PROCEEDINGS OF THE
IVth INTERNATIONAL SYMPOSIUM
ON
TROPICAL AND SUBTROPICAL FRUITS

Convener

R. Poerwanto

Bogor, Indonesia

November 3-7, 2008

ISHS Section Tropical and Subtropical Fruits
ISHS Commission Education, Research Training and Consultancy
ISHS Commission Molecular Biology and In Vitro Culture

Acta Hortic. 975
February 2013
ISSN 0567-7572
ISBN 978 90 6605 069 3, Acta Horticulturae n°. 975
Price for non-members of ISHS: € 141,-
Published by ISHS, February 2013

Executive Director of ISHS: J. Van Assche
Technical Processing: S. Franssens

ISHS Secretariat, PO Box 500, 3001 Leuven 1, Belgium

Printed by Drukkerij Station Drukwerk, PO Box 3099, 2220 CB Katwijk, The Netherlands

© 2013 by the International Society for Horticultural Science (ISHS). All rights reserved. No part of this book may be reproduced and/or published in any form or by any means, electronic or mechanical, including photocopying, microfilm and recording, or by any information storage and retrieval system, without written permission from the publishers.

Photographs on the front cover:

1 2
3 4
5 6

1. An opened mangosteen fruit showing its white segments and reddish-pink rind (by courtesy of M. Reza Tirtawinata).
2. A maturing green and a ripe maroon mangosteen fruit (by courtesy of M. Reza Tirtawinata).
4. Rambutan ‘Lebak Bulus’ – ripened fruit bunch (by courtesy of M. Reza Tirtawinata).
6. Opened fruit of Durian Lai showing its golden flesh edible arillus (by courtesy of M. Reza Tirtawinata).
Editors
Endah Retno Palupi, Bogor Agricultural University, Indonesia
Krisantini, Bogor Agricultural University, Indonesia
I.J. Warrington, Massey University, New Zealand

Editorial Board
S. Mitra, Chair ISHS Section Tropical and Subtropical Fruits, India
Sjafrida Manuwoto, Center for Tropical Fruit Studies, Indonesia
Chan Ying Kwok, Malaysian Agrifood Corporation, Malaysia
Endah Retno Palupi, Bogor Agricultural University, Indonesia
Krisantini, Bogor Agricultural University, Indonesia
LIST OF CONTENTS

Opening Remark 7
Preface 8
List of Contents 9
List of Authors 17
List of Participants 21

Breeding and Biotechnology

Promising Cultivars of Indonesian Grapes 31
A. Andrini and E. Budiayat

Genetic Estimation and Correlation between Yield and Some Quantitative Characters of Accessions of the Pineapple (Ananas comosus L. Merr) Germplasm Collection at the Center for Tropical Fruit Studies Bogor Agricultural University (IPB) 37
M.A. Nasution, P. Poerwanto, Sobir, M. Surahman and Trikoesoemaningtyas

The National Plant Germplasm System: the Subtropical and Tropical Fruit Gene Banks 43
T.A. Silva, R. Schnell, R. Goenaga, F. Zee and B. Irish

New Mango Hybrids from Australia 55
I.S.E. Bally

In Vitro Propagation and Cellular Behaviour Studies of Severinia buxfolia (Poir.) Tenore 63
H. Elias, R.M. Taha, N.A. Hasbullah, N. Mohamed and S. Abdullah

Evaluation of Genetic Diversity among and within Mangosteen (Garcinia mangostana L.) Trees 73
E. Mansyah, P.J. Santoso, I. Muas and Sobir

Characterization and Evaluation of Some Superior Lesser-Known Cultivars of Mango 81
S. Kundu, N. Sanyal, D. Mazumdar, P. Datta and B. Ghosh

Studies of the Main Characters of the Macadamia Cultivar ‘Ikaika’ (333) 89

Genetic Diversity of Local Cultivars of Dimocarpus longan in Indonesia: Preliminary Study Based on ISSR Markers 97
B.D. Mariana, A. Sugiyatno and A. Supriyanto

