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Abstract 

Hash function based on lattices believed to have a strong security 
proof based on the worst-case hardness. In 2008, Lyubashevsky et al. 
proposed SWIFFT, a hash function that corresponds to the ring =R  

[ ] ( ).1+αα n
pZ  We construct HLI, a hash function that corresponds 

to a simple expression over modular polynomial ring =pfR ,  

[ ] ( ).xfxpZ  We choose a monic and irreducible polynomial ( ) =xf  

1−− xxn  to obtain the hash function is collision resistant. Thus, the 
number of operations in hash function is calculated and compared with 
SWIFFT. Thus, the number of operations in hash function is 
calculated and compared with SWIFFT. 

1. Introduction 

Cryptography is the study of mathematical techniques related to aspects 
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of information security relating confidentiality, data integrity, entity 
authentication, and data origin authentication. Data integrity is a service, 
which is associated with the conversion of data carried out by unauthorized 
parties [5]. To maintain data integrity hash functions can be used. Hash 
function is a computationally efficient function to map an arbitrary length 
bitstring to a fixed length bitstring called as hash value. The use of hash 
function in maintaining the information integrity and authentication is in 
among the creation of digital signatures, virus protection, and software 
distribution. 

Hash function widely used today is generally designed based on Boolean 
arithmetic, similar to the construction pattern of symmetric key cryptosystem 
algorithm. However, the hash function has received many attacks to 
undermine its security properties. The effectiveness of the attacks is 
associated with the function construction concerned that are generally not 
accompanied by proof of theoretic security that is based on mathematical 
computation problems. 

It is this that has attracted the interest of cryptography researchers to 
design hash functions algorithms which is efficient and supported by proof of 
theoretical security based on mathematical computing problems. Lattice 
computational problem is expected to be the basis in order to obtain ideal 
hash functions since it has several advantages from lattice problem, that is 
promising proofing of strong security based on worst-case hardness, efficient 
implementation, and lattice based-cryptography which is believed to be 
secure against quantum computers. 

Construction of lattice-based cryptography was first suggested by Ajtai 
in 1996. Ajtai defined a one-way functions family whose security is footed 

on the worst-case computing problem from the SVP approximation with cn  
factor, in which n is the lattice dimension and constant 0>c  [1]. 
Subsequently, Goldreich et al. showed that the one-way function is a 
collision resistance hash function [2]. 

Micciancio used cyclic lattice as a new source of complexity and formed 
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an efficient one-way function from the worst-case complexity assumptions 
[6]. Peikert and Rosen modified the assumption from function established by 
Micciancio being able to show that the function is a collision resistance hash 
function [8]. 

Lyubashevsky et al. constructed lattice-based hash function algorithms 
prioritizing the efficiency called SWIFFT [4]. Basically, SWIFFT hash 
functions is a highly optimized variant of the hash function and is very 
efficient in practice because of the use of Fast Fourier Transform (FFT) in 

.qZ  

The purpose of this study is to construct an ideal lattice-based hash 
function algorithm, analyzing the speed of the hash functions as a result of 
construction, and comparing it with SWIFFT. 

2. Preliminaries 

2.1. Hash functions 

Cryptographic hash functions play a fundamental role in modern 
cryptography. Hash functions take a massage as input and produce an output 
referred to as hash value. 

Definition 2.1 [5]. A hash function (in the unrestricted sense) is a 
function h which has, as a minimum, the following two properties: 

(1) Compression – h maps an input x of arbitrary finite bitlength, to an 
output ( )xh  of fixed bitlength n. 

(2) Ease of computation – given h and an input x, ( )xh  is easy to 

compute. 

2.2. Algebra 

Suppose [ ]xZ  is a set of polynomials with integer coefficients. While 

pZ  and [ ]xpZ  in a row are set of modulo p integers and a set of polynomials 

with integer coefficients modulo p. Modular polynomial ring noted as pfR ,  
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[ ] ( )xfxpZ=  is a set of all polynomials of degree at most 1−n  with 

coefficients in .pZ  Mathematically it can be written 

{ [ ]}xgfgR ppf Z∈|= mod,  

{ },1
1

2
210 pi

n
n axaxaxaa Z∈++++= −
−  

where ( ) [ ].1
1

2
210 xxfxfxfxffxf n

n
n

n Z∈+++++= −
−  

For any ( ) ( ) pfRxbxa ,, ∈  which is written as 

( ) ∑ −

=
=

1
0

n
i

i
i xaxa   and  ( ) ∑ −

=
=

1
0

,
n
i

i
i xbxb  

then the addition operation is defined as follows: 

( ) ( ) ( )( )∑ −

=
+=+

1
0

mod
n
i

i
ii xpbaxbxa  

while the multiplication operation is 

( ) ( ) ( )∑ ∑−

= =+
⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
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The simpler representation of pfR ,  and which is easier to implement in 

a computer is that pfR ,  can be considered as a set of all modulo p integer 

vectors in dimension n, i.e. 

