Proceeding
The 2nd Asian-Australasian Dairy Goat Conference
April 25-27th, 2014
IPB International Convention Centre Bogor, Indonesia

THE ROLE OF DAIRY GOAT INDUSTRY IN FOOD SECURITY,
SUSTAINABLE AGRICULTURE PRODUCTION,
AND ECONOMIC COMMUNITIES

Organized by:
Faculty of Animal Science,
Bogor Agricultural University

Supported by:
TABLE OF CONTENTS

List of Editors .. ii
Table of Contents .. iii
Foreword from Chairperson of Organizing Committee x
Foreword from President of Asian-Australasian Dairy Goat Network (AADGN) xii
Remarks from Rector of Bogor Agricultural University xiii

Keynote Speaker

Dairy Goat Production on Smallholder Agriculture in Indonesia. *I-Ketut Sutama*... 8

Invited Speaker

Gender Equity in Sustainable Animal-agriculture: Enhancing Empowerment and The Contribution of Women for Improved Livelihoods, Stable Households and Rural Growth. *C. Devendra*... 21
Dairy Goat Milk and Composition in So-called Developing Countries. *Egil R. Orskov, Kustantinah A*... 37
Perspective of Methane Production by Dairy Goat Farm. *J. Takahashi*... 39
Breeding Programme for Dairy Goats in India. *Aranganoor K. Thiruvenkadan, Ramamujam Rajendra*... 42
Dairy Goat Production in Thailand. *Sansak Nakavisut, Suwit Anothaisinthawee*... 45
Dairy Goat in Malaysia. *Shanmugavelu Sithambaram, Quaza Nizamuddin Hassan Nizam*... 49
Goats in Japan— the Past, the Present and the Future. *Shinichi Kobayashi*... 53
Dairy Goat Production in the Philippines. *Cesar C. Sevilla*... 57
Dairy Goat Production in Iran. *Seyed Mehdi Hoseini*... 65
Housing Advancements in Dairy Goat Farming for Smallholders in the Tropics, Part II. *N. Yogendran*... 69
Present of Status Dairy Goat in Pakistan. M. Fatah Ullah Khan, Faisal Ashfaq, Abdul Ghaffar ... 72
Herbs, Minerals and Fermented Feed for Dairy Goats in Indonesia. Toto Toharmat, Dewi Apri Astuti ... 77

Oral Presentation

Breeding and Genetics

Role of MHC Genes as Useful Biomarkers in Dairy Beetal Goat Breed of Pakistan. Atiya Yasmeen, Tanveer Hussain, Tahir Yaquob, Abdul Wajid, Ali Ahmad Sheikh, Masroor Ellahi Babar ... 96
Early Selection Technology for Growth in Etawah Grade Goat. S. Mayinda, Kuswati, T. Susilawati, Suyadi, A. Rachmawati ... 99
Evaluation on Growth Rate of Anglo Nubian, Etawah Grade, and Anglo Nubian X Etawah Grade Kids. Lisa Praharani ... 102
Technology of Marker α1-Casein Gene for Selection Method in Etawah Grade Goats. T. E. Susilorini, S. Mayinda ... 105
Estimates of Genetic and Phenotypic Trend for Growth Traits in Etawah Grade Goat. F. Hasan, Jakaria, A. Gunawan ... 108
Comparison of Detection Methods of Sperm Acrosome in a Cold Shock Model of Caprine Semen. Mushtaq Ahmad, Nasim Ahmad ... 112
Biometric Evaluation of the Testis of Adult Male Goat (Capra-hircus). Hamayun Khan, Mohammad Misri Rind, Ikhwan Khan, Muhammad Subhan Qureshi, Muhammad Saleem Khan ... 115
Productive and Reproductive performance of Imported French Alpine Goats under Subtropical Conditions in Egypt. Elsaid Oudah ... 118
Effects of Prostaglandin Concentration on Estrous Percentage of Etawah Grade. Umi Adiati, Lisa Praharani ... 125
Individual Variation on the Sperm Freezing Capability of Etawah Grade. Iis Arifiantini, W.M.M. Nally, Tuti Susnawati, Emi Rochmiati ... 128
Activities of Assistance Service as The Initial Program to Establish Village Breeding Center of Etawah Grade Goat at Samigaluh Kulon Progo. Yuni Suranindiyah, Ristianto Utomo, Diah Maharani, Tri A. Kusumastuti, Rihastuti, Setyono ... 131
Response and Characteristic of Estrous of Etawah Grade Goats after Different Routes of Prostaglandin Application. Mohamad A. Setiadi, Kadek D. Setiawan, Elvi D. Yunitasari .. 135

