Enhancing Synergistic Roles of Stakeholders for Development of Sustainable Livestock Production

The 3rd Animal Production International Seminar
3rd APIS & 3rd ARCAP – 2016
Assalamualaikum warohmatullahi wabarakatuh

Distinguished Guests and Delegates, Ladies and Gentlemen,

It gives me great privilege and pleasure to extend to you all a very warm welcome on behalf of Brawijaya University and to say how grateful we are to the organizing committee of The Third Animal Production International Seminar (3rd APIS) and The Third ASEAN Regional Conference on Animal Production (3rd ARCAP) who made this important event happening from today onward. Your attendance in this conference will not be enough before exploring the serendipity of Batu city which has attracted so many visitors in the recent years. It offers you many attractive places to visit varying from leisure facilities to smallholder dairy farms that relevant to the topic of this conference.

The issues of livestock production and food security have been a hot topic of debates all over the world to challenge our capability to feed human population living on earth that is believed will reach 25 billion people by the middle of this millennium. The global call on quality human resources especially in developing countries may not be achieved without adequate supply of animal protein. This has urged animal scientists to make significant effort to increase animal production by inventing new technologies and approaches but have no negative impact on our natural resources because the majority of smallholder farmers face with scarcity of cultivable land to produce adequate quantity and quality fodder for their animals. The practice of uncontrolled fodder scavenging from forest and open land may provoke serious natural disaster such as landslide, flood and loss of water resources for human beings. Through this stage I would like to extend my concern to all distinguished guests and delegates to pay more attention on sustainable development of animal production that assures our young generation lives on earth safely and happily.

As the rector of Brawijaya University, I am also delighted to welcome you in our green campus sometime in the middle of the conference to hasten mutual collaboration between Brawijaya University and either national or international partners. We are fully aware that in a modern life higher education quality should be built on the basis of collaboration for many reasons. Brawijaya University has 14 faculties that can be grouped into four science trees, that is engineering, humanity, economics, and life sciences. They have been growing significantly not only in the number of student enrollements but many prestigious achievement on research findings, student competitions and administrative transparency are our flagships in the last ten years. Nevertheless, we also realize that first and foremost constraint for any institution is the limit of resources and thereby underpinning the importance of establishing mutual collaboration. It is our opportunities to meet delegates from varying places of origin that open initial discussion for further networking on relevant topics of interests concordance to the main topic of this conference and beyond.

To conclude my address, once again I would like to express my sincere gratitudes to all delegates, partners and conference committee who have made this important international conference occurs. I do hope that your stay and participation in these seminar and conference will be fruitful and unforgettable.
By the name of Almighty Allah Swt. I declare that The Third Animal Production International Seminar (3rd APIS) and The Third ASEAN Regional Conference on Animal Production (3rd ARCAP) are officially open.

Thank you very much
Wassalamualaikum warohmatullahi wabarokatuh.

Batu, 19 October 2016
Brawijaya University
Rector
Prof. Dr. Ir. Mohammad Bisri, MS.
STEERING COMMITTEE

- Prof. Dr. Sc. Agr. Suyadi, MS. (Brawijaya University, Indonesia)
- Prof. Dr. Kusmartono (Brawijaya University, Indonesia)
- Prof. Ifar Subagiyo, Ph.D. (Brawijaya University, Indonesia)
- Prof. Hendrawan Soetanto, Ph.D. (Brawijaya University, Indonesia)
- Prof. Dr. Abdul Razak Alimon (Universiti Putra Malaysia, Malaysia)
- Prof. Dr. Ali Agus, (Indonesian Society of Animal Science)
- Dr. Abu Hasan (Malaysian Society of Animal Production)
- Prof. Liang Chou Hsia, Ph.D. (National Pingtung University of Science and Technology, Taiwan)
- Prof. Dr. E.R. Ærskov (International Feed Resources Unit, Macaulay Land Use Research Institute - MLURI, Scotland, UK)
- Assoc. Prof. Dr. Suntorn Wittayakun (Faculty of Science and Agriculture Technology, Rajamangala University of Technology Lanna, Thailand)
- Prof. Dr. Zaenal Fanani (Brawijaya University, Indonesia)
- Prof. Dr. Djalah Rosyidi (Brawijaya University, Indonesia)
- Prof. Dr. Budi Hartono (Brawijaya University, Indonesia)
- Prof. Dr. Luqman Hakim (Brawijaya University, Indonesia)

