS MARDYANTO THOMAS TRIADI PUTRANTO</td>
<td>Groundwater Modelling By Increasing Pumping Discharge In Probolinggo</td>
<td>OP/NR/009</td>
</tr>
<tr>
<td>MAS AGUS MARDYANTO PUJI MENTARI SURIPTO</td>
<td>Effect Of Cikapundung Water Quality To The Quality Of Unconfined Aquifer In Tamansari Sub-District Bandung</td>
<td>OP/NR/010</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Code</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>DESSAEDA ADILLA, IDRIS MAXDONI KAMIL</td>
<td>Economic Valuation Of Perum Perhutani’s Community Based Forest Management (Cbfm) And Its Application As Riparian Buffer Zone Of Cipanji-Cisondari River In Bandung Regional</td>
<td>OP/NR/013</td>
</tr>
<tr>
<td>EVY HENDRIARIANTI, NIEKE KARNANINGROEM</td>
<td>Rate Of Nitrification-Denitrification Brantas River In The City Of Malang</td>
<td>OP/NR/014</td>
</tr>
<tr>
<td>EKA WARDHANI, SUPRIHANTO NOTODARMOJO</td>
<td>Assessment Of Heavy Metal Contamination In Surface Water And Sediments: A Case Study From Saguling Lake, West Java</td>
<td>OP/NR/015</td>
</tr>
<tr>
<td>ANDRI WARSA, KADARWAN SOEWARDI</td>
<td>Estimation Of Phosphorus Loading And Its Impact On Eutrophication At Jatigede Reservoir, Sumedang-West Java, Indonesia</td>
<td>OP/NR/020</td>
</tr>
<tr>
<td>HERTO DWI ARIESYADY, AMALIA RIZKA RAHMANI</td>
<td>The Diversity Of Nitrogen Cycling Bacteria As A Bioindicator Of Domestic And Industrial Wastewater Pollution In The Sediment Of Upper Citarum River, West Java, Indonesia</td>
<td>OP/NR/030</td>
</tr>
<tr>
<td>LUFIANDI, GERTJAN GEERLING, AGUS JATNIKA EFFENDI, DWINA ROOSMINI</td>
<td>Water Quality Management And Water Pollution Control Under Decentralization In Indonesia: The Case Of Upper Citarum River Basin</td>
<td>OP/NR/032</td>
</tr>
<tr>
<td>RATIH PRATIWI, INDAH RACHMATIAH SS</td>
<td>Combination Of Eichhornia Crassipes, Pistia Stratiotes, And Salvinia Molesta To Improve Water Quality Of Upstream Citarum River</td>
<td>OP/NR/038</td>
</tr>
<tr>
<td>KANIA DEWI, YUYUN ISMAWATI</td>
<td>Inventory of Mercury Releases In Indonesia</td>
<td>OP/NR/041</td>
</tr>
<tr>
<td>YUNIATI ZEVI, DEIFY NOVANDY, MINDRIANY SYAFILA</td>
<td>Removal Of Iron And Manganese Ions From Groundwater By Sukabumi Greenstone: The Role Of Natural And Activated Modernite</td>
<td>OP/NR/043</td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>GARY WOLINSKY, TRI WISONO, JAMAR SYAKIR</td>
<td>Net Environmental Benefit Analysis (NEBA) To Minimize Impacts On Communities And The Environment: Concept, Application And Case Studies</td>
<td>OP/NR/049</td>
</tr>
<tr>
<td>SARA McMILLEN, TRI WISONO</td>
<td>Risk Based Screening Levels For Remediation Sites In Sumatera, Indonesia</td>
<td>OP/NR/050</td>
</tr>
<tr>
<td>DENI RUSMAYA, FADJARI LUCIA NUGROHO, YONIK M. YUSTIANI, FAJAR IBNIL HAFIZ, RUNIE B.T. PUTRI</td>
<td>Improving Artificial River Water Quality Using Mudballs Made From EM4, Rice Bran And Clay Soil</td>
<td>OP/AE/002</td>
</tr>
<tr>
<td>AMANDA LARASATI, SUPRIHANTO, NOTODARMOJO</td>
<td>Equilibrium and Kinetics of Orthophosphate Adsorption onto Indonesian Tropical Soils</td>