Feed and Nutrition

Milk Constituents of West African Dwarf Goats Fed Corncob Based Silage. Gladys A Ibhae, Oluwasola A. Olorunmisomo, Adebowale N. Fajemisin .. 145

The Growth Performance of Philippine Native Goats (Capra hircus Linn.) Fed Different Neutral Detergent Fiber Ratio from Forage and Concentrate. Dwiamoko Nuroho, Sunarso, Cesar C. Sevilla, Amando A. Angeles .. 149

Blood Biochemical Parameters of Shami Goats Fed Sorghum Stalk. Murtada B. M. Elimam .. 152

The Use of Coffee Husk Fermented with Pleurotus ostreatus as Feed Supplement Improved Haematological Properties in Etawah Dairy Goat Suffered from Subclinical Mastitis. Irina Badarina, Dwiera Evyernie, Elis N. Herliyan, Latifah K. Darusman, Toto Toharmat .. 155

The Effects of Leucaena Leucocephala Added to Para Grass in Different Proportions to Form Mixed Diets on Mimosine, Di-hydroxypyridine (DHP) in Urine, Milk, Thyroid Hormones in Dairy Goats. Thongsuk Jetana, Sungworn Usawang, Sirima Thongrauy .. 158

A Review of Coffee Pulp and Outer Skin of Coffee as Goat Feed. Diah Asri Erowati .. 162

Nutritional Basis of Adaptation of Goats to Changing Climate in Pakistan. Ghulam Habib .. 164

Feed Intake, Daily Gain and Feed Conversion of Ettawah Cross Bred Goat Fed Ration Containing Fermentated Rice Bran. Andi Murlina Tasse, D. Evyernie, Rahman .. 170

Is Goat Milk Superior for Longevity and Sound Health? The Inside Happening Taurine Factor. R.C. Gupta, S.P. Tiwari .. 174

In Vitro Digestibility of Indigofera zollingeriana and Leucaena leucocephala Planted in Peatland. Arsyadi Ali, Luki Abdullah, Panca Dewi M. H. Karti, Muhammad A. Chozin .. 179

In Vitro Evaluation of Dates Fruit Waste as an Energy Source in Dairy Goat Ration. Endah Yuniarti, Dwiera Evyernie, Dewi Apri Astuti .. 182

The Effect of Dietary Barley Grain Substitution with Hydroponic Barley Grass on Performance of Saanen Dairy Goats. Reza Valizadeh, Saherea Hayati, Abbas A Naserian, Abdolmansor Tahmasebi .. 185

Effect of Grazing on Some Bioactive Compounds of Goat Milk. Ferenc Pajor, Péter Póti... 188

Pelletized Forage-based Ration for Lactating Goats. Edgar A. Orden, Emilio M. Cruz, Armando N. Espino, Ma. Excelsis M. Orden, Neal A. Del Rosario... 190

Ruminal Fatty Acid Profiles of Leaves from Some Leguminous Tree Species as Incubated in an in Vitro Fermentation System. Anuraga Jayanegara, Muhammad Ridla, Erika B. Laconi, Nahrowi.. 193

Productivity of Crossbred Ettawah Goats Fed by-Product of Traditional Fried Snack Industry with Different Level of Urea. A Rai Somaning Asih, Ketut G. Wiriyawan, I Nyoman Sadia, Kertanegara.. 196

Effect of Administration of Clove and Orange Peel Oils on Milk Yield and Composition in Dairy Goat. M. Nasir Rosiq, Murat Gorgulu... 199

Effect of Glucose Concentration on the Production of β-glucan by Saccharomyces cerevisiae. Laras Cempaka, I. Nyoman P. Aryantha... 202

Growth Performance of Taggar Female Kids as Affected by Type of Concentrate Rations Under Dry Land Farming in Western Sudan. Ibrahim Bushara, Murtada Elimam, Abdel Moneim M. Abu Nikhiala, D.M. Mekki... 205

Development of Multi-Nutrient No Molasses Feed Supplement for Improving Milk Productivity on Early Lactation Dairy Goats. Suharyono, Nadia Litasova, Asih Kurniawati, Adiarto.. 209

Locally Tree For Ettawa Crossbred Dairy Goat Feed. Asmah Hidayati, Imbang D. Rahayu, Sri Samssundari... 213