SCIENTIFIC COMMITTEE

- Prof. Dr. Trinil Susilawati (Brawijaya University, Indonesia)
- Prof. Dr. Abdul Razak Alimon (Universiti Putra Malaysia, Malaysia)
- Prof. Dr. Ramli Abdullah (Universiti Malaya, Malaysia)
- Cynthia D.K. Bottema, Ph.D. (University of Adelaide, Australia)
- Prof. Marsetyo, Ph.D. (Tadulako University, Palu, Central Sulawesi, Indonesia)
- Dr. Umar Paputungan (Sam Ratulangi University, Manado, North Sulawesi, Indonesia)
- Assist. Prof. Dr. Wilaiporn Chanchai (Faculty of Science and Agriculture Technology, Rajamangala University of Technology Lanna, Thailand)
- Prof. Dr. Siti Chuzaemi (Brawijaya University, Indonesia)
- Dr. Gatot Ciptadi (Brawijaya University, Indonesia)
- Dr. Lilik Eka Radiati (Brawijaya University, Indonesia)
- Dr. Qasir Sjofjan (Brawijaya University, Indonesia)
- Dr. Masdiana Ch Padaga (Brawijaya University, Indonesia)
- Dr. Eko Widodo (Brawijaya University, Indonesia)
- Dr. Mashudi (Brawijaya University, Indonesia)
- Dr. Ita Wahyu N (Brawijaya University, Indonesia)
- Hari Dwi Utami, Ph.D (Brawijaya University, Indonesia)
- Anie Eka K., M.Sc (Brawijaya University, Indonesia)
ORGANIZING COMMITTEE

Honorary Chairperson

- Prof. Dr. Mochammad Bisri (Rector/President, Brawijaya University, Malang, Indonesia)
- Prof. Dr. Kusmartono (Vice-Rector of Academic Affair, Brawijaya University, Malang, Indonesia)
- Prof. Dr. Sc. Agr. Ir. Suyadi (Dean, Faculty of Animal Husbandry, Brawijaya University, Malang, Indonesia)

Chairman

Dr. Ir. Marjuki, M.Sc.

General Secretary

Chairperson

Aswah Ridhowi, M.Sc.

Members

Wike Andre, M.Si

Treasurers

Chairperson

Asri Nurul Huda, MP., M.Sc

Vice-Chairperson

Dr. Ir. V. M Ani N., M.Sc

Secretariat Team

Chairperson

Firman Jaya, MP

Vice-Chairperson

Dr. M. Halim Natsir

Members

Jaisy Aghniarahim Putritamara., MP

Mr. Arifatul Hafidz Achsan

Fund Raising and Sponsorship Committee

Chairperson

Aulia Puspita A. Y., MP., M.Sc

Vice-Chairperson

Dr. Kuswati,

Member

Yuli Frita N., MP., M.Sc

Program Committee

Chairperson

Dr. Herly Evanuarini

Members

Dr. Siti Azizah

Trianti Djoharjani, M.Agr. St

Awang Tri Satria, ME

Consumption Committee

Chairperson

Dr. Tri Eko Susilorini

Members

Dr. Sri Minarti

Aris Sri Widati, MS

Ria Dewi Andriani, MP., M.Sc

Receptionist Team

Chairperson

Poespita Sari Hazanah N., MP

Members

Premy Puspitawati R., MP

Mulia Winirsya Apriyani, MP

Field Trips Committee

Chairperson

Firmansyah Tri MP

Members

Dr. Agus Susilo

Mr. Djarot Sunarto
Transportation Committee

Chairperson
Dr. Agus Budiarto

Members
Mrs. Nadhiroh
Mr. Sutikno
Mr. Yusuf

Venue and Documentation Committee

Chairperson
Nanang Febrianto, MP

Members
Hely Tistiana, MP
Mr. Kusno Waluyo
Mr. Rosyidi
Mr. Zaenal Abidin
Ms. Dita Anggraini
Congress Name: 3rd Animal Production International Seminar (3rd APIS) & 3rd ASEAN Regional Conference on Animal Production (3rd ARCAP)

