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Abstract 

LLL algorithm is an algorithm used to compute the approximation of 
the shortest nonzero vector in a basis of lattice. Terms of reduction 
size and the exchanging process are the important steps in the LLL 
algorithm. In 1994, Schnoor and Euchner modified this LLL algorithm 
which later was named LLL Deep Insertion algorithm, where the 
exchanging process in this algorithm scheme was comparing the 
projection in the orthogonal complement after done a certain vector 
reduction. This paper provides a new variant of LLL algorithm which 
is named Greedy SVP LLL algorithm, that is, purely comparing 
the- jb  length (norm) of lattice vector with the- ib  length of lattice 

vector, for ,1...,,3,2,1 −= ji  along with the vector insertion process 

conducted greedily. Thereafter, the calculation of the number of 
operation and testing for all three algorithms are conducted 
experimentally. 

1. Introduction 

A lattice is a set of all integer linear combination of a set of linearly 
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independent vectors in .nR  The independent vectors are called a basis of 
lattice. Any lattice can be generated from many bases, and these bases have 
the same cardinality [1]. 

The most fundamental and renowned problem is the Shortest Vector 
Problem. Furthermore, the abbreviation SVP is often used in this paper. SVP 
is a tracking problem of the shortest nonzero vector in a lattice with 
equivalent basis. In two dimensions, SVP problem has resolved exactly by 
Gauss’ algorithm. Research on the worst-case complexity of Gauss’ 
algorithm was conducted by Lagarias [3]. He showed this algorithm is 
polynomial with respect to its input. The complexity of Gauss’ algorithm was 
also investigated more deeply by Valley [7]. 

When the lattice dimension is higher than two, one has to defined 
precisely as the idea of basis reduction. In 1982, Lenstra et al. gave a 
reduction algorithm for lattice of arbitrary dimension. This algorithm is the 
result of generalization of Gauss’ algorithm [1]. This algorithm is called LLL 
algorithm. Reduced basis solution obtained from LLL algorithm still be an 
approximation and has polynomial running time of arbitrary dimension 
which large enough. Then, Schnoor and Euchner discussed the modified LLL 
algorithm at exchange step for increasing the accuracy of LLL-reduced basis 
output and applying it to the subset sum problem [6]. 

The purpose of this paper is constructing the Greedy SVP LLL 
algorithm, which is a development idea of Deep Insertion algorithm, as well 
as a new variant of the LLL algorithm. Furthermore, calculating the number 
of involved arithmetic operation is conducted, and then experimentally 
compared between LLL algorithm, LLL Deep Insertion algorithm and LLL 
Greedy SVP algorithm. 

2. Preliminary 

Here are the basic concepts of the lattice. 

Definition 2.1. Let { }nbbb ...,,, 21=B  be a set of n linearly independent 

vectors in vector space .mR  The lattice that generated by B  is a set of 
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( )
⎭⎬
⎫
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⎧ ∈= ∑ =

n
j jjj xx1 ZbBL  which its elements consist of all integer 

linear combinations of .B  In this case, B  is a basis for ( ).BL  

Basis B  for the lattice ( )BL  can be represented as matrix B sized nm ×  

which its columns are the vector ,jb  

( )....21 nbbbB =  

Then ( )BL  can be written as multiplication of matrix ( ) { }.nxx Z∈= BBL  

In this case, B is a matrix form of .B  

Definition 2.2. Let { }nbbb ...,,, 21=B  be a set of n linearly independent 

vectors in .mR  Then it can be constructed the subsequence of n mutually 

orthogonal vector of { },...,,, 21
∗∗∗∗ = nbbbB  where ,11 bb =∗  −=∗
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Definition 2.3. For ,...,,2,1 nj =  projection function jπ  of vector 

space BB == ∗V  to vector subspace { }∗∗
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3. LLL Algorithm 

The definition of reduced basis δ is as follows: 
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Definition 3.1. A basis [ ]nbbb ...,,, 21=B  in mR  is called LLL 

reduced with parameter δ  if it satisfies 

(1) ,2
1≤μ ji  for every integer i, j with ,1 nji <<≤  

(2) ( ) ( ) ,2
1

2
+π≤πδ jjjj bb  for ,1...,,2,1 −= nj  

where δ  is a reduced parameter of real numbers with .14
1 <δ<  

The first requirement is the reduced basis δ  must “nearly orthogonal” 
and in its computation case, this requirement can be reached out by using the 
Gram-Schmidt’s orthogonalization. While the second requirement is called 
exchange step, or used to called as Lovasz condition, which can be rewritten 

as ( ) .2
1

22
,1

∗
+

∗
+ ≤μ−δ jjjj bb  This inequality explained that Gram-

Schmidt’s vectors of LLL reduced basis must ordered decreasing with 

decreasing factor .2
,1 jj+μ−δ  If there is a pair of vector ( )∗

+
∗

1, jj bb  does not 

follow the Lovasz condition, then the exchange between vectors will be 
conducted and the orthogonalization process will be redone. 