Unsaturated Fatty Acid Content of Milk from PE Goat Fed with Palm Oil Sludge Meal and Tea Waste Combination. Muhammad Arifin, Afton Attabany, Anita S. Tjakradidjaja.. 216

Influence of Diets on Milk Production and Composition of Etawah Grade Does Reared in Mined Land Reclamation. Muhamad Baihaqi, Euis Widaningsih, Asnath M. Fuah... 219

Milk Production of Late Lactation Dairy Goat Fed PUFA-Diet Supplemented with Yeast and C. xanthorrhiza Roxb. Endang Sulistyowati, Asep Sudarman, Komang G. Wiriyawan, Toto Toharmat.. 223

The Use of Cassava (Manihot esculenta) Leaf Silage as Protein Source Feed on Intake, Digestibility and Milk Production of Etawah Crossbred Goat. Asep Sudarman, Novicha Sofriani, Yeni Widiawati.. 227

Productivity of Ettawah Crossbred Goat Supplemented with Yeast Probiotic R1 and R2. Teguh Wahyono, Irawan Sugoro.. 230

Herbage Production of Brown Midrib (bmr) and Conventional Sorghum Fertilized with Different Level of Organic Fertilizer as Forage Source for Goat. Widhi Kurniawati, L. Abdullah, Panca D. M. H. Karti, Supriyanto.. 233
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Different Levels of Neutral Detergent Fiber in Diets on Feed Intake, Nutrient Digestibility and Rumen Parameters of Bach Thao Goat in The Mekong Delta of Vietnam. Nguyen Thi Kim Dong, Nguyen Van Thu.</td>
<td>237</td>
</tr>
<tr>
<td>Manure and Urea Fertilizer Application on Productivity of King Grass (Pennisetum purpureoides). Iin Susilawati, Lizah Khairani, Eliza Octaviyani Perwata</td>
<td>241</td>
</tr>
<tr>
<td>Performance of Dairy Goat Fed Diets Supplemented with Garlic Powder (Allium Sativum) and Organic Mineral. Caribu Hadi Prayitno, Yusuf Subagyo, Suwarno...</td>
<td>244</td>
</tr>
<tr>
<td>Nutritional Quality and Milk Production of Complete Feed from Forage for Dairy Goats. Panca D. M. H. Karti, D.A. Astuti, A.M. Fuah, M. Baihaqi, H. Apriyani...</td>
<td>248</td>
</tr>
<tr>
<td>Antioxidant as Feed Additive Given to Etawah Grade Bucks Kept in Different Micro-Climates Environment (26 versus 34 °C). Muhammad Winugroho, Yeni Widiawati, Tatan Kostaman</td>
<td>251</td>
</tr>
<tr>
<td>Effect of Protein Level in Concentrate Diets on Progesterone Concentration in Etawah Grade Goat. Supriyati, Lisa Praharani, I Gusti Made Budiarsana, I-Ketut Sutama</td>
<td>257</td>
</tr>
<tr>
<td>Nutrient Intake and Digestibility of Etawah Grade Goat Fed Diet Supplemented Multi-Nutrient No Molasses Feed Supplement. Asih Kurniawati, Vincentia Desi Pramudiyastuti, Adiarto, Suharyono</td>
<td>261</td>
</tr>
</tbody>
</table>

Dairy Goat Management

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Pilot Epidemiological Survey of Parasitic Problems of Goats in and around Derawar Fort Area, Cholistan. Khalid Mehmood, Ahmad W. Akhtar, Muhammad T. Riaz, Ahmad J. Sabir, Muhammad Ijaz, Aneela Z. Durrami, Musadiq Idris</td>
<td>274</td>
</tr>
<tr>
<td>Milk Producing Ability of Saanen Does Under Intensive Management. Anneke Anggraeni</td>
<td>276</td>
</tr>
<tr>
<td>Comparison of Models for Describing the Lactation Curve of Saanen Goat in Thailand. Mongkol Thepparat, Sansak Nakavisut, Suwit Anothaisinthawee, Thunchira Thepparat</td>
<td>279</td>
</tr>
<tr>
<td>Recording Application for Etawa-Crossed Goat Herd Improvement: A Case Study in Samigaluh, Kulon Progo District. Dyah Maharani, Tety Hartatik, Yuni Suranindyah, Sumadi</td>
<td>282</td>
</tr>
<tr>
<td>Assessment of Marica Goat Meat Producers in Jeneponto Regency, South Sulawesi Province. Novia Qomariyah, Matheus Sariubang, Andi Ella</td>
<td>285</td>
</tr>
</tbody>
</table>