<td>OP/AE/011</td>
</tr>
<tr>
<td>NURUL CHAZANAH, BARTI SETIANI MUNTALIF, GEDE SUANTIKI, PRIANA SUDJONO</td>
<td>Determination River Water Quality With Bioassessment Using Benthic Macroinvertebrates (Case Study: Citarum Upstream, West Java, Indonesia)</td>
<td>OP/AE/021</td>
</tr>
<tr>
<td>BIEBY VOIJANT TANGAHU, ROCHEMA SEPTI, VYATRAWAN, PRESTIANI PUTRI</td>
<td>The Effectivity of Adding Aeration Against Bioremediation Oil-Contaminated Soil</td>
<td>OP/AE/042</td>
</tr>
<tr>
<td>PLATO MARTUANI, SIREGAR, RUSMAWAN, KARIN NADIRA DAUWANI</td>
<td>Standardized Precipitation Index Analysis For Drought Study Case At The Indramayu Region Crop Area West Java</td>
<td>OP/AQ/009</td>
</tr>
<tr>
<td>REGINAWATI HNDERSAH, MARTHIN KALAY, SONDI KUSWARYAN, WAWAN HERMAWAN</td>
<td>Application Of Biofertilizer To Decrease Inorganic Fertilizer Dosage In Leafy Vegetables Production In Ambon, Mollucas</td>
<td>OP/GC/006</td>
</tr>
<tr>
<td>REO AUDI</td>
<td>Eco Innovation On Marine Litter Prevention: Case Studies Around The World</td>
<td>OP/GC/012</td>
</tr>
<tr>
<td>TAKAHIRO SHIMIZU</td>
<td>An Importance of Past Disaster Records – A Case Study of its Application After the Noubi Earthquake in Gifu –</td>
<td>OP/GC/017</td>
</tr>
<tr>
<td>Study Title</td>
<td>Authors</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Study of the Involvement Financier in MDGs Sustainability in 2015 and Accelerate Achievement of the National Medium Development Plan in 2019 at Mojokerto</td>
<td>EDDY SETIADY SOEDJONO, NURINA FITRIANI, AULIA RAMADANO</td>
<td>OP/GC/020</td>
</tr>
<tr>
<td>Evaluation of Non-Residential Solid Waste Collection In Simokerto District, Central Surabaya</td>
<td>AFIF FAIQ MUHAMMAD, SUSI. A. WILUJENG, IDAA WARMADEWANTHI, WELLY HERUMURTI, ELLINA S. PANDEBESIE, YULINAH, TRIHADININGRUM</td>
<td>OP/GC/021</td>
</tr>
<tr>
<td>Flood Handling of Madiun River as a part of Bengawan Solo Waterhed by Utilizing the Capacity of Environment in Madiun City</td>
<td>YULIANA SURYANI, ALIA DAMAYANTI, EDDY SETIADY SOEDJONO, ZULKIFLI YUSOP, EIICHI NAKAKITA, SUNMIN KIM</td>
<td>OP/GC/029</td>
</tr>
<tr>
<td>OCCUPATIONAL SAFETY AND HEALTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifying The Long Term And Short Term Feedback Loops Impacting National Child Health Levels In Guatemala; An Application Of System Dynamics Modeling</td>
<td>LEE VOTH-GAEDDERT, IDRIS MAXADONI KAMIL, DWINA ROOSMINI, DANIEL OERTHER</td>
<td>OP/OS/006</td>
</tr>
<tr>
<td>Safe Behavior on Workers Division of MSD in PT XYZ Kalimantan East Kalimantan</td>
<td>DINA LUSIANA, NUR ROHMAH</td>
<td>OP/OS/008</td>
</tr>
<tr>
<td>Applying Quantitative Microbial Risk Assessment in Household Drinking Water Sources: A Case Study of Ujungberung Subdistrict, Bandung</td>
<td>SYAHBANIATI PUTRI, ANINDRYA NASTITI, BARTI SETIANI MUNTALIF</td>
<td>OP/OS/010</td>
</tr>
<tr>
<td>Water Monitoring Beyond MDGs: A Case Study of Peri-Urban Bandung, Indonesia</td>
<td>ANINDRYA NASTITI, BARTI SETIANI MUNTALIF, ARIEF SUDRADJAT, DWINA ROOSMINI</td>
<td>OP/OS/011</td>
</tr>
</tbody>
</table>
A.J.M. SMITS
S.V. MEIJERINK

