

Far East Journal of Mathematical Sciences (FJMS)
© 2014 Pushpa Publishing House, Allahabad, India
Published Online: April 2014
Available online at http://pphmj.com/journals/fjms.htm
Volume 86, Number 1, 2014, Pages 23-36

Received: September 19, 2013; Revised: January 27, 2014; Accepted: February 7, 2014
2010 Mathematics Subject Classification: 94A60.
Keywords and phrases: hash function, modular polynomial ring, ideal lattice.

ALGORITHM CONSTRUCTION OF HLI HASH
FUNCTION

Rachmawati Dwi Estuningsih1, Sugi Guritman2 and Bib P. Silalahi2
 1Academy of Chemical Analysis of Bogor
Jl. Pangeran Sogiri No 283 Tanah Baru
Bogor Utara, Kota Bogor, Jawa Barat
Indonesia

 2Bogor Agricultural Institute
Indonesia

Abstract

Hash function based on lattices believed to have a strong security
proof based on the worst-case hardness. In 2008, Lyubashevsky et al.
proposed SWIFFT, a hash function that corresponds to the ring =R

[] ().1+αα n
pZ We construct HLI, a hash function that corresponds

to a simple expression over modular polynomial ring =pfR ,

[] ().xfxpZ We choose a monic and irreducible polynomial () =xf

1−− xxn to obtain the hash function is collision resistant. Thus, the
number of operations in hash function is calculated and compared with
SWIFFT. Thus, the number of operations in hash function is
calculated and compared with SWIFFT.

1. Introduction

Cryptography is the study of mathematical techniques related to aspects

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 24

of information security relating confidentiality, data integrity, entity
authentication, and data origin authentication. Data integrity is a service,
which is associated with the conversion of data carried out by unauthorized
parties [5]. To maintain data integrity hash functions can be used. Hash
function is a computationally efficient function to map an arbitrary length
bitstring to a fixed length bitstring called as hash value. The use of hash
function in maintaining the information integrity and authentication is in
among the creation of digital signatures, virus protection, and software
distribution.

Hash function widely used today is generally designed based on Boolean
arithmetic, similar to the construction pattern of symmetric key cryptosystem
algorithm. However, the hash function has received many attacks to
undermine its security properties. The effectiveness of the attacks is
associated with the function construction concerned that are generally not
accompanied by proof of theoretic security that is based on mathematical
computation problems.

It is this that has attracted the interest of cryptography researchers to
design hash functions algorithms which is efficient and supported by proof of
theoretical security based on mathematical computing problems. Lattice
computational problem is expected to be the basis in order to obtain ideal
hash functions since it has several advantages from lattice problem, that is
promising proofing of strong security based on worst-case hardness, efficient
implementation, and lattice based-cryptography which is believed to be
secure against quantum computers.

Construction of lattice-based cryptography was first suggested by Ajtai
in 1996. Ajtai defined a one-way functions family whose security is footed

on the worst-case computing problem from the SVP approximation with cn
factor, in which n is the lattice dimension and constant 0>c [1].
Subsequently, Goldreich et al. showed that the one-way function is a
collision resistance hash function [2].

Micciancio used cyclic lattice as a new source of complexity and formed

Algorithm Construction of HLI Hash Function 25

an efficient one-way function from the worst-case complexity assumptions
[6]. Peikert and Rosen modified the assumption from function established by
Micciancio being able to show that the function is a collision resistance hash
function [8].

Lyubashevsky et al. constructed lattice-based hash function algorithms
prioritizing the efficiency called SWIFFT [4]. Basically, SWIFFT hash
functions is a highly optimized variant of the hash function and is very
efficient in practice because of the use of Fast Fourier Transform (FFT) in

.qZ

The purpose of this study is to construct an ideal lattice-based hash
function algorithm, analyzing the speed of the hash functions as a result of
construction, and comparing it with SWIFFT.

2. Preliminaries

2.1. Hash functions

Cryptographic hash functions play a fundamental role in modern
cryptography. Hash functions take a massage as input and produce an output
referred to as hash value.

Definition 2.1 [5]. A hash function (in the unrestricted sense) is a
function h which has, as a minimum, the following two properties:

(1) Compression – h maps an input x of arbitrary finite bitlength, to an
output ()xh of fixed bitlength n.

(2) Ease of computation – given h and an input x, ()xh is easy to

compute.