Themes: Enhancing Synergistic Roles Of Stakeholders for development Of Sustainable Livestock Production

Chairman: Dr.Ir. Marjuki, M.Sc (Brawijaya University, Indonesia)

Date: 19-21 October 2016

Venue: Royal Orchid Garden Hotel and Condominiums The Shining City of Batu

Official Website: http://apis.ub.ac.id

Secretariat for APIS 2016: Faculty of Animal Husbandry Brawijaya University, Malang Indonesia
Telephone +62 341 553513
Mobile/ Line/ WA: +62 857 076 327 91
E-mail : info.apis@ub.ac.id
ACKNOWLEDGMENTS

BRAWIJAYA UNIVERSITY

INDONESIAN SOCIETY OF ANIMAL SCIENCE

UNIVERSITI PUTRA MALAYSIA

MALAYSIAN SOCIETY OF ANIMAL PRODUCTION

RAJAMANGALA UNIVERSITY OF TECHNOLOGY LANNA
SPONSORS

FEDLOT INDUSTRY

POULTRY INDUSTRY

DAIRY FACTORY

BEE FARM

JAPFA
PT. Cimas Adisatwa

Greenfields

Kembang Joyo

CHEMICAL REAGENT-
HOSPITAL & LABORATORY
EQUIPMENT

BRAWIJAYA UNIVERSITY
BOOKSTORE

BRAWIJAYA UNIVERSITY COOPERATIVE

Makmur Sejati

Agricultural University
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30-</td>
<td>Legumes wafer for improvement the post-weaning etawah crossbreed goats performance¹
¹ Brilian Desca Dianingtyas, Yuli Retnani, and Dwierra Evvyernie</td>
<td>Brilian Desca Dianingtyas</td>
<td>FN – 352</td>
</tr>
<tr>
<td>12.40-</td>
<td>Utilization of cricket meal in creep feed diet of growing etawah cross breed goats¹
¹ Dewi Apri Astuti, Widya, L. Khotidjah, A. Angraeny, K. Komalasari, and Dewi Apri Astuti</td>
<td>Dewi Apri Astuti</td>
<td>FN – 332</td>
</tr>
<tr>
<td>12.50-13.00</td>
<td>Performance of first cutting of Pennisetum purpureun cv. Mott under different level of light and nitrogen fertilizer¹
¹ David A. Kaligis, Selvie D. Anis, Johanis R. Tulung, and Sahrun Dalie</td>
<td>David A. Kaligis</td>
<td>FN – 360</td>
</tr>
<tr>
<td>13.00-13.10</td>
<td>Amino acid characterization of tofu waste fermentation using effective microorganism-4 and Lactobacillus plantarum culture¹
¹ Eka Fitasari and Budi Santosa</td>
<td>Eka Fitasari (MODERATOR 2)</td>
<td>FN – 325</td>
</tr>
<tr>
<td>13.10-13.20</td>
<td>In vitro digestibility profiles of cricket meal as protein source in the ration¹
¹ Dewi Apri Astuti, M. Miftakhul Solikhin, and Yuni Cahya Endrawati</td>
<td>Dewi Apri Astuti</td>
<td>FN – 331</td>
</tr>
<tr>
<td>13.20-13.30</td>
<td>Production of roughage feed under different drying methods and evaluation of the feeding value¹
¹ Jayaweera B. P. A.</td>
<td>Jayaweera B. P. A.</td>
<td>FN – 333</td>
</tr>
<tr>
<td>13.30-13.40</td>
<td>In vitro nutrient digestibility of Chromolaena odorata-based silage treated with Corypha gebanga meal and rumen content¹
¹ Yelly M. Mulik, Muhammad Ridla, Iwan Prihantoro, and Marthen L. Mullik</td>
<td>Yelly M. Mulik</td>
<td>FN – 335</td>
</tr>
<tr>
<td>13.40-13.50</td>
<td>Production, characterization and purification of xylanase from Staphylococcus aureus MBXi-K4¹
¹ Indah Wijayanti, Maggy T Suhartono, Khaswar Syamsu, and Yulin Lestari</td>
<td>Indah Wijayanti (MODERATOR 1)</td>
<td>FN – 336</td>
</tr>
<tr>
<td>13.50-14.00</td>
<td>To estimate intestinal truly absorbed protein of alfalfa hay and alfalfa silage using new dutch system (DVE/OEB)¹
¹ P. Kheyrandish, M. Danesh Mesgaran and A. Vakili</td>
<td>Parisa Kheyrandish</td>
<td>FN – 340</td>
</tr>
<tr>
<td>14.00-14.10</td>
<td>Chitosan protection to saga leaves extract (Abrus precatorius Linn) and Lingzhi mushroom (Ganoderma lucidum) from rumen microbial degradation¹
¹ Evvyernie D., Sukria H. A., Harlina E., Suningsih N., and Zetira H.</td>
<td>Dwierra Evvyernie</td>
<td>FN – 342</td>
</tr>
<tr>
<td>14.10-14.20</td>
<td>Effects of different types of cakes in rations on the</td>
<td>Amani Osman</td>
<td>FN – 348</td>
</tr>
</tbody>
</table>
Oral Presentation 05 Focus season: Socio-Economics & Others