Characterization of Indonesian Tangerine Cultivar by Morphological and ISSR Markers 103
C. Martasari, D. Agisimanto, Karsinah and Reflinur

Tissue Culture, Anatomical and Morphological Studies of Triphasis trifolia (Burm. f.) P. Wilson 111
S. Abdullah, R.M. Taha, N.A. Hasbullah, N. Mohamed, H. Elias and N.W. Haron
Characterization of Leaf Morphogenesis in Mulberry Mutants
(Morus spp.)
T. Sopian, Y. Hirata and F. Jiao

Performance of a Durian Germplasm Collection in a Peninsular Malaysian Fruit Orchard
T.K. Hoe and S. Palaniappan

Alteration of Leaf Anatomy Structure in Mangosteen Regenerants In Vitro Caused by Gamma Ray Irradiation
W.A. Qosim, R. Poerwanto, G.A. Wattimena and Witjaksono

The Advancement of Research on Banana Germplasm Resources in China
Y.L. Wu, G.J. Yi, B.Z. Huang, Y.R. Wei, C.Y. Li, C.H. Hu and Y.H. Huang

Genetic Variability of Mangosteen, an Apomictic Garcinia Sobir, R. Poerwanto, E. Santosa, S. Sinaga and E. Mansyah

Pest and Disease Management

Integrated Disease Control Strategies for Lengthening the Storage Life of Papaya Cultivars ‘Red Lady’ and ‘Rathna’
K. Abeywickrama, C. Wijerathna, N. Rajapaksha, S. Kannangara and K. Sarananda

Control of Fusarium Wilt of Banana by Using Trichoderma harzianum and Resistant Banana Cultivars
A. Wibowo, A.T. Santosa, S. Subandiyah, C. Hermanto and M.F.P. Taylor

Screening of Banana Cultivars to Biotic Stresses

The Occurrence of Anthracnose Disease Caused by Colletotrichum gloeosporioides on Dragon Fruit (Hylocereus spp.) in Peninsular Malaysia
M. Masyahit, K. Sijam, Y. Awang and M. Ghazali

In Vitro Antifungal Activity of Neem Oil against Banana Pathogens
W. Sagoua, M.N. Ducamp and G. Loiseau

Colletotrichum: Host Specificity and Pathogenicity on Selected Tropical and Subtropical Crops
S. Freeman, S. Horowitz-Brown, L. Afanador-Kafuri, M. Maymon and D. Minz

Alk(en)yIresorcinol Concentrations in ‘Kensington Pride’ Mango Peel and Antifungal Activity against Colletotrichum gloeosporioides

Mycobiota of Apple Fruit: Effects on Bitter Rot Caused by Colletotrichum acutatum
O.S. Dharmaputra, A.S.R. Putri and A.U. Dewi

Enhancing Soil Suppressiveness Using Formulated Gliocladium to Control Banana Fusarium Wilt Disease
C. Hermanto, Eliza and D. Emilda
Production Technology and Physiology

High Density Orchard Systems for ‘Himsagar’ Mango in the New Alluvial Zone of West Bengal
B.C. Banik, P.K. Maity, M.A. Hasan and S.N. Ghosh

Effects of Ethylene on Rudimentary Leaf and Panicle Primordium in Litchi: Antioxidant Enzymes, Hydrogen Peroxide and Nitric Oxide

Evaluation of Coconut Cultivars for Tender Nut Water
N. Chattopadhyay, M.K. Samanta, J.K. Hore and K. Alam

Flowering Pattern and Fruitful Capacity of ‘Fino de Jete’ Cherimoya Shoots
M. González and J. Cuevas

Foliar Application of Urea Advances Bud Break, Bloom and Harvest in Cherimoya (Annona cherimola Mill.)
M. González, J.J. Hueso, F. Alonso and J. Cuevas