Algorithm 3.2 (LLL Algorithm) 

Input: [ ]nbbb ...,,, 21=B  basis for ( )BL  and .14
1 <δ<  

Output: [ ]nbbb ...,,, 21=B  is LLL reduced basis for ( )BL  and =∗B  

[ ]∗∗∗
nbbb ...,,, 21  is the result of Gram-Schmidt’s orthogonalization process of 

.B  

(1)     11 : bb =∗  

(2)     2:=j  

(3)     While nj ≤  do 

(4)          jj bb =∗ :  
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(5)     For 1: −= ji  down to 1 do 

(6)                 ∗∗

∗

⋅

⋅
=μ

ii

ij
ij

bb

bb
:,  

(7)                 ∗∗∗ μ−= iijjj bbb ,:  

(8)       iijjj bbb kl ,: μ−=  

(9)           EndFor 

(10)     If ( ( ) ) 22
1

2
1,

∗∗
−− >μ−δ jjjj bb  then 

(11)         If 2=j  then 

(12)           Swap 1b  and 2b  

(13)          21 : bb =∗  

(14)    Else 2>j  then 

(15)           Swap 1−jb  dan jb  

(16)     1: −= jj  

(17)    EndIf 

(18)     Else 

(19)     1: += jj  

(20)     EndIf 

(21)    EndWhile 

4. Deep Insertion Algorithm 

In the LLL algorithm, the test for exchange is well organized step by step 
( ),with 1−jj bb  then by using the deep insertion method, this test can be 

conducted directly into jb  with kb  for .1...,,2,1 −= jk  Suppose that at a 

certain computation phase, ordered basis lattice is obtained as follows: 

....,,,,...,,,,...,,, 111121 njjjkkk bbbbbbbbb +−+−  
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The orthogonalization procedure of Gram-Schmidt is defined as =jb  

∑ −
=

∗∗ μ+ 1
1 ,

j
i iijj bb  for ....,,2,1 nj =  Because of ∗∗∗

jbbb ...,,, 21  orthogonal, 

then obtained ∑ −
=

∗∗ μ+= 1
1

22
,

22 .j
i iijjj bbb  If jb  is inserted into 

,kb  then the ordered basis lattice become 

....,,,...,,,,,...,,, 111121 njjkkjk bbbbbbbbb +−+−  

With fixed vectors ,...,,, 121
∗
−

∗∗
kbbb  while the orthogonalization 
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11,
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∗ μ+= jjjj bb  For ,1−= jk  the exchange step of deep 

insertion method is equal to the exchange step of LLL algorithm, that is, if 

,ˆ 2
1

2
1

∗
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∗
− δ< jj bb  then jb  is swap with .1−jb  Generally, for any value 

of ,1...,,3,2,1 −= jk  then equation (i) obtained as follows: 
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These equations can be used to state the value of k so that jb  can be inserted 

into .kb  This can be happened if 22ˆ ∗∗ δ< kk bb  and 2
1ˆ∗

−jb  can be 

calculated recursively with explanation as follows. Define initial jC b=  

and ,1=k  then recursively calculate 22
,

∗μ−= kkjCC b  and 1: += kk  

and the process end when 222 ˆ ∗∗∗ δ<⇔δ< kkkC bbb  [2]. 