FAIRUZ ZAHARANI
INDAH RACHMATIAH SITI SALAMI

Urine and Hair Mercury Levels as Indicator Mercury Exposure in Artisanal Gold Miner in Desa Pasar Terusan Kecamatan Muara Bulian Kabupaten Batanghari-Jambi

SUDARNO
PERTIWI ANDARANI
M. AGUNG WIBOWO
ASHANTHA GOONETILLEKA

Evaluation of Factors That Influence Performance of the Decentralized Wastewater Treatment System ‘Sanimas’

POSTER PRESENTATION

APPROPRIATE & ADVANCED ENVIRONMENTAL TECHNOLOGY

IMAN DIMASSETYA
YANUAR YUSUF
SAHAT RICKY PRANATA
OMPUSUNGGU
ARSETO YEKTI
BAGASTYO

Salt Recovery from Reverse Osmosis Concentrate Using Electrodialysis

YULINAH
TRIHANDININGRUM
RHENY RATNAWATI
INTAN DWI WAHYU
SETYO RINI
ARYA GHALI ARUDAM
IDAA WARMADENANTHI
SRI RACHMANIA
JULIASTUTI

Composting Process of Slaughterhouse Solid Waste Using Aerobic System

VERA BARLIANTI
EKA TRIWANYUNI
DIAN BURHANI
NURHASNI
YANNI SUDIYANI

Xylitol Production from Residual Fermentation Broth of Bioethanol G2 Using Apergillus Niger

MURYANTO
AJENG ARUM SARI

Degradation of Black Liquor Wastewater from Bioethanol Process Using
HAZNAN ABIMANYU, Hitoe Habuchi, Shiori Fujita, Hirofumi Takikawa: Coagulation and Fenton Methods

Yulina Yuli, Trihadiningrum, Rheny Ratnavati, Rima Auliyaati, Wulanari, Deqi Rizkiviah Radita, Sri Rachmania, Juliastuti: Comparison of Slaughterhouse Solid Waste Treatment Using Anaerobic-Anoxic-Oxic and Aerobic Composting Methods

Muchlis Munawar, Rita Anggraini: Synthesis of Lauryl Alcohol (Dodecanol) from Methyl-Laurate Ester using Zinc-Borohydride in Combination with Zinc-granular and Molecular Hydrogen (H2, gas) in Mild Condition

Wilda Charisma Yunaz, Arseto Yekti, Bagastyo: Subsequent Fenton Process and Neutralization for Wastewater Treatment of Textile Home Industry

Feri Ariyanto, Ellina S. Pandebesie: A Mixture of Coconut Husk Waste and Water Hyacinth as a Medium of Oyster Mushroom Growth

Dita Yustine, Windaningrum, Trimurti Hesti Wardini: The Effect of Sarimukti Compost to Marginal Soil Quality and the Growth and Productivity of Capsicum Frutescens L.

KOJI TAJIMA, SHINYA NAKAMURA: A Prototype of Location Information Infrastructure using iBeacon for the

GREEN CITIES & INFRASTRUCTURES

Muhammad Safri Lubis, Emenda Sembiring: Using GIS Web-Based To Show Environmental Status: A Case Study At Medan Environmental Bureau (BLH)

KOJI TAJIMA, SHINYA NAKAMURA: A Prototype of Location Information Infrastructure using iBeacon for the
TADAHIKO SATO SHIGERU KOBAYASHI
Bicycle Touring

NURHAWA ABDUK RASHID AGAMUTHU P. FAUZIAH S.H.
Zinc Flow in A Municipal Solid Waste Landfill in Malaysia PP/NR/004

ANNA FADLIAH RUSYDI JANUARI RIDWAN
Groundwater Quality in Coastal Aquifers PP/NR/005

M.C. TRI ATMODJO
The Environmentally Friendly Slow Release Nitrogen Fertilizer Applied in Sugarcane (Saccharum officinarum) PP/NR/008