The Combination of Pre-and Post-Harvest Deficit Irrigation Improves Loquat Fruits Earliness and Performance at Packing Houses

Conditions for Seed Germination in Pitaya
Kataoka, S. Fukuda, N. Kozai, K. Beppu and Y. Yonemoto

Effects of Water Stress on Quantitative and Qualitative Fruit Characteristics of Date Palm (Phoenix dactylifera L.)
M. Alihouri and A. Torahi

Salinity and Physiology of Passiflora edulis
T.E. Marler

Delaying the Ripening of ‘Bombai’ Litchi
S.K. Mitra, A. Sarkar, D. Mandal and P.K. Pathak

Organic Tropical and Subtropical Fruit Production in India – Prospects and Challenges
S.K. Mitra

Tropical and Subtropical Fruit Production in West Bengal, India
S.K. Mitra and P.K. Pathak

Tissue Culture Studies on Fortunella polyandra ‘Nagami’ and ‘Meiwa’

Flower and Fruit ABA, IAA and Carbohydrate Contents in Relation to Flower and Fruit Drop on Mangosteen Trees
I. Nyoman Rai, R. Poerwanto, L.K. Darusman and B.S. Purwoko

Factors Affecting Uneven Fruit Ripening in ‘Mon-Thong’ Durian
A. Pakcharoen, R. Tisarum and J. Siriphanich
Fruit Development and Maturation Phenology of ‘Fino de Jete’ Cherimoya
V. Pinillos, S. Peinado and M. González
335

Influence of San Julian GF 655/2, MRS 2/5, Julior Ferdor and Cuaresmillo
Rootstocks on the Plum Cultivar ‘Ozark Premier’
M.D.A. Romero and M.I. Urrutia
343

Effect of Rootstock Age and Time of Softwood Grafting on Grafting
Success in Aonla (*Emblica officinalis*)
R.K. Roshan, N. Pebam and D.M. Panhabhai
347

Physico-Chemical Analysis of Polyembryonic Mango Cultivars under North
India Conditions
R.K. Roshan, N. Pebam and D.B. Singh
351

Study of the Establishment, Productivity and Quality of ‘Deglet Noor’ Date
Palm in Southwest Iran
S. Hajian
355

Associationship of Weather Parameters on the Floral Characteristics of
Coconut
M.K. Samanta, N. Chattopadhyay, J.K. Hore and K. Alam
365

The Impact of Summer Rainfall on Alternate Bearing of Mangosteen
(*Garcinia mangostana* L.) in Southern Thailand
S. Sdoodee and N. Sakdiseata
373

Cherimoya Dormancy and Base Temperature Determination in Excised
‘Fino de Jete’ Shoots
L. Soler and J. Cuevas
379

Preliminary Assessment of a Rapid Leaf Nitrogen Test in Mango
L.A. Still and I.S.E. Bally
385

Effects of Night-Heating of Fruit on Cell Size Regulation and Sucrose
Accumulation in the Outer Portion of Watermelon (*Citrullus lanatus*
Matsum. et Nakai)
Y. Kano, Y. Ikeshita, Y. Kanamori and N. Fukuoka
393

Effect of Intermittent Method of Deep Sea Water Treatment on Fruit
Properties in Multi-Trusses Cultivation of Tomato
Y. Chadirin, H. Suhardiyanto and T. Matsuoka
403

Pineapple Sugar Metabolism and Accumulation during Fruit Development
X. Zhang, G. Sun, J.H. Xie, L. Du, Z. Liu and J. Li
409

Leaf Photosynthesis and Fruit Quality of Mango Growing under Field or
Plastic Roof Condition
K. Juntamanee, S. Onnom, S. Yingajaval and S. Sangchote
415

Growth and Postharvest Quality of Mandarin (*Citrus reticulata* ‘Fremont’)
Fruit Harvested from Different Altitudes
S. Susanto, A. Abdilah and D. Sulistyaningrum
421
Strangulation Improves Flowering and Fruiting of ‘Nambangan’ Pummelo Trees
A. Rahayu, S. Susanto and Setyono 427