Friday, 21st October 12:30-14:10 Room: Welirang

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30-12.40</td>
<td>Financial analysis of the pig farming that utilizing waste disposal system as environmentally friendly farming practices (A case on a pig breeding farm in Tomohon, North Sulawesi)(^1)</td>
<td>Richard E. M. F. Osak</td>
<td>SE – 724</td>
</tr>
<tr>
<td>12.40-12.50</td>
<td>Farmers group’s role in farming management and rabbit farmers’ communication in Lang–Lang Village, Singosari District, Malang Regency, Indonesia(^1)</td>
<td>Siti Azizah (MODERATOR 1)</td>
<td>SE – 723</td>
</tr>
<tr>
<td>12.50-13.00</td>
<td>The Development Program “Village Poultry Farming” to local hens Farmers of Tenga Village(^1)</td>
<td>Jein Rinny Leke</td>
<td>SE – 728</td>
</tr>
<tr>
<td>13.00-13.10</td>
<td>Utilization of pig waste to biogas in Kotamobag City(^1)</td>
<td>T. F. D. Lumy (MODERATOR 2)</td>
<td>EV – 504</td>
</tr>
<tr>
<td>13.10-13.20</td>
<td>Spatial distribution model of dairy cattle productivity in West Java(^1)</td>
<td>Hilda Susanty (MODERATOR 1)</td>
<td>EV – 501</td>
</tr>
<tr>
<td>13.20-13.30</td>
<td>Methane emission from beef cattle production at low- and high-altitude of East Nusa Tenggara, Indonesia(^1)</td>
<td>Marthen L. Mullik</td>
<td>EV – 502</td>
</tr>
<tr>
<td>13.30-13.40</td>
<td>The effect of parity, month of lactation and incidence of subclinical mastitis on milk yield(^1)</td>
<td>Hilda Susanty</td>
<td>LP – 216</td>
</tr>
<tr>
<td>13.40-13.50</td>
<td>Production and Carcass Performance of Male Local Mojosari Ducks Given the Traditional Medicine Herbs on Drinking Water(^1)</td>
<td>Ita Wahju Nursita</td>
<td>LP – 238</td>
</tr>
<tr>
<td>13.50-14.00</td>
<td>Effect of Closed House Temperature on feed intake, weight gain and Triiodothyronine (T3) and Thyroxine</td>
<td>Pratiwi Trisunuwati</td>
<td>LP – 242</td>
</tr>
</tbody>
</table>