2.2. Algebra

Suppose []xZ is a set of polynomials with integer coefficients. While

pZ and []xpZ in a row are set of modulo p integers and a set of polynomials

with integer coefficients modulo p. Modular polynomial ring noted as pfR ,

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 26

[] ()xfxpZ= is a set of all polynomials of degree at most 1−n with

coefficients in .pZ Mathematically it can be written

{ []}xgfgR ppf Z∈|= mod,

{ },1
1

2
210 pi

n
n axaxaxaa Z∈++++= −
−

where () [].1
1

2
210 xxfxfxfxffxf n

n
n

n Z∈+++++= −
−

For any () () pfRxbxa ,, ∈ which is written as

() ∑ −

=
=

1
0

n
i

i
i xaxa and () ∑ −

=
=

1
0

,
n
i

i
i xbxb

then the addition operation is defined as follows:

() () ()()∑ −

=
+=+

1
0

mod
n
i

i
ii xpbaxbxa

while the multiplication operation is

() () ()∑ ∑−

= =+
⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛=⊗

1
0

.modmod
n
i

k
kji ji xfxpbaxbxa

The simpler representation of pfR , and which is easier to implement in

a computer is that pfR , can be considered as a set of all modulo p integer

vectors in dimension n, i.e.

{() },,,, 1210,
n
ppinpf aaaaaR ZZ ∈∈= −

So it can be seen that the operation of addition on the ring pfR , is the

sum of modulo p integer vector. Suppose for any pfRba ,, ∈ written =a

()1210 ...,,,, −naaaa and (),...,,,, 1210 −= nbbbbb then

()....,,,, 11221100 −− ++++=+ nn bababababa

While the scalar k and vector a multiplication operation can be viewed as
a summation of as much k times of vectors a. Thus pfR , against the vector

Algorithm Construction of HLI Hash Function 27

operation is lattice .n
pZ A lattice that is defined from certain polynomial ring

is called ideal lattice.

Lyubashevsky and Micciancio showed that to obtain the hash functions
that have impact resistant properties, monic and irreducible polynomial f
should be chosen. Monic polynomial is a polynomial with the coefficient of
the highest power of x is one. While a polynomial is irreducible if it cannot
be represented as a product of lower degree polynomial [3].

3. Algorithm Construction

Hash function is constructed based on the results of algebraic operations

on modular polynomial ring [] ()., xfxR ppf Z= In this study () −= nxxf

,1−x which constitutes monic and irreducible polynomials is chosen. The

election of modulo () 1−−= xxxf n led the multiplication of any two

members of modular polynomials ring pfR , to be

() () () 11mod11 +=−−⇔++−−= xxxxxxxx nnnn

(()).1mod1 −−+≡⇔ xxxx nn

From these results, taken () ,xxp = then

() () () ()1mod1
1

2
2

10 −−++++= −
−

− xxxaxaxaxaxaxp nn
n

n
n

() 1
2

2
101 1 −

−− +++++= n
nn xaxaxaxa

() 1
2

2
1011

−
−−− +++++= n

nnn xaxaxaaa

and furthermore obtained

() () () ,1
3

3
1

2
01122

2 −
−−−−− +++++++= n

nnnnn xaxaxaaxaaaxax

() () () () 3
01

2
12233

3 xaaxaaxaaaxax nnnnnn ++++++= −−−−−−

.1
4

4
1

−
−+++ n

n xaxa

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 28

In general, for ni ...,,2,1= apply

() () () 1
1011

+
−+−−− ++++++= ii

nininin
i xaxaaxaaaxax

.1
1

−
−−++ n

in xa

So the multiplication algorithm in pfR , which is implemented in a

computer would be easier if it is represented in a form of vector as follows:

Input: vectors ()1210 ...,,,, −= naaaaa and ()1210 ...,,,, −= nbbbbb

in ., pfR

Output: vector c as a hash multiplication of a and b in ;, pfR

1. Initialization pabc mod: 0= and .: aw =

2. For integer 1=i to ,1−= ni count:

a. (),: wv = where w denotes the rotation of w to the right

one unit.

b. ,: idvw += where id is the vector whose all components are

0 except the 1+i component is .ina −

3. If ,0≠ib count () .mod: pwbcc i+=

4. Return (c).

The steps in the above algorithm are essentially a modular integer matrix
multiplication (),mod pCAB ≡ i.e.