SYARIFAH MELLY MAULINA EMENDA SEMBIRING
An Analyzing of Community’s Ability and Willingness to Pay For Drinking Water Supply at Coastal Area (A Case Study at Telok Batang District, Kayong Utara Regency, West Borneo Province) PP/NR/009

YUYUN ISMAWATI KRISHNA ZAKI SONIA BUFTHEIM ARWIN SABAR PRAYATNI SOEWONDO YADI SURYADI
Mercury Vapour In 3 ASGM Hotspots In Indonesia: Bombana, Sekotong, and Cisitu PP/OS/002

AIR QUALITY & CLIMATE CHANGE

HAFIDAWATI PUJI LESTARI ASEP SOFYAN
Investigation of PM$_{2.5}$ and Black Carbon Concentration From Rice Straw Open Field Burning in District Cianjur, West Java PP/AQ/002

YENY DHOKHIKAH YULINAH TRIHADININGRUM ELLINA SITEPU PANDEBESIE SONY SUNARYO
Estimation of GHGs Emission From Household Solid Waste Reduction in Sukolilo District, Eastern Subaya, Indonesia PP/AQ/005

NATURAL RESOURCE MANAGEMENT
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSMALINDA PERMATASARI</td>
<td>Flow Provision for Suitable of Reservoir Storage Case Study: Ranau Lake-Upper Komering Watershed, South Sumatera, Indonesia</td>
<td>PP/NR/002</td>
</tr>
<tr>
<td>ARWIN SABAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANTJE KARDANA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATAKUSUMAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISMINING PUJIYANTI A. ANDRI WARSA</td>
<td>Dissolved Oxygen Dynamics at Fish Culture Site, Djuanda Reservoir, West Java</td>
<td>PP/NR/003</td>
</tr>
<tr>
<td>RIZKA FIRDAUSI PERTIWI</td>
<td>Risk Analysis of Vibration and Posture To Musculoskeletal Discomforts of Underground Mine Drilling Workers Case Study: PT. Karya Sakti Purnama</td>
<td>PP/OS/001</td>
</tr>
<tr>
<td>DWINA ROOSMINI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROSETYATI RETNO UTAMI</td>
<td>Risk Analysis of Cadmium (Cd) Exposure To Kidney Function Decreased of Car Spray Painters in Karasak Bandung</td>
<td>PP/OS/004</td>
</tr>
<tr>
<td>KATHARINA OGINAWATI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIFE CYCLE ASSESSMENT OF INTEGRATED PALM OIL INDUSTRY WITH SCENARIOS OF LIQUID AND SOLID WASTES UTILIZATION AND INTEGRATION WITH CATTLE FARM

Suprihatin a,*,†, Email: suprihatin167@gmail.com
Andre Wahyu Nugroho a, Email: andrew0189@gmail.com
Ono Suparno a, Email: ono.suparno@gmail.com
Sarono b, Email: saronotipib@yahoo.com

a Department of Agro-Industrial Technology, Institut Pertanian Bogor, Indonesia
b Agricultural Technology Study Program, State Polytechnic of Lampung, Rajabasa-Bandar Lampung, Indonesia

* Presenter; † Corresponding author.

Abstract: This research work used Life Cycle Assessment (LCA) as a tool for identification possibilities for improvement of crude palm oil (CPO) production, focusing on energy efficiency and greenhouse gas emission aspects. The research was conducted with two cases of palm oil mill (POM). Results showed that energy consumption for production of one ton CPO was 6313 MJ in POM 1, with a Net Energy Ratio (NER) of 6.2 and a Net Energy Value (NEV) of 33.03 GJ/ton CPO, while energy consumption in POM 2 was 7270 MJ/ton CPO with NER of 5.4 and NEV of 32.08 GJ/ton CPO. The GHG emissions in the case POM 1 and the case POM 2 were 1463 and 624 kg CO₂–eq/ton CPO, respectively. The identified most potential opportunity to improve energy efficiency and reduce emission is the utilization of biogas from anaerobic decomposition process of wastewater as an energy source of power plant. The scenario can reduce emission of approx. 970 kg CO₂–eq/ton CPO (POM 2) resulting in NER and NEV increases of up to 5.7 and NEV of up to 33.83 GJ/ton CPO. A further significant improvement of CPO production process can be achieved through the integration of the oil palm plantation with cattle farm and the utilization of solid waste as an organic fertilizer.