\(^1\) Richard E. M. F. Osak, Meiske L. Rundengan and Tilly F.D. Lumy

\(^1\) S. Azizah, B. Hartono, E. Nugroho and A. E. Kusumastuti

\(^1\) T. F. D. Lumy, P. O. V. Waleleng, F. N. S. Oroh, N. M. Santa and F. S. Oley

\(^1\) Jein Rinny Leke, F. Ratulangi, D. Rembet, and J. Mandey

\(^1\) H. Susanty, B.P. Purwanto, M. Sudarwanto, and A. Atabany

\(^1\) Gustaf Oematian, Yelly M. Mulik, and Mathen L. Mullik
<table>
<thead>
<tr>
<th>14.00–14.10</th>
<th>Hormone (T4) levels of Broiler Chickens(^1)</th>
<th>Pratiwi Trisunuwati</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production and nutrition composition of pollen from foraging honey bees (Apis mellifera L.) in the red caliandra (Calliandra calothyrsus) plantation area(^1)</td>
<td>Sri Minarti, Yugi Mustofa, Firman Jaya</td>
<td>LP – 240</td>
</tr>
</tbody>
</table>

\(^1\) Sri Minarti
Effect of storage time and physical form of diet with formulated from local feed based on nutrient composition of the diets ... 530

Enrichment of Feedstuff With Fermented Soybean Peel to Increase Rabbit Body Weight .. 533

Broiler chickens performance as affected by animal fat and plant oil under hot arid conditions of Sudan .. 539

Calcium and phosphorous absorption of field grass during the dry season at medium altitude in Garut .. 543

Isolation and screening of lactic acid bacteria from dadih for glutamic acid production as precursor of γ-Amino Butyric Acid (GABA) induced heat stress in broiler .. 546

The effect of fertilizers on soil characteristics of sand-mining land and nutrients content of sorghum patir 3.7 (Sorghum bicolor (L) Moench) .. 550

Arbuscular mycorrhizal fungi and rock phosphate role on plant growth of sorghum (Sorghum bicolor L.) as a forage ... 553

The Potential of Local Feed Sources for Silage Production in Supporting The Cattle Raising Business in East Ranotongkor Village .. 556

Legumes wafer for improvement the post-weaning etawah crossbreed goats performance .. 560

Utilization of cricket meal in creep feed diet of growing etawah cross breed goats ... 563

Performance of first cutting of Pennisetum purpureun cv.Mott under different level of light and nitrogen fertilizer ... 567

Amino acid characterization of tofu waste fermentation using effective microorganism- and Lactobacillus plantarum culture ... 570

In vitro digestibility profiles of cricket meal as protein source in the ration ... 573

Production of roughage feed under different drying methods and evaluation of the feeding value .. 576

In vitro nutrient digestibility of Chromolaena odorata-based silage treated with Corypha gebanga meal and rumen content .. 579

Production, characterization and purification of xylanase from Staphylococcus aureus MBXi-K4 .. 583

To estimate intestinal truly absorbed protein of alfalfa hay and alfalfa silage using new dutch system (DVE/OEB) .. 587

Chitosan protection to saga leaves extract (Abrus precatorius Linn) and Lingzhi mushroom (Ganoderma lucidum) from rumen microbial degradation 588

Effects of different types of cakes in rations on the performance of culled Cyprus shami does in Half Elgadeda, Kassala State, Sudan ... 592

Changes in nutrition and fibre silage water hyacinth (Eichhornia crassipes) as ruminant feed fermented with several fermentative materials .. 598