Health and Diseases

The Possibility of Protein A as a Virulence Factor of *Staphylococcus aureus* in Subclinical Mastitis in Goat. Siti Gusti Ningrum, Wyanda Arnaafia, I Wayan Teguh Wibawanan.. 305

Pathological Studies of Caseous Lymphadenitis in Small Ruminants. Muhammad Younus, Ghulam Mustafa, Muti Ur Rehman, Aftab Anjum, Muhammad Raza Hameed, Jahtasham Khan.. 308

Milk and Milk Product

Microbiological and Biochemical Changes during Ripening of Lyghvan-a Raw Ewe’s and Goats Milk Cheese from the Tabriz (Iran). Parisa Rashtchi, Ali Bazmi, Hasn Moosavy, Elham Noormohamadi.. 315

Investigation of the Microbial, Physicochemical and Sensory Properties of Traditional Yoghurt Produced from Milk of Goat and Ewe and Packaged in Tin Can during the Storage Period. Sepide Eftekhar, Parisa Rashtchi, Mohamad Ehsani.. 318

Chemical and Sensory Properties of Kefir Produced from Goat Milk and Extract Soybean. Nurliyani, Eni Harmayani, Sunarti, Feny Prabawati.. 321

Antihypertensive Activity of Lactic Acid Bacteria Fermented Goat Milk Casein on DOCA-Salt Induced Hypertensive Rats. Mas'diana Padaga, Aulanni'am... 325

Effect of Various Sources of Fat Ingredients on the Properties of Goat Milk Ice Cream. Tosporn Namhong, Sanae Buasaniit, Siriwan Suknikom... 328

Concentrated Yogurt Production from Etawah Grade Goat Milk Using Two Different Methods of Whey Removal. Juni Sumarmono, Mardati Sulistyowati, Soenarto... 332

Microbiological Study of Goat Milk Kefir with Different Kefir Grain Concentrations and pH Controls during Fermentation. Triana Setyawardani, Agustinus H.D. Rahardjo, Mardati Sulistyowati, Samsu Wasito, Juni Sumarmono... 335

Economic and Social Economic

Prospect of Dairy Goat Production for Small-Scale Enterprise in Payakumbuh West Sumatra. Khalil, Reswati... 345

Enhancement of Goat Productivity through Micro Finance Banking in Mardan Pakistan. Naushad Khan, Munir Khan, Hamayun Khan.. 349

Poster Presentation

Correction Factors of Lactation Length and Lactation Period on Milk Yield in Saanen Goat. Anneke Anggraeni

Ruminal Fatty Acid Profiles of Leaves from Some Leguminous Tree Species as Incubated in an In Vitro Fermentation System. Anuraga Jayanegara, Muhammad Rida, Erika B. Laconi, Nahrawi

High Quality Ration to Induce Milk Fat of Etawah Crossbreed Goat. K. B. Satoto, K. G. Wiryawan, D. A. Astuti, L. Khotijah, D. M. Fassah, K. Komalasari

Index of Authors ccclxvii
List of Committees cccclxx
Seminar Program ccclxii
List of Participant ccclxxxii
Acknowledgement
Foreword from Chairperson of Organizing Committee

Distinguished,

Director General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia, Ir Syukur Iwantoro, MS, MBA

Rector of Bogor Agricultural University, Prof Dr Heri Suhardianto

President of Asian-Australasian Dairy Goat Network, Dr JB Liang

Mayor of Bogor City, Dr Bima Arya

All participants of Asian-Australasian Dairy Goat Conference 2014

Good morning ladies and gentlemen, and Assalamualaikum wr wb.,

It is my pleasure to welcome you here for attending the Second Asian-Australasian Dairy Goat Conference at IPB International Convention Center, Bogor Indonesia. The theme of this conference is “The role of dairy goat industry in food security, sustainable agriculture production and economic community” which is organized by Bogor Agricultural University in collaboration with Asian Australasian Dairy Goat Network and Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia.

From the success of The First Asia Dairy Goat Conference on 9-12 April 2012 in Kuala Lumpur Malaysia, and to express the mission and the objective of Asian-Australasian Dairy Goat Network, it is necessary to continue the biannual dairy goat meeting in Bogor Indonesia. The primary objective of the second AADGC-2014 is to provide a platform for all stakeholders including researchers, academicians, policy makers, farmers, investors and other dairy industries to share experiences and networking to promote dairy goat farming in the Asian-Australasian region and beyond.