Keywords: Crude palm oil, greenhouse gas emission, integrated oil palm plantation, Life Cycle Assessment, net energy efficiency

1. Introduction

Indonesia is the biggest Crude Palm Oil POM 1(CPO) producer in the world with a production of 27 million tons CPO in 2013 (Ditjenbun 2014). The development of palm oil industry will increase further as the Government of Indonesia targeted to produce 40 million tons CPO per year by 2020. To support the achieving of the target, the government will allocate some forest area for oil palm plantation in according to the National Forestry Plan 2011-2030 (Kemenhut 2011).

The rapid growth of the oil palm industry had caused the environmental impacts. Palm oil industry activities from nursery, planting, fertilizing, energy use, and management of the wastes are considered as sources of greenhouse gas (GHG) emission. The GHGs absorb and
reflect infrared radiation resulting in an increase in temperature of the earth (Cicerone 1987). The environmental issues are becoming more serious attentions from international communities leading to the decrease of the competitiveness of Indonesian CPO in the international market.

In order to improve the international competitiveness of Indonesian oil palm products, the government of Indonesia implements regulations arranged in the Indonesian Sustainable Palm Oil (ISPO) consisting of seven principles: licensing system and plantation management, application of technical guidelines for the cultivation and processing of palm oil, environmental management, responsibility to workers, social responsibility, empowerment of economic activities, and increased efforts for sustainability. According to the criteria, the corporate environmental management needs to identify and manage the source of GHG emissions (Ditjenbun 2014). Life cycle assessment (LCA) can be applied to in-depth environmental evaluation process of CPO production. The methodology enables a holistic life cycle thinking, comprehensive identification of potentials and opportunities for improvement of the CPO production process.

This research work aimed to develop an inventory of environmental burdens by identifying and quantifying energy and materials used and wastes released by palm oil production process. The results are expected to provide can benchmark for assessment and improvement of CPO production processes covering resource use, energy efficiency, and the impact on the environment.

2. Research Methodology

The LCA is realized by the quantitative identification of all material and energy input-output flow at the CPO production system, with attention focused on the energy efficiency and the environmental impact. The analysis of environmental impact of CPO production process is given at all stages of its life cycle, starting from the nursery, oil palm plantation, FFB transportation, and FFB processing (or CPO extraction), including scenarios of the capturing and utilization of methane from anaerobic degradation of wastewater, integration of oil palm plantation with cattle farm, and utilization of solid waste as an organic fertilizer.

This study was conducted with two cases, namely palm oil mill (POM) 1 (case 1) and POM 2 (case 2). The POMs are owned by the State-Owned Enterprises. The POMs are different in many aspects; including distance between plantation area and POM, POM production capacity, type of product, ISPO certification, and biogas electric generation plant (Table 1).

<table>
<thead>
<tr>
<th>POM 1 (Case 1)</th>
<th>POM 2 (Case 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantation area</td>
<td>5870 ha</td>
</tr>
<tr>
<td>Production capacity</td>
<td>40 ton FFB/h</td>
</tr>
<tr>
<td>Main product</td>
<td>CPO & PKO</td>
</tr>
<tr>
<td>ISPO certification</td>
<td>No</td>
</tr>
<tr>
<td>Biogas electric generation</td>
<td>No</td>
</tr>
</tbody>
</table>
Inventory analysis was undertaken by analyzing the mass and energy flows at the CPO production process life cycle. The materials and energy flows are standardized in the unit per ton CPO produced. Inventory data are collected from field observation, in-depth interviews, corporate documents, and relevant scientific publications. The impacts of the CPO production are evaluated based on the results of the inventory analysis referring to the net energy and the GHG emissions in the CPO production process.

The CO$_2$ emission (E) per ton CPO is estimated by referring to the equation in the IPCC (2006):

$$E = A \cdot EF$$

(1)

where A is inventory volume, and EF is emission factor (kg CO$_2$–eq/A).