Effect of Phanerochaete chrysosporium to enzymatic activity and lignin on fermentation process of cocoa pod (Theobroma cacao) ... 603

Effect of fish oil and its combination with tomato powder supplementation on laying performance of native chicken ... 610

Effect of substitution of meat bone meal with protein concentrate of mealworm (Tenebrio molitor L) on performance of broilers 611
<table>
<thead>
<tr>
<th>Oral Presentation 5 Focus Session: Livestock Production System</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LP-218) Estimating yield grade by using body measurements and body condition score in thin-tailed sheep ... 635</td>
</tr>
<tr>
<td>(LP-219) Exploration of fecal physical test to estimate weaning age of kids .. 639</td>
</tr>
<tr>
<td>(LP-223) Lactation Curve Pattern and Milk Production Performance of Crossbred Friesian Holstein in Pasuruan Regency, Indonesia ... 639</td>
</tr>
<tr>
<td>(LP-226) Correlation of Protein Level in the Diets on Yield Grade and Rib Eye Muscle Area of Post-Weaning Lamb ... 644</td>
</tr>
<tr>
<td>(LP-227) Effects of different combination of water hyacinth leaves and sapu sapu fish on growth performances of local ducks in Lombok .. 648</td>
</tr>
<tr>
<td>(LP-228) Identification of Sonok cattle characteristics as local genetic resources in Madura island .. 651</td>
</tr>
<tr>
<td>(LP-229) Physiological Responses and Milk Qualities of Holstein Friesian During Dry Season at High Altitude .. 657</td>
</tr>
<tr>
<td>(LP-241) The Effect of Water Clover Leaf Juice (Marsilea crenata) Against Blood Calcium Levels And Histology Os humerus On Rat (Rattus norvegicus) ... 684</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oral Presentation 5 Focus Session : Socio-Economics & Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SE-724) Financial analysis of the pig farming that utilizing waste disposal system as environmentally friendly farming practices (A case on a pig breeding farm in Tomohon, North Sulawesi) ... 690</td>
</tr>
<tr>
<td>(SE-723) Farmers group’s role in farming management and rabbit farmers’ communication in Lang – Lang Village, Sengosari District, Malang Regency, Indonesia .. 693</td>
</tr>
<tr>
<td>(SE-728) The Development Program “Village Poultry Farming” to local hens Farmers of Tenga Village cation of Sonok cattle characteristics as local genetic resources in Madura island ... 699</td>
</tr>
<tr>
<td>(EV-504) Utilization of pig waste to biogas in Kotomobagu City ... 703</td>
</tr>
<tr>
<td>(EV-501) Spatial distribution model of dairy cattle productivity in West Java ... 708</td>
</tr>
</tbody>
</table>
1. Methane emission from beef cattle production at low- and high-altitude of East Nusa Tenggara, Indonesia ... 709
2. The effect of parity, month of lactation and incidence of subclinical mastitis on milk yield .. 712
3. Production and Carcass Performance of Male Local Mojosari Ducks Given the Traditional Medicine Herbs on Drinking Water .. 713
4. Effect of Closed House Temperature on feed intake, weight gain and Triiodothyronine (T3) and Thyroxine Hormone (T4) levels of Broiler Chickens ... 714
5. Production and Nutrition Composition of Pollen from Foraging Honey Bees (Apis mellifera L.) in The Red Caliandra (Calliandra calothyrsus) Plantation Area 715
Keynote Speakers Presentation

Wednesday, October 19th 10.00-12.00

Room: Panderman
Production, Characterization and Purification of Xylanase From
Staphylococcus aureus Mbxi-K4

Indah Wijayanti¹, Maggy T Suhartono², Khaswar Syamsu², Yulin Lestari³

¹Departement of Nutrition and Feed Technology, Bogor Agricultural University,
Agathis Street Bogor Agricultural University Dramaga-Bogor 16680.
²Research Center of Bioresource and Biotechnology, Bogor Agricultural University
³Department of Biology, Bogor Agricultural University
Corresponding author: indah_wjynt@yahoo.com.sg