With saying Alhamdulillah, around 90 researchers from 16 countries around the world, 12 top universities and 4 research institutes in Indonesia have contributed some interesting topics to be discussed. The very important persons from 40 government livestock services officers in Indonesia, and more than 30 the best dairy goat farmers and companies from ASEAN counties are also with us here to make a forum group discussion in order to improve dairy goat production and markets. I have to stated here that all papers have been reviewed by the experienced international reviewers.

On behalf of the organizing committtee we would like to welcome to all delegates from Malaysia, Thailand, India, Japan, Philippine, Vietnam, Iran, Pakistan, Australia, United Kingdom, Hungary, Egypt, Nigeria, Sudan and also from some provinces in Indonesia. To government livestock services officers and farmers from ASEAN countries and from east, middle and west

Java, and also some potential business companies, welcome and have a nice discussion. I hope this conference and network activities during 3 days will bring you new idea how to improve dairy goat for our lives and get more benefits for all participants.

We cannot make this event success without your contributions. In this occasion, I would like to express my great gratitude and thanks to FAO, AADGN, IPB, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia, Ministry Coordinating Economic Affairs, Bank BRI, Mayor of Bogor City, PT Napindo, PT Chiel Jedang, PT Nutreco, and PT Yummi Indonesia that support and sponsor this conference.

Thank you very much to all VIP reviewers from international advisory and scientific committee, and also for hard working of all organizing committee.

Please enjoy the beauty of Bogor City with the legend of Bogor presidential palace and botanical garden.

Wassalamualaikum wr.wb.

Prof. Dr. Dewi Apri Astuti, MS
Chairperson
The 2nd AADGC 2014
25 April 2014

Ladies and Gentlemen,

The Asian-Australasian Dairy Goat Network (AADGN) was formed by a group of researchers and producers with common interest in dairy goat production during the First Asian Dairy Goat Conference held in Kuala Lumpur, Malaysia in April 2012. The main objective of the network is to facilitate contact among scientists, extension workers, farmers and other stakeholders in the dairy goat industry. In addition, the network hopes to enhance information exchange, provide technical support, and promote dairy goat farming in Asian-Australasian countries and beyond. The secretariat of the network is currently located at the Institute of Tropical Agriculture, Universiti Putra Malaysia (http://aadgn.upm.edu.my/aadgn/) and technically supported by an International Steering Committee and representatives from partner countries, currently made up of Australia, China, India, Indonesia, Iran, Iraq, Japan, Malaysia, Pakistan, the Philippines, Thailand and Vietnam.

One of the activities of AADGN is to organize regular conferences focusing on all aspects of dairy goat research and farming. On behalf of AADGN, I congratulate the Organizing Committee, chaired by Professor Dewi Apri Astuti, for successfully organized the AADGC2014. I was informed that one of the highlights of this conference is the active participation of local dairy goat farmers and producers. It is often reported that the robustness of goats to produce in harsh climatic environment with low quality roughages plays a vital role in food security and poverty alleviation in smallholder farmers in Asia and recently, there is also a growing interest in dairy goat farming as business enterprise in South-east Asia countries including Indonesia to meet the rapid increased demands for goats milk and its products. I trust this conference will provide a good opportunity for exchange of information and experience between the researchers and producers.

Yours sincerely

DR JUAN BOO LIANG
President AADGN
Remarks from Rector of
Bogor Agricultural University

Prof. Dr. Juan Boo Liang,
President, Asian-Australasian Dairy Goat Network (AADGN),

Ir. Syukur Iwantoro, MBA
Director General of Livestock and Animal Health-Ministry of Agriculture
Republic of Indonesia,

Dr. Bima Arya
Mayor of Bogor City

Distinguished foreign participants and speakers,

Representative of livestock services officers of local government from all over Indonesia,

Dairy goat farmer and businessman,

Colleagues,

Ladies and gentlemen,

Assalamu’alaikum warahmatullaahi wabarakaatuhu,

A very pleasant and good morning to everyone, thank you very much for joining us at the 2nd Asian-Australasian Dairy Goat Conference (AADGC) 2014. I bid you a very warm welcome to Bogor Agricultural University (IPB) as well as to Bogor City, West Java Province.