Algorithm 4.1 (LLL Deep Insertion Algorithm) 

Input: [ ]nbbb ...,,, 21=B  basis for ( )BL  and .14
1 <δ<  

Output: [ ]nbbb ...,,, 21=B  is a LLL reduced basis for ( )BL  and 

[ ]∗∗∗∗ = nbbb ...,,, 21B  is the result of Gram-Schmidt’s orthogonalization 

process of .B  

(1)     11 : bb =∗  

(2)     2:=j  

(3)     While nj ≤  do 

(4)         jj bb =∗ :  

(5)          For 1: −= ji  down to 1 do 

(6)           ∗∗ ⋅= iiiN bb:  

(7)      
i

ij
ij N

∗⋅
=μ

bb
:,  

(8)      iijjj bbb kl ,: μ−=  

(9)      
i

ij
ij N

∗∗
∗ ⋅

=μ
bb

:,  

(10)     ∗∗∗∗ μ−= iijjj bbb ,:  

(11)         EndFor 
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(12)     jjC bb ⋅=:  (Deep Insertion) 

(13)     1:=k  

(14)     While jk <  do 

(15)         ∗∗ ⋅= kkh bb:  

(16)    If hC δ<  then 

(17)        If 1=k  then 

(18)       Insert jb  into 1st position 

( )njjj bbbbbb ...,,,,,, 1121 +−  

(19)   jbb =∗ :1  

(20)   Else 

(21)       Insert jb  into kth position 

  njjkjk bbbbbbbb ...,,,...,,,,...,,, 111121 +−+−  

(22)      jk bb =∗ :  

(23)      For 1: −= ki  down to 1 do 

(24)         ∗∗ ⋅= iiiN bb:  

(25)         
i

ik
ik N

∗∗
∗ ⋅

=μ
bb:,  

(26)         ∗∗∗∗ μ−= iikkk bbb ,:  

(27)      EndFor 

(28)   EndIf 

(29)   Else 

(30)      ∗⋅= kjz bb:  

(31)      h
zCC

2
: −=  
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(32)      1: += kk  

(33)  EndIf 

(34)     EndWhile 

(35)  1: += jj  

(36)  EndWhile 

5. Greedy SVP LLL Algorithm 

The fundamental idea of greedy methods is as follows. If the smallest 
vector is in the first position, then the insertion will occur only in the second 
position or more; if two of the smallest vectors are ready in the first and 
second position, then the insertion will only occur in the third position or 
more, and so on. If the smallest vectors that are obtained by order are faster, 
then the algorithm will be done as soon as possible. With this fundamental 
idea, hoping these smallest vectors can be provided greedily. In this 
algorithm, the exchange step (insertion) is not based on the comparison of the 

projected vector in orthogonal complement [ ]⊥−121 ...,,, kbbb  after jth 

reduction (deep insertion method), but the insertion that conducted purely by 
comparing norm of lattice jb  with norm lattice ib  for .1...,,3,2,1 −= ji  

Beside that, the insertion has done greedily. 

Here are outline on how the algorithm works: 

1. For [ ],1b  defined ,11 bb =∗  find the vector jb  of the reduction 

result [ ]1b  and [ ]∗1b  toward [ ]nbbb ...,,, 32  with the smallest norm. 

If ,1bb <j  insert ,...,,,,,, 1121 njjj bbbbbb +−  then we 

obtained the new jbb =1  and the process is repeated again. But if 

,1 jbb ≤  then insert njjj bbbbbb ...,,,,,, 1121 +−  so that 

we obtained the new order of [ ]21, bb  with the smallest size in the 

sequence. Then, compute ∗
2b  from input 2b  and ∗

1b  so that we 

obtained the sequence [ ]∗∗
21, bb  and continued to the second step. 
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2. From [ ]21, bb  and [ ],, 21
∗∗ bb  find the vector jb  as the reduction 

result of [ ]21, bb  toward [ ]nbbb ...,,, 43  with the smallest norm. If 

,1bb <j  insert njjj bbbbbb ...,,,,,, 1121 +−  or if ≤1b  

,2bb <j  insert njjj bbbbbb ...,,,,,, 1121 +−  then back to 

the first step. But if jbb ≤2  insert ,,,,, 1321 −jj bbbbb  

nj bb ...,,1+  so that we obtained the new order of [ ]321 ,, bbb  with 

the smallest size in the sequence. Then compute ∗
3b  of input 3b  and 

[ ]∗∗
21 , bb  so that we obtained the sequence [ ]∗∗∗

321 ,, bbb  and continued 

to the third step. 