{( ) } ....,,,, 1210,
n
ppinpf aaaaaR ZZ ∈∈= −  

So it can be seen that the operation of addition on the ring pfR ,  is the 

sum of modulo p integer vector. Suppose for any pfRba ,, ∈  written =a  

( )1210 ...,,,, −naaaa  and ( ),...,,,, 1210 −= nbbbbb  then 

( )....,,,, 11221100 −− ++++=+ nn bababababa  

While the scalar k and vector a multiplication operation can be viewed as 
a summation of as much k times of vectors a. Thus pfR ,  against the vector 
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operation is lattice .n
pZ  A lattice that is defined from certain polynomial ring 

is called ideal lattice. 

Lyubashevsky and Micciancio showed that to obtain the hash functions 
that have impact resistant properties, monic and irreducible polynomial f 
should be chosen. Monic polynomial is a polynomial with the coefficient of 
the highest power of x is one. While a polynomial is irreducible if it cannot 
be represented as a product of lower degree polynomial [3]. 

3. Algorithm Construction 

Hash function is constructed based on the results of algebraic operations 

on modular polynomial ring [ ] ( )., xfxR ppf Z=  In this study ( ) −= nxxf  

,1−x  which constitutes monic and irreducible polynomials is chosen. The 

election of modulo ( ) 1−−= xxxf n  led the multiplication of any two 

members of modular polynomials ring pfR ,  to be 

( ) ( ) ( ) 11mod11 +=−−⇔++−−= xxxxxxxx nnnn  

( ( )).1mod1 −−+≡⇔ xxxx nn  

From these results, taken ( ) ,xxp =  then 

( ) ( ) ( ) ( )1mod1
1

2
2

10 −−++++= −
−

− xxxaxaxaxaxaxp nn
n

n
n  

( ) 1
2

2
101 1 −

−− +++++= n
nn xaxaxaxa  

( ) 1
2

2
1011

−
−−− +++++= n

nnn xaxaxaaa  

and furthermore obtained 

( ) ( ) ( ) ,1
3

3
1

2
01122

2 −
−−−−− +++++++= n

nnnnn xaxaxaaxaaaxax  

( ) ( ) ( ) ( ) 3
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2
12233
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−
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In general, for ni ...,,2,1=  apply 

( ) ( ) ( ) 1
1011

+
−+−−− ++++++= ii

nininin
i xaxaaxaaaxax  

.1
1

−
−−++ n

in xa  

So the multiplication algorithm in pfR ,  which is implemented in a 

computer would be easier if it is represented in a form of vector as follows: 

Input: vectors ( )1210 ...,,,, −= naaaaa  and ( )1210 ...,,,, −= nbbbbb  

in ., pfR  

Output: vector c as a hash multiplication of a and b in ;, pfR  

1. Initialization pabc mod: 0=  and .: aw =  

2. For integer 1=i  to ,1−= ni  count: 

a. ( ),: wv =  where w  denotes the rotation of w to the right 

one unit. 

b. ,: idvw +=  where id  is the vector whose all components are 

0 except the 1+i  component is .ina −  

3. If ,0≠ib  count ( ) .mod: pwbcc i+=  

4. Return (c). 

The steps in the above algorithm are essentially a modular integer matrix 
multiplication ( ),mod pCAB ≡  i.e. 
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From here an ideal lattice-based hash function family can be constructed, 
that is by selecting parameter m, n, d an integer where m is divisible by n and 

p is prime. The input of this hash function is m
dx Z∈  with .pd <  This input 

is divided into nm  vectors namely ( ) ( ) ( ) ,...,,, 21 m
d

nmxxxx Z∈=  with 
( ) ,n

d
ix Z∈  ....,,2,1 nmi =  The key of hash functions is any two vectors 
( ) ., ,
1 n

ppfRba Z≅∈  It is of this key that other vectors ( ) ( ) ⊗= −1ii aa  

( )
pf

i Rbx ,
1 ∈+−  for nmi ...,,3,2=  will be generated. Furthermore, hash 

function family can be defined: 

( ) { }n
ppf

m
daa Rhnmpf ZZ ≅→= ,:,,,H  

which ( ) ( ( ) ( ) )∑ = +⊗= nm
i

ii
a bxaxh 1 .  