I was informed that FAO joined with the University Putra Malaysia (UPM) and the International Dairy Federation (IDF) have organized the First Asia Dairy Goat Conference in Kuala Lumpur, Malaysia from 9 to 12 April 2012. At the same time the Asian-Australian Dairy Goat Network was established. That network is one of the successful indicators of the first conference apart from its important conclusions and recommendations. That conference has also recommended Indonesia to be the host of the Second Asian-Australasian Dairy Goat Conference (AADGC) 2014 with Prof. Dr. Dewi Apri Astuti, one of IPB professors from Faculty of Animal Science to be the country coordinator. We are indeed honored to have you now here with us at IPB. We have about 150 participants from 15 countries gathered here today, making our conference a truly international one.

According to FAO Statistics (2012), Indonesia is ranked 6th in Asia and 10th in the world for total goat population. FAO also reported that Indonesia produced 282,000 ton of fresh goat milk in 2012. Yet, we have no valid data on the number of dairy goat population among the total goat population. Dairy goat farming in Indonesia has been growing fast since about 10 years ago.
The development of dairy goat farming in our country is unique, because it started from community initiative and spread across the nation through their network. The increasing demand of milk and milk products is likely one of the driving force for dairy goat farmer to develop.

If we take our national population as denominator, our milk consumption per capita per year is still very low, it is only 12 liter/capita/year. However, the consumption level in big cities is quite high, that’s why our milk and milk products demand is increasing about 8% per year. Although the major portion of the demand is from cow milk, goat milk and milk products demand is also increase year by year.

As the present conference theme is “The Role of Dairy Goat Industry in Food Security, Sustainable Agriculture Production nd Economic Community” it is imperative to discuss alternative solutions to the above challenges by all participants as you are coming from different backgrounds. We have with us today representatives from research centers, universities, businessmen, government officers, students, farmers, and other interested persons. The conference will be more interesting as the organizing committee has set up special session for panel discussion between and among dairy goat farmers, local government livestock services officers, businessman and representative from Directorate General of Livestock and Animal Health, apart from scientific session.

I would like to take this opportunity to express my gratitude the Local Organizing Committee, chaired by Professor Dewi Apri Astuti, and the Dean of Faculty of Animal Science, for their hard work and effort in planning and coordinating this event. I would also like to thank the Directorate General of Livestock and Animal Health, Ministry of Agriculture Republic of Indonesia, Asian-Australasian Dairy Goat Network (AADGN), Food and Agriculture Organization (FAO-RAP), Mayor of Bogor City and Indonesia Association for Sheep and Goat Farmers for their support in making this conference possible.

The challenges made by the Conference are significant, but I am confident that you will succeed in your objectives. I wish you a very pleasant stay here in the IPB and in Bogor, and a productive and successful meeting.

By saying “Bismillaahirrahmaanirraahim…” I declare the Conference open.

Thank you and Wassalamu’alaikum Warahmatullaahi Wabarakatuhu.

PROF. DR. IR. HERRY SUHARDIYANTO, MSc.
RECTOR, BOGOR AGRICULTURAL UNIVERSITY
Individual Variation on the Sperm Freezing Capability of Etawah Grade

Iis Arifiantini1, W.M.M Nally2, Tati Susnawati3, Emi Rochmiati3

1 Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor 16680, Indonesia.
2 Faculty of Animal Science, University of Nusa Cendana Kupang 85148, Indonesia.
3 Artificial Insemination Centre, Lembang Bandung 40391, Indonesia.
*Corresponding author: iis.arifiantinipurna@gmail.com

Abstract This research aims to evaluate the individual variation in the freezing capability sperms of Etawah Grade bucks at Lembang Artificial Insemination Center (LAIC). Five sexually mature Etawah Grade bucks were used as sperms sources. The semen was collected using artificial vagina and was evaluated macro- and microscopically. The semen was diluted with andrommed and frozen according to LAIC standard procedure. The result of the experiment indicated there was no significant difference (P>0.05) in raw semen quality, except for sperm motility. The recovery rate of sperms obtained from Efrat buck was significantly higher (P<0.05) than the other bucks. This research concluded that there was an individual variation in freezing capability of sperm in Etawah Grade bucks.

Keywords Freezing capability, Etawah Grade bucks, Recovery rate

1. Introduction

Artificial insemination using frozen semen is now the most widespread tool employed nationwide for improving the genetic potential of livestock [1]. Although semen cryopreservation has been applied successfully in a few species, considerable variations in post-thaw semen viability are still exist. Independent of sperm quality before freezing, the semen of certain individuals will consistently freeze badly, resulting in poor motility, disrupted acrosome and plasma membrane, and thus reduced fertilizing ability, indicating the existence of variation in membrane properties within individual [2]. This research aims to evaluate the individual variation on the freezing capability sperms of Etawah Grade bucks at Lembang Artificial Insemination Center.