Energy consumption is converted in a standardized energy unit (Joule) to estimate the net energy ratio (NER) and the net energy value (NEV). The energy consumption (E_n) for production of one ton CPO is estimated by using Eq. 2:

$$E_n = n \cdot CV$$

(2)

where n is inventory volume, CV is calorific value of each inventory.

Energy efficiency is expressed in NER and NEV that are calculated by using Eq. 3 and 4, respectively:

$$NEV = \sum E_{n0} - \sum E_{ni}$$

$$NER = \frac{\sum E_{n0}}{\sum E_{ni}}$$

(3)

(4)

where NEV is net energy value, NER is net energy ratio, $\sum E_{n0}$ is total energy earned, and $\sum E_{ni}$ is total energy used.

The net energy is used as indicator of the process performance. For a good process performance, NEV should be positive and NER should be more than 1. The higher the value of NER and NEV, the better is the performance of the CPO production process, in the context of energy consumption and energy recovery.

3. Results and Discussion

3.1 Inventory of CPO Production

CPO production process life cycle is started with nursery and plantation. At these stages, impacts on the environment are caused by the use of synthetic fertilizers, pesticides, herbicides, and diesel (RSPO 2012). Fertilizer is one of the major emitters in agriculture, so that its use should receive special attention (Vijaya et al 2008b).
Both synthetic and organic fertilizers can be applied in palm oil plantations. The synthetic fertilizers include urea, NPK fertilizer, Kieserite, MOP (Muriate of Potash), dolomite, and TSP/RP. The application of the fertilizers causes emission from the fertilizer production itself (use of fossil energy during the production production), transportation, direct emissions from the field both physically and biologically by soil microbes, and indirect emissions due to re-deposition (RSPO 2012). The oil palm plantations also use organic fertilizers derived from solid wastes such as empty fruit bunches and wastewater sludge, but the applied organic fertilizers are still relatively small in quantity, so that the emissions by organic fertilizer are not taken into account in the emission calculation.

Pesticides and herbicides also have an impact on the environment because it can produce emissions. Pesticides and herbicides have substantial emissions as stated by ISCC (2011). The pesticides are applied only if the plantation is attacked by pests such as caterpillars and beetle horns. Herbicides are used to control weeds around the oil palm trees.

The next inventory analysis is the transportation of FFB from the field to the palm oil mills. FFB transportation is done by using diesel-fueled trucks. Diesel consumption is taken into account in the analysis of usage due to the use of direct impact on the environment (IPCC 2006). FFB is transported from the field to the POMs by using trucks with an average capacity of 9 tons. Diesel consumption for the transportation is estimated based on consumption of diesel trucks per km distance. Empty trucks require diesel of 0.25 liters / km, while loaded trucks (10 ton FFB/truck) require diesel of 0.49 liters / km (ISCC 2011). The map of plantation area is used to estimate the distance of FFB transportation.

The final stage of the oil palm life cycle is the FFB processing to extract CPO. FFB is going through a series of processes: weighing, sorting, boiling, pressing, and oil refining. Inventory at the FFB processing consist of the utilization of electric, diesel and steam (ISCC 2011, RSPO 2012). Electricity from steam turbine is used to run various processing machines. Diesel is used as fuel for electric generator when the electricity from boiler have not been adequat for covering the electricity demand. Steam obtained from the boiler is used in the boiling FFB process.

Table 2 shows the results of the analysis of inventory based on operation data of the studied POMs during 2013. Energy consumption and earning, as well as GHG emissions at every stage of the life cycle are also presented in Table 2, which will be discussed later in the subchapter 3.2.