().mod

1

2

1

0

1

2

1

0

01321

320112

2112011

1210

p

c

c

c

c

b

b

b

b

aaaaa

aaaaaa

aaaaaaa

aaaa

nnnnnn

n

nnn

nn

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

++

+++

−−−−−−

−

−−−

−−

Algorithm Construction of HLI Hash Function 29

From here an ideal lattice-based hash function family can be constructed,
that is by selecting parameter m, n, d an integer where m is divisible by n and

p is prime. The input of this hash function is m
dx Z∈ with .pd < This input

is divided into nm vectors namely () () () ,...,,, 21 m
d

nmxxxx Z∈= with
() ,n

d
ix Z∈ ,,2,1 nmi = The key of hash functions is any two vectors
() ., ,
1 n

ppfRba Z≅∈ It is of this key that other vectors () () ⊗= −1ii aa

()
pf

i Rbx ,
1 ∈+− for nmi ...,,3,2= will be generated. Furthermore, hash

function family can be defined:

() { }n
ppf

m
daa Rhnmpf ZZ ≅→= ,:,,,H

which () (() ())∑ = +⊗= nm
i

ii
a bxaxh 1 .

The following algorithm for hash functions:

Keywords: two arbitrary vectors () ., ,
1 n

ppfRba Z≅∈

Input: () () () m
d

nmxxxx Z∈= ...,,, 21 with (),,2,1, nmix n
d

i =∈ Z

Output: () (() ())∑ = +⊗= nm
i

ii
a bxaxh 1 as a result of multiplication and

addition the ring ;, pfR

1. Initialize .0:=h

2. For integers ,1 nmdisi == compute:

a. () () ().iii xak ⊗=

b. () () .bkh ii +=

c. () ().1 ii ha =+

d. ().ihhh +=

3. Return (h).

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 30

Because the hash function must then be compression in nature, so the
output length must be smaller than the length of the input, therefore the

parameters chosen above must meet .log
logloglog d

pnmdmpn ⇔

4. Speed Analysis

Speed analysis means counting the number of operations in constructed
hash algorithm functions. First, the number of operations in the summation
algorithm in ring pfR , will be counted as follows:

1. An assignment operation as initial statement to the variable as the
number of vector elements to be summed.

2. The core of this summation operation, is in the statement block ‘if’
namely an operation to check whether one of the vectors to be
summed is the zero vector then:

a. If one of the vectors is a zero vector then there is an assignment
which considers the result of summation constitutes as another
vector. In other words, the summation operation of modulo p is
not needed.

b. If both vectors are not zero vectors, then the addition operation of
modulo p summated to n times, shall be made.

However, in the multiplication algorithm in ring, there are two
algorithms. First, the multiplication algorithm of modulo p vector and scalar.
Then, the algorithm which turns vector to the right as much as one unit.
Therefore, before calculating the number of multiplication operations in the
ring, the operation of scalar and vector multiplication of modulo p will be
counted as follows:

1. An assignment operation that state initial variables n is the number of
vector elements.

2. In calculating the result of multiplication there are n times of modulo
p operations.

Algorithm Construction of HLI Hash Function 31

While the number of operating in algorithms turns vector one unit to the
right:

1. An assignment operation expressing early n variables is the number
of vector elements.

2. In turning vectors there are two operations, namely taking the last
element of the vector and then insert the element as the first element
of the vector.

The calculation of many operations of two algorithms above can be used
to calculate the number of operations of two vector multiplication algorithms
in the ring, i.e.:

1. There are 2 assignment operations.

2. Multiplication of scalar and modulo p vector which involves n
operation of modulo p multiplication.

3. In the statement block ‘for’ those repeated ;1−n

a. There are three operations i.e. rotating the vector, summation, and
insertion.

b. If 0≠ib then there are n operations of modulo p multiplication

and n operations of modulo p summation.

The number of hash function algorithms can be computed as follows:

1. There are five operating assignments.

2. In a block of statements ‘for’ those repeated nm times, i.e.:

a. Four assignments.

b. A multiplication in the ring pfR , which involves 2n

multiplication operation of modulo p.

c. Two additions in the ring pfR , each of which involves n

operation of modulo p summation.