2. Materials and Methods

2.1. Source of semen

Five sexually mature Etawah Grade bucks age 3-4 years, body weigh 70 to 80 kg belong to Lembang Artificial Insemination Center were used as sperms sources with a total of 58 ejaculates. The bucks were kept under natural light and maintained under a uniform and constant nutrition regiment with each buck being fed on a daily diet of 1 kg concentrate, 8 kg of grass, 1 kg of legume, salt lick, and water was provided ad libitum.

2.2. Extender preparation

A commercially available diluent Andromed® (Minitube, Germany) was used in this experiment.
This extender contains soybean extract with antibiotics (lincomycin, spectinomycin, tylosin, gentamycin) and glycerol (7%). One part of andromed was diluted with 4 parts of aquibidest, warmed up at 37°C at Water bath.

2.3. Semen collection and evaluation

The semen was collected from the bucks with the aid of an artificial vagina, twice a week. Immediately after collection, the semen was evaluated macro- and microscopically including semen volume, pH, consistency, and color, mass movement, motility, and sperm concentration according to [3].

2.4. Semen processing

Qualified semen samples having volume of > 2 mL, sperm concentration > 2.000x10⁶ and progressive sperm motility of > 70% were selected for cryopreservation. The semen was diluted with diluent to a final concentration of 200x10⁶ sperm/ml. Diluted semen was loaded into 0.25 ml straws (Minitube Germany) using automatic filling and sealing machine (Combo System, Minitube Germany), equilibrated at 4°C for 3 hours and was frozen at automatic freezing machine (Digitcool 5300 ZB 250, IMV Francis) for 9 minutes and the straws were then plunged into the liquid nitrogen and stored until thawing.

2.5. Evaluation of post-thawing quality

After storage for a period of 24 hours, the semen straws were thawed in a water bath (at 37°C for 30 second) for microscopic semen evaluation immediately after thawing. Sperm motility was assessed using a phase-contrast microscope (Olympus BX 53) X 200 magnification with a warm stage maintained at 37°C. A wet semen mount was made by using 5 μL semen placed directly on a microscope slide and covered by a cover slip. Motility estimations were performed from three different microscopic fields in each sample. The post-thawing quality criterion were < 40% was bad, 40-50% was moderate, and >50% was good.

2.6. Statistical analysis

The study was repeated 9 times and the results were expressed as the mean ± SEM. One way analysis of variance (ANOVA) with a subsequent Duncan test was used to compare the mean values resulting from the various individual at a significance level of P<0.05. All analyses were carried out using the SPSS 18 for Windows statistical software package.

3. Results and Discussion

3.1. Raw semen quality

All ejaculates were collected from sexually mature bucks that were of proven fertility and were undergoing regular semen collection for artificial inseminations. Therefore, it was expected that semen quality before freezing would be of a high standard. Semen quality was assessed before freezing with volume > 2 ml, normal in color and consistency, mass activity > 2, with percentage of sperm motility > 70%, and sperm concentration > 2000x10⁶. There were
no difference among parameters, except for sperm motility, Efrat buck demonstrated the lower motility as compared to others (Table 1).

Table 1. Raw semen quality of Etawah Grade bucks at Lembang Artificial Insemination Centre (mean±SEM)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ebony</th>
<th>Efrat</th>
<th>Enquiry</th>
<th>Equity</th>
<th>Evory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (ml)</td>
<td>2.78±0.24<sup>a</sup></td>
<td>2.79±0.31<sup>a</sup></td>
<td>2.46±0.24<sup>a</sup></td>
<td>2.28±0.07<sup>a</sup></td>
<td>3.28±0.28<sup>a</sup></td>
</tr>
<tr>
<td>pH</td>
<td>6.72±0.05<sup>a</sup></td>
<td>6.76±0.06<sup>a</sup></td>
<td>6.66±0.06<sup>a</sup></td>
<td>6.08±0.71<sup>a</sup></td>
<td>6.64±0.06<sup>a</sup></td>
</tr>
<tr>
<td>Colour</td>
<td>Creamy white to yellow</td>
</tr>
<tr>
<td>Consistency</td>
<td>Moderate to tick</td>
</tr>
<tr>
<td>Mass activity</td>
<td>2.23±0.16<sup>a</sup></td>
<td>2.08±0.13<sup>a</sup></td>
<td>2.42±0.14<sup>a</sup></td>
<td>2.00±0.00<sup>a</sup></td>
<td>2.11±0.11<sup>a</sup></td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>81.54±2.49<sup>a</sup></td>
<td>70.38±5.67<sup>b</sup></td>
<td>83.33±1.66<sup>a</sup></td>
<td>74.44±1.54<sup>ab</sup></td>
<td>80.00±0.74<sup>a</sup></td>
</tr>
<tr>
<td>Sperm concentration (×10<sup>6</sup>)</td>
<td>2344.62±98.55<sup>a</sup></td>
<td>2030.00±158.24<sup>a</sup></td>
<td>2375.00±61.11<sup>a</sup></td>
<td>2020.00±107.24<sup>a</sup></td>
<td>2113.33±58.62<sup>a</sup></td>
</tr>
</tbody>
</table>