The use of the inventory at the nursery and plantations stages for POM 2 is greater than it is for POM 1. This is because of the lower crop productivity for POM 2 in the time. Palm oil plantation of POM 2 experienced rejuvenation of plantation crops and many plantation areas did not produce FFB optimally yet, while utilities such as fertilizers were needed for the young crops. The differences in inventory of both cases as presented in Table 2 are caused mainly by the condition of the plantation (crop productivity), distance of plantation and POM location, the capacity of POM, and operational practices in both plantation and the palm oil mills.
3.2 Energy Efficiency and GHG Emission

Each identified inventory has a specific calorific value as presented in Table 3, representing the energy value of each inventory volume. Results of energy calculations according to the Eq. 2 are presented in Table 2. Table 4 shows the NEV and NER calculated using the Eq. 3 and 4. The specific energy consumptions for CPO production are 6330 MJ for POM 1 and 7270 MJ for POM 2. Differences in energy efficiency represented by NER and NEV are resulted from differences in conditions of the oil palm plantation (crop productivity), the distance between the plantation and POM location, the use of agricultural inputs (fertilizers, pesticides, and herbicides), the capacity and efficiency of the FFB processing mills. The most important factor of the CPO proses performance is the efficiency of palm oil extraction. The CPO yields were 23.46% (1 ton CPO/4.26 ton FFB) for POM 2 and 20.71% (1 ton CPO/4.83 ton FFB) for POM 1.

Utilization of the methane gas from the anaerobic decomposition of wastewater as an energy source for electricity generation will improve energy efficiency that is indicated by the increase of the NER and NEV. The generated methane gas is about 12.36 kg CH₄/ton palm oil mill effluent (Yacob et al 2006). One kg of methane gas is equivalent to 45.1 MJ (JRC 2011). POM 2 has been equipped with the installation of a biogas power plant that generates electrical energy of 1750 MJ/ton CPO. By taking into account of the generated as the energy output in the life cycle assessment, the NER and NEV in POM 2 will increase to 5.7 and 33.83 GJ/ton CPO, respectively.

Table 2 Inventories, energy consumption, and GHG emission of POM 1 and POM 2

<table>
<thead>
<tr>
<th>Stage of the life cycle, and the inventories</th>
<th>Unit</th>
<th>Quantity (per ton CPO)</th>
<th>Energy (MJ/ton CPO)</th>
<th>Emission (kg CO₂–eq/ton CPO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery and Plantation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFB</td>
<td>ton</td>
<td>4.83</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td>N Fertilizer</td>
<td>kg</td>
<td>2.57</td>
<td>0.33</td>
<td>360.86</td>
</tr>
<tr>
<td>P Fertilizer</td>
<td>kg</td>
<td>4.80</td>
<td>10.71</td>
<td>51.79</td>
</tr>
<tr>
<td>K Fertilizer</td>
<td>kg</td>
<td>8.96</td>
<td>31.47</td>
<td>44.80</td>
</tr>
<tr>
<td>Urea</td>
<td>kg</td>
<td>11.29</td>
<td>23.04</td>
<td>37.35</td>
</tr>
<tr>
<td>Kieserit</td>
<td>kg</td>
<td>0.26</td>
<td>0.66</td>
<td>0.05</td>
</tr>
<tr>
<td>Dolomit</td>
<td>kg</td>
<td>26.29</td>
<td>28.03</td>
<td>3.42</td>
</tr>
<tr>
<td>Herbicides</td>
<td>liter</td>
<td>0.05</td>
<td>0.27</td>
<td>0.54</td>
</tr>
<tr>
<td>Pesticides</td>
<td>liter</td>
<td>0.02</td>
<td>-</td>
<td>0.16</td>
</tr>
<tr>
<td>FFB Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>liter</td>
<td>3.25</td>
<td>3.76</td>
<td>116.86</td>
</tr>
<tr>
<td>FFB Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh</td>
<td>58.35</td>
<td>67.60</td>
<td>210.06</td>
</tr>
<tr>
<td>Diesel</td>
<td>liter</td>
<td>0.79</td>
<td>0.91</td>
<td>28.31</td>
</tr>
<tr>
<td>Stream</td>
<td>kg</td>
<td>2360.49</td>
<td>2360.01</td>
<td>5499.94</td>
</tr>
</tbody>
</table>
The GHG emissions are affected by the materials and energy uses in the life cycle. The GHG emissions from production processes of 1 ton CPO at each stages of life cycle was calculated using Eq. 1 are presented in Table 2. The greatest GHG emissions is identified came from the CPO extraction. Total emissions released from two cases differ greatly, where case 1 and case 2 emit 1463 and 624 CO$_2$–eq/ton CPO, respectively. The great difference is mainly due to the emission from wastewater. POM 2 applied methane capture and utilization technology
resulting in energy substitution and GHG emission reduction. In opposite, POM 1 treated the wastewater without methane emission control. Methane is 25 times harmful than carbon dioxide in term of the GHG effect (IPCC 2007). During the year 2013, POM 1 produced around 157 thousand m3 of wastewater which is equivalent to 895 kg of CO$_2$-eq/ ton CPO.