Change in Carbohydrate in Branches and Its Relation to Flowering in Averrhoa carambola
P. Wu, B. Zhou and J. Chen 433

Feasibility Study to Alleviate the Translucent Flesh and Gamboge Disorders of Mangosteen (Garcinia mangostana L.) by Spraying with Calcium Chloride
S. Pechkeo, C. Nilnond and S. Sdoodee 441

The Control of Yellow Latex in Mangosteen Fruit through Irrigation and Fertilizer Application
M.J.A. Syah, E. Mansyah, Affandi, T. Purnama and D. Fatria 449

Postharvest, Processing Technology and Food Safety

Citric Acid Inhibits the Physicochemical Changes of Unpasteurized Duku Puree
A. Yamuriati 457

Changes in Antioxidant Activity of Citrus tankan Rind and Extracted Juice during Storage
F. Nely, S. Kawasaki, T. Akinaga and Kusumiyati 465

Postharvest Storage of Citrus tankan Fruit under Normal Condition and Cold Storage
Kusumiyati, N. Fany, T. Akinaga and S. Kawasaki 473

Current Postharvest Handling Practices of Salak and Mango Fruits in Indonesia
M.S. Mahendra, I.N. Rai and J. Janes 479

Effect of Hot Water Treatment on the Inhibition of Anthracnose, PG, PME Activity and PGIP Gene Expression in Harvested Papaya Fruits
N. Zhao, X. Li, W. Chen and J. Shi 487

Preliminary Study on Microbial Quality of Fresh-Cut Honeydew Stored at Refrigerated Temperature
M.P.N. Aida, M. Hairiyah, M.N. Ilida and A.S. Asiah 495

Effect of Time and Temperature on the Quality and Stability of Ascorbic Acid in Processed Kinnow Mandarin Juice
N. Pemas, V.M. Prasad, R.K. Roshan and D.B. Singh 501

Non-Destructive Technique for Determining Mango Maturity
S. Salengke and Mursalim 505

Processing the Indonesian Tangerine (Citrus nobilis Lour.)
Setyadjit, E. Sukasih and Yulianingsih 513
Effect of Wax Treatment on the Quality and Postharvest Physiology of Pineapple Fruits
X. Lin, X. Li and W. Chen

Feasibility Study on Evaluation of Internal Quality of Red Pitaya Using Near Infrared Spectroscopy
Y.Y. Yaguchi, T. Yamamoto and T. Akinaga

Activity and Gene Expression of Ethylene Biosynthetic Enzymes of ‘Irwin’ Mango during Fruit Ripening

Temperature Management of Tropical and Subtropical Fruits in Japan
T. Akinaga

Non-Destructive Quality and Maturity Evaluation of the Papaya Fruit Cultivar ‘IPB 1’ (Carica papaya L.)
E. Syafeullah, H.K. Purwadaria, Sutrisno, Surosso and Y.A. Puwanto

Economics and Marketing

Trends in Production and Trade of Tropical Fruits in ASEAN Countries
I. Ahmad and P.C. Chua

Potential of Minor Tropical Fruits to Become Important Fruit Crops
V. Galán Saúco

Productivity and Efficiency of Watermelon Farms in Malaysia
R.M. Lin

High Density Loquat Orchards Increase Profits and Shorten the Time for Investment Returns
S. Parra, J.J. Hueso and J. Cuevas

Contribution to Mango Value Chain Development in Benin – a Producer Perception Survey
C. Van Melle, D. Arinloye, O. Coulibaly, J.F. Vayssières and K. Hell

European Market Environment for Selected Latin American Tropical Fruit Species
S. Sabbe, P. Van Damme and W. Verbeke

Research on Preparation of ‘Dodol’ Durian to Increase Added Value of Durian Fruit and Cow’s Milk in the Tutur District, Pasuruan Regency
Yuniarti, N. Amirudin and P. Santoso