Mass activity scoring (0-3); 0 no mass activity, 1 poor, 2 moderate and 3 good
Different superscripts within the same row are statistically different at P<0.05

3.2. Frozen semen quality of Etawah Grade bucks

Overall, the quality of post-thawing motility of sperms obtained from Etawah Grade bucks demonstrated a moderate quality (41.67±0.83 to 46.25±1.09%). Sperm motilities during pre-freezing period were between 62.22±1.21 to 65.00±1.23% and no significant different among individual bucks. Freeze-thawing procedure decreased the sperm motility between 32.08 to 39.17% (Table 2).

Table 2. Recovery rate of Etawah Grade bucks of sperms after freezing (mean± SEM)

<table>
<thead>
<tr>
<th>Buck name</th>
<th>Raw</th>
<th>Pre freezing</th>
<th>Post thawing</th>
<th>Recovery rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebony</td>
<td>81.54±2.49<sup>a</sup></td>
<td>64.17±0.83<sup>a</sup></td>
<td>43.33±0.71<sup>ab</sup></td>
<td>53.48±2.38<sup>a</sup></td>
</tr>
<tr>
<td>Efrat</td>
<td>70.38±5.67<sup>b</sup></td>
<td>62.92±1.29<sup>a</sup></td>
<td>43.75±0.89<sup>ab</sup></td>
<td>57.86±1.90<sup>b</sup></td>
</tr>
<tr>
<td>Enquiry</td>
<td>83.33±1.66<sup>a</sup></td>
<td>63.75±1.39<sup>a</sup></td>
<td>43.75±1.39<sup>ab</sup></td>
<td>52.03±1.38<sup>a</sup></td>
</tr>
<tr>
<td>Equity</td>
<td>74.44±1.54<sup>ab</sup></td>
<td>62.22±1.21<sup>a</sup></td>
<td>41.67±0.83<sup>a</sup></td>
<td>56.01±0.94<sup>ab</sup></td>
</tr>
<tr>
<td>Evory</td>
<td>80.00±0.74<sup>a</sup></td>
<td>65.00±1.23<sup>a</sup></td>
<td>46.25±1.09<sup>b</sup></td>
<td>56.99±0.80<sup>ab</sup></td>
</tr>
</tbody>
</table>

Different superscripts within the same columns are statistically different at P<0.05

Variability among individual bucks was detected for post-thaw sperm motility. Evory buck demonstrated the highest post-thawing motility (46.25±1.09%) than the other bucks. The indicator for freezing capability of sperm is not only post-thawing motility. The successful of freezing can also be seen by assessing its recovery rate (RR), by comparing the sperm motility of raw semen with post-thawing semen. According to RR, Efrat buck showed the best freezing capability with 57.86±1.90% sperm recovered after freezing, even though he sperm motility of raw semen only 70.38±5.67% but the post-thawing motility was 43.75±0.89. This value
was not different from Ebony buck having 81.54±2.49% sperm motility of raw semen (Table 2). Individual differences in sperm cryo-survival were not exclusive to goat, because they have also been observed in stallion [4], ram [5,6], and boar [2]. The reason for goat individual variability in cryo-survival of sperm is unknown at present, although it may have a genetic origin. Differences in specific DNA sequences have been identified between boars in which post-thaw sperm quality was classified as poor or good [2].

4. Conclusion

There was an individual variation on freezing capability of sperms in Etawah Grade bucks.

5. References

Faculty of Animal Science, Bogor Agricultural University

Collaboration with:

Directorate general of Livestock Services and Animal Health,
Ministry of Agriculture, Republic of Indonesia

Asian-Australasian Dairy Goat Network (AADGN)

Mayor of Bogor City