3. Generally, the kth of [ ]kbbb ...,,, 21  and [ ],...,,, 21
∗∗∗
kbbb  find          

the vector jb  as the reduction result of [ ]kbbb ...,,, 21  toward 

[ ]nkk bbb ...,,, 21 ++  with the smallest norm. Then insert jb  to 

[ ]....,,, 21 nbbb  If the insertion format kj bbbb ...,,,, 21  or 

kj bbbb ...,,,, 21  then back to the first step, and if the insertion 

format kiji bbbbbb ...,,,,...,,, 121 −  so that we obtained the new 

[ ],...,,, 21 ibbb  then from ib  and [ ]∗
−

∗∗
121 ...,,, ibbb  compute ∗

ib  to 

provide the new [ ],...,,, 21
∗∗∗
ibbb  then back to the ith step. But if the 

insertion format ,,...,,, 21 jk bbbb  then we obtained the new order 

[ ]121 ...,,, +kbbb  with the smallest size in the sequence. Then, 

compute ∗
+1kb  of input 1+kb  and [ ]∗∗∗

kbbb ...,,, 21  so that we obtained 

the sequence [ ]∗
+

∗∗
121 ...,,, kbbb  and continued to the ( )1+k th step. 

4. And so on, and the process terminated when .nk =  

Algorithm 5.1 (Greedy SVP LLL Algorithm) 

Input: [ ]nbbb ...,,, 21=B  basis for ( ).BL  



The Construction of Greedy SVP LLL Algorithm 75 

Output: [ ]nbbb ...,,, 21=B  is the LLL reduced basis for ( )BL  and 

[ ]∗∗∗∗ = nbbb ...,,, 21B  is the result of Gram-Schmidt’s orthogonalization 

process of .B  

(1)     11 : bb =∗  

(2)     1:=k  

(3)     While nk <  do: 

(4)     Variable initial for [ ]kbb ...,,1  and [ ]nk bb ...,,1+  

(5)          While kn −  do: 

(6)         1: += ky bb  

(7)              For kl =  down to 1 do 

(8)                    ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,  

(9)                    llyyy bbb kl ,: μ−=  

(10)           Endfor 

(11)           Compute yb  

(12)           1:=i  

(13)           For knj −= ...,,3,2  do: 

(14)               Defined jb  

(15)               For kl =  down to 1 do 

(16)                     ∗∗

∗

⋅

⋅
=μ

ll

lj
lj

bb

bb
:,  

(17)           lljjj bbb kl ,: μ−=  

(18)    Endfor 

(19)    Compute jb  

(20)    If yj bb <  then 
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(21)           jy bb =:  

(22)     jy bb =:  

(23)     ji =:  

(24)   Endfor 

(25)   Defined [ ]nk bb ...,,2+  

(26)   1: −−= knm  

(27)   1: += kb  

(28)   For 1=z  to k do 

(29)             Compute zb  

(30)        If zy bb <  then 

(31)                       zb =:  (the position of vector yb  swap with the 

position of vector )zb  

(32)             Break (Stop loop) 

(33)        Endif 

(34)   Endfor 

(35)   If position ky bb ≤  then 

(36)    If 1=b  then 

(37)               Defined 1:=k  

(38)         ky bbbb ...,,,, 21  

(39)         ∗= 1: bb y  

(40)         Else 

(41)               kzyz bbbbb ...,,,,...,, 111 +−  

(42)                Defined yb  

(43)                For kl =  downto 1 do 
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(44)                 ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,  

(45)                 ∗∗∗ μ−= llyyy bbb ,:  

(46)                     Endfor 

(47)               Updated ∗∗
+

∗
kzy bbb ...,,, 1  

(48)               bk =:  

(49)            Endif 
(50)               Break (Stop loop) 
(51)  Endif 

(52)     Updated [ ]yk bbbb ,...,,, 21  

(53)     Defined yb  

(54)   For kl =  downto 1 do 

(55)    ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,  

(56)    ∗∗∗ μ−= llyyy bbb ,:  

(57)      Endfor 

(58)     Updated ∗∗∗
ybbb ...,,, 21  

(59)     Updated ∗∗∗
nbbb ...,,, 21  

(60)     1: += kk  

(61)     End While 

(62)     Updated [ ]nkk bbbb ...,,,...,, 11 +  

(63)    EndWhile 

6. Speed Analysis and Implementation 

Calculating the number of operation and complexity in the constructed 
Greedy SVP LLL algorithm are explained here. The algorithm begins      
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with the first vector initial as orthogonal vector, continued by assignment 
operation in the value .1:=k  Then, initialization is done onto two variables 
to divide the column vector that is in the matrix of k value assignment. 
Initialization process in this step (4) is intend to compare vector one by one 
that is in the 2 variable. Entering into loop “while” that will repeated kn −  
times, with value of n is the inputted matrix dimension. 

Furthermore, the algorithm will compute the number of involving in         
the size reduction. The number of existing operations in Algorithm 5.1((6)-
(10)) is as follows: 

(1) An assignment operation as initial statement for yth vector that 
wanted to be reduced. 