The Assessment of Supply Chain Management on ‘Pontianak’ Tangerine in West Kalimantan, Indonesia
A. Supriyanto, L. Zamzami and A. Musyafak

519
527
535
541
547
559
581
593
601
607
615
625
633
Education, Extension and Technology Transfer

Farmer Extension Approach to Rehabilitate Smallholder Fruit Agroforestry Systems: the “Nurseries of Excellence (NOEL)” Program in Aceh, Indonesia
J.M. Roshetko, N. Idris, P. Purnomosidhi, T. Zulfadhli and J. Tarigan
649

Fruit Germplasm Resources and Demands for Small Scale Farmers Post-Tsunami and Conflicts in Nanggroé Aceh Darussalam Province, Indonesia
E. Martini, J.M. Roshetko, P. Purnomosidhi, J. Tarigan, N. Idris and T. Zulfadhli
657

Village-Agroindustry Characteristics of Banana Chips (‘Agung Semeru’) in Lumajang Regency, East Java
Yuniarti, P. Santos and P.E.R. Prahardini
665

Smallholder Agroforestry Fruit Production in Lampung, Indonesia: Horticultural Strategies for Smallholder Livelihood Enhancement
J.M. Roshetko and P. Purnomosidhi
671
Effect of Intermittent Method of Deep Sea Water Treatment on Fruit Properties in Multi-Trusses Cultivation of Tomato

Y. Chadirin¹, H. Suhardiyanoto¹ and T. Matsuoka²
¹ Department of Agricultural Engineering, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
² United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan

Keywords: deep sea water, fruit properties, intermittent treatment, multi-trusses cultivation, nutrient film technique, Lycopersicon esculentum

Abstract
Deep sea water (DSW), that has cold temperature, abundant nutrients, good quality and is pathogen-free, has been used for high quality tomato production. It had both advantageous and deleterious effects on tomato fruit properties. In this experiment, DSW treatment was applied both intermittently and continuously during fruit growth. The objective was to obtain an effective method for DSW treatment in multi-truss cultivation to obtain high quality tomatoes while minimizing any reduction of yield. The results of the study showed that in the intermittent treatment, a longer treatment interval (2WEC10IWEC1) produced tomatoes with higher soluble solids concentration and higher acidity than a shorter treatment interval (1WEC10IWEC1). Intermittent treatments produced tomatoes larger than from the continuation treatment but fruit density was lower. The enlargement of fruits from the intermittent treatment was greater than from the continuation treatment – thus the volume of these intermittent treatment fruits were greater. Increasing dissolved oxygen in the nutrient solution could reduce blossom end rot in the tomatoes.

INTRODUCTION
Previous studies have shown that deep sea water (DSW) treatment could increase quality parameters such as soluble solids concentration, acidity, and dry matter (Chadirin et al., 2007). These fruit quality parameters increased both in response to increasing DSW concentration in the nutrient solution and to treatment duration. However, yield decreased in DSW treatments because of small fruits and physiological disorders, like blossom end rot (BER) (Chadirin et al., 2008). The increment of gain in fruit quality parameters tended to decline from the 1st to the 3rd truss. Thus, it is necessary to investigate a method of DSW treatment to obtain high fruit quality from all of trusses while minimizing any reductions in yield.

In this experiment, DSW treatment was applied both intermittently and continuously during fruit growth. The objective was to obtain an effective method of DSW treatment in multi-truss cultivation to obtain high quality tomatoes while minimizing any reduction in yield.

MATERIALS AND METHODS
Tomatoes (Lycopersicon esculentum ‘House momotaro’), were grown on a nutrient film technique (NFT) system with beds 10 m long and a slope of 1%. These beds each contained 47 plants and nutrient solution was circulated from a 100-L tank through the bed with flow rate of 3 L min⁻¹. Nutrient solution of the control (1.0 dS m⁻¹), was made from Otsuka Solution and DSW was supplemented into the control nutrient solution to reach 10.0 dS m⁻¹.