The following algorithm for hash functions: 

Keywords: two arbitrary vectors ( ) ., ,
1 n

ppfRba Z≅∈  

Input: ( ) ( ) ( ) m
d

nmxxxx Z∈= ...,,, 21  with ( ) ....,,2,1, nmix n
d

i =∈ Z  

Output: ( ) ( ( ) ( ) )∑ = +⊗= nm
i

ii
a bxaxh 1  as a result of multiplication and 

addition the ring ;, pfR  

1. Initialize .0:=h  

2. For integers ,1 nmdisi ==  compute: 

a. ( ) ( ) ( ).iii xak ⊗=  

b. ( ) ( ) .bkh ii +=  

c. ( ) ( ).1 ii ha =+  

d. ( ).ihhh +=  

3. Return (h). 
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Because the hash function must then be compression in nature, so the 
output length must be smaller than the length of the input, therefore the 

parameters chosen above must meet .log
logloglog d

pnmdmpn ⇔  

4. Speed Analysis 

Speed analysis means counting the number of operations in constructed 
hash algorithm functions. First, the number of operations in the summation 
algorithm in ring pfR ,  will be counted as follows: 

1. An assignment operation as initial statement to the variable as the 
number of vector elements to be summed. 

2. The core of this summation operation, is in the statement block ‘if’ 
namely an operation to check whether one of the vectors to be 
summed is the zero vector then: 

a. If one of the vectors is a zero vector then there is an assignment 
which considers the result of summation constitutes as another 
vector. In other words, the summation operation of modulo p is 
not needed. 

b. If both vectors are not zero vectors, then the addition operation of 
modulo p summated to n times, shall be made. 

However, in the multiplication algorithm in ring, there are two 
algorithms. First, the multiplication algorithm of modulo p vector and scalar. 
Then, the algorithm which turns vector to the right as much as one unit. 
Therefore, before calculating the number of multiplication operations in the 
ring, the operation of scalar and vector multiplication of modulo p will be 
counted as follows: 

1. An assignment operation that state initial variables n is the number of 
vector elements. 

2. In calculating the result of multiplication there are n times of modulo 
p operations. 
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While the number of operating in algorithms turns vector one unit to the 
right: 

1. An assignment operation expressing early n variables is the number 
of vector elements. 

2. In turning vectors there are two operations, namely taking the last 
element of the vector and then insert the element as the first element 
of the vector. 

The calculation of many operations of two algorithms above can be used 
to calculate the number of operations of two vector multiplication algorithms 
in the ring, i.e.: 

1. There are 2 assignment operations. 

2. Multiplication of scalar and modulo p vector which involves n 
operation of modulo p multiplication. 

3. In the statement block ‘for’ those repeated ;1−n  

a. There are three operations i.e. rotating the vector, summation, and 
insertion. 

b. If 0≠ib  then there are n operations of modulo p multiplication 

and n operations of modulo p summation. 

The number of hash function algorithms can be computed as follows: 

1. There are five operating assignments. 

2. In a block of statements ‘for’ those repeated nm  times, i.e.: 

a. Four assignments. 

b. A multiplication in the ring pfR ,  which involves 2n  

multiplication operation of modulo p. 

c. Two additions in the ring pfR ,  each of which involves n 

operation of modulo p summation. 
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If parameter 2=d  is taken then hash function algorithm does not 
involve multiplication in ring ., pfR  So it only involves summation ring 

,, pfR  which consists of n summation operations of modulo p which is 

repeated nm  times. So hash function algorithm proceeds with parameter 

2=d  and input with length m consisting of m operations of modulo p 
summation. 