According to Hutzler (2004), one kg COD (chemical oxygen demand) in wastewater can be converted to 0.6 m3 of biogas. The calorific value of biogas is approx. 6 kWh/m3, which is equivalent to 0.5 liter of diesel. Each kg of CH$_4$ produced is equivalent to 45.1 MJ (JRC 2011). POM 2 has a biogas power plant with a capacity of 1 MWh. The electricity generated is used for the purposes of the plant (in this case, used for PKO production process). The average electricity generated is 900 kWh which is equivalent to about 70 liters of diesel per hour. With the methane capture and utilization as electric generation, POM 2 can reduce CO$_2$ emissions by 970 kg CO$_2$-eq/ton CPO or approximately 60%.

3.3 Other Potential Opportunities

Some oil palm plantations have been implementing the integration of the management of oil palm plantation with cattle business. As the form of integration, cattle obtains feed in the form of the stem of oil palm tree, grass, and POM solid waste. One adult cattle produces about 4 ton dung per year that can be used as compost or additional substrate for biogas production. Furthermore, the utilization of forage growth among the oil palm trees as cattle feed will reduce the use of herbicides as a weed killer. Thus, the integration of cattle farm into the management of oil palm will be able to save both the use of inorganic fertilizers and herbicides. Research of the Animal Husbandry Office of Jambi Province (2003) showed that a hectare of oil palm plantations could meet about 80% of the one cattle feed.

The palm oil industry generates solid waste such as empty fruit bunches (EFB), stem, shell, and fibers. Management of the solid wastes is until now still not optimum yet. So far, the wastes are just burned and a part is scattered on the field as mulch. In other side, the solid waste is potentially a source of nutrients that can replace synthetic fertilizers (Urea, TSP, etc.). EFB contains nutrients such as N, P, K and Mg; 1 ton EFB is equivalent to 3 kg of urea; 0.6 kg CIRP (P= 30-35%); 12 kg MOP; and 2 kg Kieserite (Lubis and Tobing, 1989). About 5 thousand tons EFB is produced in POM 1 and POM 2 in 2013. If all the generated EFB is used as organic fertilizer, organic fertilizer it will produce fertilizers that are equivalent to 15 ton urea, 3 ton CIRP, 60 ton MOP, and 10 ton Kieserite. The use of organic fertilizer will reduce the use of synthetic fertilizers that result in reduction of CO$_2$ emissions. Based on the equivalence of each fertilizer, the use of organic fertilizer as substitution of synthetic fertilizer would reduce emissions by 75 tons of CO$_2$-eq/ year, or about 1.5 kg CO$_2$-eq / ton CPO.

4. Conclusions

The amount of resources (inventories) to produce CPO is influenced by various factors at each stage of the life cycle, covering the FFB production activities in the plantation, FFB transportation and CPO extraction. The energy consumption for production of 1 ton CPO is 6313 MJ for POM 1 and 7270 MJ for POM 2, respectively. The most energy consumption is for the extraction of palm oil, which is about 80-90 percent. With NER of 5.4-6.2 and NEV of 32-34 GJ/ton CPO, energy earning through the production of CPO is relatively high. The GHG emission from CPO production is estimated around 1,500 CO$_2$-eq / ton CPO, where the
greatest emission is coming from wastewater treatment and disposal. With the application of
technology for methane capture and utilization of methane from anaerobic decomposition
process of wastewater as renewable energy source for generating electricity, for example in
the case of POM 2, NER and NEV value can be increased, respectively from 5.4 to 5.7 and
from 32 to almost 34 GJ/ton CPO, and GHG emission reduction can be up to 970 kg CO2-
eq/ton CPO. A further significant improvement of CPO production process performance can
be achieved through the integration of the oil palm plantation with cattle farm and the
utilization of solid waste as an organic fertilizer.

References