All of cultivation beds were circulated with standard nutrient solution with electrical conductivity (EC) 1.0 dS m⁻¹ after transplantation. When fruits of the 1st truss were at 21 days after pollination, all beds were treated with supplemented nutrient solution with EC 5.0 dS m⁻¹ for 3 days following which the DSW treatments were started. Bed 1 (2WEC10IWEC1) was treated intermittently with supplemented nutrient solution (EC 10.0 dS m⁻¹) for 2 weeks followed with standard nutrient solution (EC 1.0 dS m⁻¹) for
1 week. This cycle was continued until the end of cultivation. Bed 2 (1W\textsubscript{EC10}1W\textsubscript{EC}) was circulated with supplemented nutrient (10.0 dS m-1) continuously for 1 week and then with standard nutrient solution (1.0 dS m-1) for 1 week. This cycle was also continued until the end of cultivation.

Concurrently with beds 1 and 2 being treated with intermittent applications, beds 3 and 4 were circulated with supplemented nutrient solution (EC 10.0 dS m-1) from 24 days after pollination until fruits were harvested. Supplementation of O\textsubscript{2} into the nutrient solution was carried out for bed 3 (continue\textsubscript{EC10-O2}) to investigate its use for control of BER in the tomatoes while bed 4 (continue\textsubscript{EC10}) was not supplemented with O\textsubscript{2}. Supplementation of O\textsubscript{2} was carried by using a dissolved oxygen machine running for 10 min every hour. During cultivation, tomatoes were maintained at 5 fruits per truss and 4 trusses per plant.

Ten fruits were selected randomly from each truss and from each bed and diameter of fruit was measured by caliper every 3 days during fruit growth until fruits were harvested in the ripe condition. Fruit volume (V) was estimated by following the equation of Okano et al. (2002).

Full ripe tomatoes were harvested from each bed and 5 fruits were selected randomly from each bed and each truss for measurement of fruit properties including weight, size, density, volume, soluble solids concentration and acidity (Chadirin et al., 2008).

RESULTS AND DISCUSSION

Figure 1 shows the changes in fruit volume during growth. The DSW treatment does not seem to have affected the fruits on the 1st truss. These fruits were 21 days after pollination and had volume 60 cm3 when the treatment was started. They had a final size of 140 cm3 and developed normally even during treatment. Fruits of the 2nd and 3rd trusses were 13 and 3 days after pollination and fruits of the 4th truss were pollinated 3 days after the DSW was started. Among the 2nd, 3rd and 4th trusses, the enlargement of fruits from intermittent treatment was greater than in the continue\textsubscript{EC10} treatment – thus, the volumes of these fruits were greater.

Intermittent treatments produced tomatoes that were larger than fruit from the continue\textsubscript{EC10} treatment with fresh weight above 70.00 g per fruit, while continue\textsubscript{EC10} treatment produced tomatoes with fresh weight below 65.00 g per fruit for the 2nd, 3rd, and 4th trusses (Table 1). Plants that were treated with the short interval treatment (1W\textsubscript{EC10}1W\textsubscript{EC}) produced tomatoes that were heavier than those from the longer interval treatment (2W\textsubscript{EC10}1W\textsubscript{EC1}).

Plants that were treated by intermittent treatments produced tomatoes which had a larger volume than those from the continue\textsubscript{EC10} treatment. Both of intermittent treatments produced tomatoes where the volume of fruits was above 0.070 L, while continue\textsubscript{EC10} treatments produced tomatoes with a fruit volume lower than 0.065 L (Table 1). In intermittent treatments, the volumes of fruit from the 1W\textsubscript{EC10}1W\textsubscript{EC1} treatment were greater than those from the 2W\textsubscript{EC10}1W\textsubscript{EC1} treatment.