Abstract

Pollard is a by-product from dry milling wheat into flour and contains 16.49% of crude fiber. The addition of xylanase in wheat-pollard diet is necessary to reduce viscosity of digesta. Thus could be easily absorbed in intestinal gut. The objectives of this research are to produce xylanase in batch system bioreactor, to characterize and purify xylanase from *Staphylococcus aureus* MBXi-K4. Maximum enzyme production was reached after 72 hours of cultivation with specific enzyme activity of 10.5 U/mg protein. Biomass specific growth rate (µ) was 0.107 per hour, yield of product of 2.255 (g product/g substrate). The optimum temperature and pH was 70°C and 6 respectively. The xylanase maintained its stability for 30 minutes at 70°C and over pH range 4 – 8. The Km and Vmax value at 70°C on oatspelt xylan was 1.086 (mg/ml) and 3.195 (µmol xilose/min.ml) respectively. Xylanase was purified from the culture supernatant of *S.aureus* MBXi-K4. The purity of xylanase increased 11.69 fold than those of the crude enzyme. The specific activity after purification was 383.9 U/mg. Three kinds of xylanase activities was visualized by zymogram technique with estimated molecular weights of 45.6 kDa, 28.1 kDa and 21.6 kDa. The purified xylanase had one band protein with molecular weight of 47.9 kDa. Xylanase from *S.aureus* MBXi-K4 is a moderate thermostable enzyme and a good candidate as feed additive on feed industry with an improvement on its productivity and thermo stability.

Keywords : xylanase, *S.aureus*, production, characterization, purification

Introduction

Poultry production in Indonesia fulfill more than 50 percent of meat demand of the Indonesian community including chickens and ducks (Statistik Peternakan, 2015). In order to improve food security, the government still continues to improve availability of meat from chickens and ducks in sufficient quantity, high quality and affordable by the public. The feed is a major component and contributes about 60% - 70% of the total production costs in animal husbandry. Therefore it is very important to provide supply of cheap, easy and sustainable feed raw material without competing with human needs. Fine wheat bran (pollard) is one by-product of wheat processing that is available throughout the year in the country with a stable quality. Production of wheat processing industry in Indonesia reached 3.3 million tons per year (Aptindo, 2004). Pollard utilization as monogastrics rations is limited by high crude fiber content (16.49%), Neutral Detergent Fiber / NDF (38.4%) (Pantaya, 2003) and low energy content (1300 kcal EM / kg) (NRC, 1994). The use of pollard in poultry rations is generally not more than 30%.
Consumption of high crude fiber by the chicken broilers can increase the viscosity of the contents of small intestine (digesta), eventually interfere the absorption of energy and protein of rations (Adam, 2000) and thereby reducing the growth of the animals. To improve the nutritional value of diets containing high crude fiber ingredients, one of the methods is utilization of enzyme as feed supplement to hydrolyze crude fiber components into simpler products, which can be absorbed directly by livestock. The addition of xylanase enzymes into diets based on wheat bran (pollard) can decrease the viscosity of digesta and increased body weight of broiler age 6 weeks to 14.72% and 2.6% (Chiang et al., 2005). Xylanase can reduce viscosity of digesta by hydrolyze arabinoxylan into arabinose and xylose, so can easily be utilized by poultry.

The microbes were isolated from corn cob which produce xylanase. Isolate obtained (MBXi-K4) was grew optimally at 37°C and pH 7 (mesophilik), whereas the xylanase produced has an optimum temperature of 70°C and stable at wide pH range (4 - 10) with optimum pH of 6. The objectives of this research are to obtain pure enzyme from indigenous isolate Staphylococcus aureus MBXi-K4 and obtain information about the characters of xylanase produced.