Besides calculating the vast number of operations in algorithm, 
experiment of calculating the length of time the program calculates the hash 
value is also conducted. In this experiment parameters as in SWIFFT, namely 

,2=d  ,64=n  257=p  were taken, while the length of the input (m) is 

taken within 6 points. To obtain the value of time, here each m value is 
repeated 5 times and then the average is calculated, so that obtained the 
following results: 

Table 1. Running program HLI time with different input lengths 

Input length (m) Time (sec) 

1024 0,33 

2048 0,643 

4096 1,373 

8192 2,718 

16384 5,357 

32768 10,745 
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In the graph: 

From Figure 1, it can be seen that for binary inputs the result is the 
running time linear to length of input. 

 
Figure 1. Figure HLI program running time with parameters ,64=n  ,2=d  
and .257=p  

5. Security Analysis 

Security of a hash function can be seen from two properties i.e. one-way 
and collision resistant. The proof of hash function based on lattice is one-way 
follow the proof of Micciancio [6]. The proof of hash functions based on 
lattice with ( )xf  over Z irreducible is resistant collisions has been 

demonstrated by Lyubashevsky and Micciancio [3]. 

According Lyubashevsky and Micciancio [3] to obtain collision-resistant 
properties the polynomial ( )xf  must be: 

a. ( )xf  is a monic polynomial of degree n, irreducible over Z. 

b. For every unit vectors [ ] ( ) ,, xfxvu pZ∈  product of u and v is a 

short vector, it is means uv  is limited to .n  

Polynomial ( ) 1−−= xxxf n  is a monic polynomial of degree n because 

the coefficient of leader is one. Parameter n is adjusted for application on 
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computer that is power of 2. For ,8=n  16, 32, 64, 128, 256, 512, 1024, 

polynomial ( ) 1−−= xxxf n  is irreducible. It is checked by mathematical 

software. For point b is shown by this theorem. 

Theorem. For every unit vector [ ] ( ) ,, xfxvu p
n
p ZZ ≅∈  if ,vuh ⊙=  

then .nh <  

Proof. For every unit vector [ ] ( ) ,, xfxvu p
n
p ZZ ≅∈  the polynomial 

representation can be written by ( ) jxxu =  and ( ) kxxv =  with ,2,1,0, =kj  

.1..., −n  So the representation of h is 

( ) ( ) ( ) ( ) ( ).modmod xfxxfxvxuxh kj+==  

If ,nkj <+  then it is proved because ( ) kjxxh +=  so that h is a unit vector 

and .1=h  If ,nkj =+  then it is proved because ( ) xxh += 1  so that 

.211 2 =+= 2h  If ,nkj >+  then there is nkjl −+=  with l≤1  

2−≤ n  so that 

( ) ( ) ( ) ( ) ( ) ( ).modmod1mod 1 xfxxxfxxxfxxxh lllnl ++=+=⋅=  

Because of 2−≤ nl  then nl <  and nnl <+−≤+ 121  so obtained 

( ) .1++= ll xxxh  Therefore .211 22 =+=h  ~ 

Although the theorem states that h  is limited to ,n  but from the 

proof h  is 2  that smaller than n  for .2>n  

6. Comparison 

Here is a comparison between HLI and SWIFFT: 

 

 



Algorithm Construction of HLI Hash Function 35 

Table 2. Comparison of key sizes and HLI SWIFFT with ,64=n  ,2=d  
257,1024 == pm  

Size (byte) SWIFFT HLI 

Input 1024 1024 

Key 8192 1025 

Output 513 513 

Table 3. Comparison SWIFFT and HLI 

Description SWIFFT HLI 

Key nm  arbitrary vectors in n
pZ  arbitrary vectors in n

pZ  

Calculation 
Using the Fast Fourier 

Transform 
Using modular polynomial ring 

operating in [ ] ( )xfxR ppf Z=,  

Time ( )nO  ( )nO  

7. Conclusion 

Hash function constructed with parameter m, n, d are integer and prime 
number p is 

( ) ( ( ) ( ) )∑
=

+⊗=
nm

i

ii
a bxaxh

1
,  

where the input of hash function is ( ) ( ) ( ) m
d

nmxxxx Z∈= ...,,, 21  and the key 

is ( ) ., ,
1 n

ppfRba Z≅∈  The hash function involves only 2n  of multiplication 

of modulo p. However, if the input of hash function is a binary number then 
the hash function HLI involves only n multiplication operations of modulo p. 
So the time spent is almost equal to SWIFFT. The advantage of HLI is key 
size which is smaller than SWIFFT. 
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