In contrast, intermittent treatments produced tomatoes which had a density which was lower than those from the continue\textsubscript{EC10} treatment. The 2W\textsubscript{EC10}1W\textsubscript{EC1} treatment produced tomatoes that had density of fruit was higher than the 1W\textsubscript{EC10}1W\textsubscript{EC1} treatment. The longer treatment interval produced tomatoes which had a higher density of fruit (Chadirin et al., 2008).

Supplemented O\textsubscript{2} in the nutrient solution did not impact on the puncture strength of tomato skin (data not shown).

All treatments produced tomato fruit with a soluble solids concentration higher than 6.0\textdegree Brix. Soluble solids concentration increased from the 1st to the 3rd truss and then slightly decreased at the 4th truss (Fig. 2). The highest value of soluble solids concentration was obtained from the 3rd truss of continue\textsubscript{EC10-O2} treatments (9.9\textdegree Brix).

Acidity of fruit increased from the 1st to the 4th truss within each treatment. The continue\textsubscript{EC10} treatments produced fruit with acidity which was higher than fruit from the
intermittent treatments and the intermittent treatment, $2W_{EC10}W_{EC1}$, produced higher acidity than the $1W_{EC10}W_{EC1}$ treatment.

The highest yield was obtained from the intermittent treatment ($1W_{EC10}W_{EC1}$). Intermittent treatments produced yields that were 27-31% higher than the continue EC10 treatment. Small fruit size and BER caused low yields in the continue EC10 treatment.

Most of the BER affected tomatoes were obtained from the longest treatment (continue EC10) (Fig. 4). Supplemental O₂ in the nutrient solution reduced BER tomatoes. Occurrence of cracking in tomato in the intermittent treatments was higher than in the continue EC10 treatment (data not shown). Water flux into fruit was changed when plants were subjected to intermittent treatments.

CONCLUSIONS

When plants were grown with supplemented nutrient solution, fruit growth and cell enlargement of plant tissues were decreased because of the low water potential of the nutrient solution caused by the increased EC level. Thus when a supplementary treatment was stopped and the plant was circulated with standard nutrient solution, water potential of the nutrient solution increased and it likely increased of water uptake. Thus cell enlargement and plant growth were slightly increased. Intermittent treatments produced tomatoes that were bigger than those from the continue EC10 treatment but soluble solids, acidity and dry matter content were lower. Intermittent treatment had higher yield because fruit size was greater.

In the continue EC10 treatment, plants were circulated with nutrient solution where the EC was 10 dS m⁻¹ from when the treatment was started until fruits were harvested. Thus plants were grown in a low water potential and had reduced water uptake for a prolonged time. Reduced water flux into the fruit decreased fruit growth (Schwarz and Kuchenbuch, 1998). Then final size of fruit was small and the volume of fruit was low. However, these fruit had a high soluble solids concentration as a consequence of the DSW treatment.

In intermittent treatments, a longer treatment interval ($2W_{EC10}W_{EC1}$) produced tomatoes with soluble solids concentration, acidity and dry matter which were higher than fruit from the shorter treatment interval ($1W_{EC10}W_{EC1}$). This result was in agreement with previous experiments where the effect of DSW was increased by increasing treatment duration (Chadirin et al., 2008).

DSW treatment applied as an intermittent method could improve yield by 28% compared to a continuous DSW treatment. Blossom end rot (BER) occurrence could be reduced from 65 to 23% by O₂ supplementation in the nutrient solution. Soffer (1988) indicated that dissolved oxygen is essential to root formation and root growth. Oxygen affected the timing of rooting, rooting percentage, number of roots, and root length. In this experiment, we assumed that dissolved oxygen improved root performance and thus Ca²⁺ uptake by roots was increased so reducing the occurrence of BER.

The intermittent method of DSW treatment can be suggested for high quality tomato production when optimum yield is sought in multi-truss cultivation. The incidence of cracking in tomatoes should be considered when the intermittent method of DSW treatment is applied under hot and humid climatic conditions.