(2) There are block of statement “for” which are repeated as many as 
k-times. 

(a) There are 2 assignment operations. 

(b) There are 3 vector multiplication, 1 subtraction, 1 division, and 1 
rounding operation to the closest integer. 

The complexity in the block of reduction size is ( ).nO  After this block, 

the value of norm is calculated from reduced vector that given in a certain 
variable, then initialized by a certain variable i. The complexity for this step 
is ( ).nO  

In the steps (13)-(24), statement block initially by looping for reduction 
size for 2+k th vector up to nth vector. The number of operations for this 
block as follows: 

(1) Block for reduction size that using the same steps as steps (6) to (10) 
with the same complexity, that is ( ).nO  

(2) Compute every norm of reduced vectors for 2+k th vector up to nth 
vector. Then, there is one branching in this block, where there is inequality 
for comparing the norm of reduced vector in step (6), to get the shortest one. 
In this block, there are 3 initialization, each of exchange position of vector 
with the shortest norm. 
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The complexity of this block is ( ).2nO  

In the steps (25)-(27), assignment operation for 2+k th vector up to nth 
vector, and variables m and b stating the vector position. The complexity in 
this step is ( ).1O  

Furthermore, the steps (28)-(34) are looping to calculate the norm of 
vector position 1 to the kth vector and there is statement “if” where the 
smallest vector of the reduction result in the step (13) is compared by its 
norm. If this condition satisfies, then the vector position will be exchanged to 
the kth vector position. The complexity of this step is ( ).nO  

In the steps (35)-(52), there is branching block which allows to insert 
vector with the smallest norm to take the first position, or vector position that 
inserted between the first vector and the kth vector. If this condition satisfies, 
then the sequence that contains the smallest vector can be calculated its 
orthogonal vector by using the Gram-Schmidt’s orthogonalization. This 
vector is passing through the long enough path way after passing the step 
(35) then turn we will go to the step (43) and end with the last step (50). The 

complexity in this step is ( ).2nO  

Furthermore, in the steps (53)-(58), initialed by vector initialization that 
is not included in the branching condition, to calculate its orthogonal vectors. 
The details of the number operation in the statement block this “for” are: 

(1) 2 initialed operation. 

(2) 1 division, 3 multiplication vector, and 1 subtraction operation. 

The complexity of this block is ( ).nO  The last step is adding the index k 

then back to the step (3) and combining the latest result of the vector that has 
been reduced and exchanged with its orthogonal vector. 

In addition to counting the number of operation and complexity on the 
parts of algorithm, and the test towards LLL algorithm, deep insertion 
algorithm, and Greedy SVP LLL algorithm also conducted. The testing is 
done by inputting the integer matrix size nn ×  for 80...,,20,10=n  with 
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.4
3=δ  The output are the integer matrix size nn ×  as the result of reduced 

LLL and the result of matrix Gram-Schimdt’s orthogonalization. To obtain 
the value of running time, run those algorithms for each matrix size as many 
as 5 times and calculate the average of it. Here is the result: 

Table 1. Matrix size nn ×  versus running time (sec) with 43=δ  

Matrix size 
Algorithm 

1010 ×  2020 × 3030 × 4040 × 5050 × 6060 × 7070 × 8080 ×  

LLL 0.059 1.207 8.234 13.104 33.712 83.034 93.544 388.099 

Deep 
Insertion 

0.072 1.763 13.625 64.659 136.485 401.216 651.058 2126.497 

Greedy SVP 
LLL 

0.044 1.061 7.132 7.226 17.634 34.617 83.408 139.385 

It can be presented in the graphic as follows: 

Matrix Size (n x n)

10 x 10 20 x 20 30 x 30 40 x 40 50 x 50 60 x 60 70 x 70 80 x 80

R
un

ni
ng

 T
im

e 
(s

ec
)

20

520

1020

1520

2020
Greedy SVP LLL 
DI
LLL 

 

Figure 1. The comparison of running time (sec) versus matrix size .nn ×  
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7. Conclusion 

With increasing in matrix size, the running time of the three algorithms 
has increased. The result of comparing experimentally shows that by using 

4
3=δ  for the LLL algorithm and the deep insertion LLL algorithm, and the 

Greedy SVP LLL algorithm which is a new variant made by using no 
parameter of δ, outperform of the other of two algorithm in terms of speed 
with the same output. 
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