Methodology

Media Preparation and regeneration of the media to grow bacteria thermophilic refers Richana et al (2000). Substrate used was 0.7% pollard, which mixed with growth media and media production. S.aureus MBXi-K4 regenerated in the LA medium (Luria Agar). Then grown in medium containing 0.7% oatspelt xylan with the same composition as the growth media. Inoculum was taken as many as 10% (v/v) and added to the media production with substrate of 0.7% oatspelt xylan and pollard xylan (Dung et al, 1993). Propagation of the cell culture was carried out in 250 ml erlenmeyer and production of xylanase to study of growth kinetics in Bioreactor 2L. Fermentation occur at optimum temperature and pH, agitation of 160 rpm and aeration 1 vvm, for 96 hours. Purification was carried out by ammonium sulfate precipitation, dialysis in a membrane dialysis with Molecular Weight Cut-off (MWCO) 12kDa in 0.1 M Tris-HCl buffer pH 7.5 overnight. The results of this enzyme concentration used for the purification method of gel filtration chromatography using matrix of Sephadex G- 100. SDS-PAGE method (Laemmli, 1970) can be used to predict the molecule weight of the protein, determine the number of protein components in the sample and determine the distribution of protein fraction in the sample and for the purification of proteins.

Results and Discussion

The maximum enzyme activity obtained of 2.26 U/ml at 72 hours of fermentation and specific activity of 10.5 U / mg protein. The rate of biomass, the use of substrate and product formation are presented in the Figure 1 below.

Figure 1. Graph the rate of biomass, the use of substrate and product formation.
S. aureus MBXi-K4 growth in pollard xylan substrate concentration value of 0.7% obtained $X_{\text{max}} = 4.44 \text{ g} / \text{l}$. Data cell growth in exponential phase are plotted with the logistic model based on the equation, obtained form a linear relationship with the equation $\ln(X) = 0.107x+0.134$. The slope of the line (slope) is the value of specific growth rate (μ) of 0.107 / hour. Product yield (Yp/s) obtained by mapping the value (P-Po) which is the data from xylanase enzyme activity (U/ml) against the use of substrate (S0-S) Yp/s obtain was 2.255 (U / mg substrate). Biomass yield (Yx/s) is obtained by mapping the value (X-Xo) against the use of substrate (S0-S). The slope of the line is the value of Yx / s, ie for 0.004 (g biomass / g substrate), it means in each gram of substrate consumed obtain 4 mg of biomass. The purification process are summarized in Table 1 below.

Table 1. Purification of xylanase from S. aureus MBXi-K4

<table>
<thead>
<tr>
<th>Step</th>
<th>Volume (ml)</th>
<th>Total Protein (mg)</th>
<th>Total Xylanase activity (U)</th>
<th>Enzyme specific activity (U/mg)</th>
<th>Recovery (%)</th>
<th>Fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Extract</td>
<td>81</td>
<td>3.32</td>
<td>109.01</td>
<td>32.82</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Ammonium sulfate precipitate</td>
<td>10</td>
<td>0.48</td>
<td>18.06</td>
<td>37.39</td>
<td>16.57</td>
<td>1.14</td>
</tr>
<tr>
<td>Dialysis</td>
<td>5</td>
<td>8.81</td>
<td>8.81</td>
<td>32.59</td>
<td>8.08</td>
<td>0.87</td>
</tr>
<tr>
<td>Sephadex G-100</td>
<td>G-3</td>
<td>0.012</td>
<td>4.69</td>
<td>383.90</td>
<td>4.30</td>
<td>11.69</td>
</tr>
</tbody>
</table>

Conclusion

Xylanase from *Staphylococcus aureus* MBXi-K4 is classified as moderate thermostable where its maximum activities at 70°C and still be maintained its activity more than 70% for 30 minutes. This enzyme can work at a pH range from 4 to 8 with optimum pH value of 6 and optimum temperature of 70°C. Based on the character of xylanase obtained despite having a chance to be applied to the feed industry but needed some improvements, especially in its resistance to high temperature and its productivity.

References

The 3rd Animal Production International Seminar
The 3rd ASEAN Regional Conference on Animal Production
19-21 October 2016
Malang, East Java, Indonesia