Literature Cited

Okano, K., Nakano, Y., Watanabe, S. and Ikeda, T. 2002. Control of fruit quality by

Tables

Table 1. Effect of intermittent method of DSW treatment on fruit properties of tomato.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fresh weight (g fruit⁻¹)</th>
<th>Diameter (mm)</th>
<th>Volume (L)</th>
<th>Density (kg m⁻³)</th>
<th>Acidity (% w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truss 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2WEC10 1WEC1</td>
<td>130.28(5.67)</td>
<td>64.8(2.1)</td>
<td>0.132(0.006)</td>
<td>989.9(8.5)</td>
<td>0.43(0.23)</td>
</tr>
<tr>
<td>1WEC10 1WEC1</td>
<td>137.17(6.52)</td>
<td>65.9(1.3)</td>
<td>0.137(0.006)</td>
<td>1003.8(4.1)</td>
<td>0.49(0.24)</td>
</tr>
<tr>
<td>ContinueEC10</td>
<td>126.03(11.93)</td>
<td>65.3(2.6)</td>
<td>0.077(0.007)</td>
<td>988.6(28.6)</td>
<td>0.51(0.25)</td>
</tr>
<tr>
<td>Truss 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2WEC10 1WEC1</td>
<td>70.69(8.99)</td>
<td>52.1(2.3)</td>
<td>0.070(0.010)</td>
<td>1011.4(7.2)</td>
<td>0.56(0.22)</td>
</tr>
<tr>
<td>1WEC10 1WEC1</td>
<td>81.37(9.25)</td>
<td>55.3(1.7)</td>
<td>0.081(0.009)</td>
<td>1001.1(13.0)</td>
<td>0.50(0.16)</td>
</tr>
<tr>
<td>ContinueEC10</td>
<td>62.30(4.59)</td>
<td>49.6(1.1)</td>
<td>0.061(0.004)</td>
<td>1022.7(10.6)</td>
<td>0.71(0.44)</td>
</tr>
<tr>
<td>Truss 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2WEC10 1WEC1</td>
<td>73.50(7.58)</td>
<td>53.4(1.5)</td>
<td>0.073(0.007)</td>
<td>1004.7(18.8)</td>
<td>0.59(0.46)</td>
</tr>
<tr>
<td>1WEC10 1WEC1</td>
<td>95.44(10.37)</td>
<td>59.4(1.4)</td>
<td>0.098(0.008)</td>
<td>976.2(41.9)</td>
<td>0.59(0.30)</td>
</tr>
<tr>
<td>ContinueEC10</td>
<td>62.73(2.76)</td>
<td>49.3(0.7)</td>
<td>0.062(0.003)</td>
<td>1019.2(2.5)</td>
<td>0.93(0.32)</td>
</tr>
<tr>
<td>Truss 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2WEC10 1WEC1</td>
<td>71.70(13.76)</td>
<td>51.8(3.5)</td>
<td>0.072(0.014)</td>
<td>999.3(7.2)</td>
<td>0.71(0.25)</td>
</tr>
<tr>
<td>1WEC10 1WEC1</td>
<td>81.66(4.41)</td>
<td>53.9(0.5)</td>
<td>0.082(0.004)</td>
<td>995.4(11.7)</td>
<td>0.59(0.31)</td>
</tr>
<tr>
<td>ContinueEC10</td>
<td>53.79(4.60)</td>
<td>47.2(1.6)</td>
<td>0.053(0.006)</td>
<td>1021.9(26.5)</td>
<td>0.83(0.30)</td>
</tr>
</tbody>
</table>

Number in parentheses is the standard deviation.
Fig. 1. Changes in volume of fruit on 1st, 2nd, 3rd, and 4th truss plants grown in each treatment.
Fig. 2. Effect of intermittent method of DSW treatments on soluble solids concentration of tomato fruits. Values are mean ± SD.

Fig. 3. Effect of intermittent method of DSW treatment on yields.

Fig. 4. Effect of intermittent method of DSW treatments on the occurrence of blossom end rot.