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 32

If parameter 2=d is taken then hash function algorithm does not
involve multiplication in ring ., pfR So it only involves summation ring

,, pfR which consists of n summation operations of modulo p which is

repeated nm times. So hash function algorithm proceeds with parameter

2=d and input with length m consisting of m operations of modulo p
summation.

Besides calculating the vast number of operations in algorithm,
experiment of calculating the length of time the program calculates the hash
value is also conducted. In this experiment parameters as in SWIFFT, namely

,2=d ,64=n 257=p were taken, while the length of the input (m) is

taken within 6 points. To obtain the value of time, here each m value is
repeated 5 times and then the average is calculated, so that obtained the
following results:

Table 1. Running program HLI time with different input lengths

Input length (m) Time (sec)

1024 0,33

2048 0,643

4096 1,373

8192 2,718

16384 5,357

32768 10,745

Algorithm Construction of HLI Hash Function 33

In the graph:

From Figure 1, it can be seen that for binary inputs the result is the
running time linear to length of input.

Figure 1. Figure HLI program running time with parameters ,64=n ,2=d
and .257=p

5. Security Analysis

Security of a hash function can be seen from two properties i.e. one-way
and collision resistant. The proof of hash function based on lattice is one-way
follow the proof of Micciancio [6]. The proof of hash functions based on
lattice with ()xf over Z irreducible is resistant collisions has been

demonstrated by Lyubashevsky and Micciancio [3].

According Lyubashevsky and Micciancio [3] to obtain collision-resistant
properties the polynomial ()xf must be:

a. ()xf is a monic polynomial of degree n, irreducible over Z.

b. For every unit vectors [] () ,, xfxvu pZ∈ product of u and v is a

short vector, it is means uv is limited to .n

Polynomial () 1−−= xxxf n is a monic polynomial of degree n because

the coefficient of leader is one. Parameter n is adjusted for application on

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 34

computer that is power of 2. For ,8=n 16, 32, 64, 128, 256, 512, 1024,

polynomial () 1−−= xxxf n is irreducible. It is checked by mathematical

software. For point b is shown by this theorem.

Theorem. For every unit vector [] () ,, xfxvu p
n
p ZZ ≅∈ if ,vuh ⊙=

then .nh <

Proof. For every unit vector [] () ,, xfxvu p
n
p ZZ ≅∈ the polynomial

representation can be written by () jxxu = and () kxxv = with ,2,1,0, =kj

.1..., −n So the representation of h is

() () () () ().modmod xfxxfxvxuxh kj+==

If ,nkj <+ then it is proved because () kjxxh += so that h is a unit vector

and .1=h If ,nkj =+ then it is proved because () xxh += 1 so that

.211 2 =+= 2h If ,nkj >+ then there is nkjl −+= with l≤1

2−≤ n so that

() () () () () ().modmod1mod 1 xfxxxfxxxfxxxh lllnl ++=+=⋅=

Because of 2−≤ nl then nl < and nnl <+−≤+ 121 so obtained

() .1++= ll xxxh Therefore .211 22 =+=h ~

Although the theorem states that h is limited to ,n but from the

proof h is 2 that smaller than n for .2>n

6. Comparison

Here is a comparison between HLI and SWIFFT:

Algorithm Construction of HLI Hash Function 35

Table 2. Comparison of key sizes and HLI SWIFFT with ,64=n ,2=d
257,1024 == pm

Size (byte) SWIFFT HLI

Input 1024 1024

Key 8192 1025

Output 513 513

Table 3. Comparison SWIFFT and HLI

Description SWIFFT HLI

Key nm arbitrary vectors in n
pZ arbitrary vectors in n

pZ

Calculation
Using the Fast Fourier

Transform
Using modular polynomial ring

operating in [] ()xfxR ppf Z=,

Time ()nO ()nO

7. Conclusion

Hash function constructed with parameter m, n, d are integer and prime
number p is

() (() ())∑
=

+⊗=
nm

i

ii
a bxaxh

1
,

where the input of hash function is () () () m
d

nmxxxx Z∈= ...,,, 21 and the key

is () ., ,
1 n

ppfRba Z≅∈ The hash function involves only 2n of multiplication

of modulo p. However, if the input of hash function is a binary number then
the hash function HLI involves only n multiplication operations of modulo p.
So the time spent is almost equal to SWIFFT. The advantage of HLI is key
size which is smaller than SWIFFT.

Rachmawati Dwi Estuningsih, Sugi Guritman and Bib P. Silalahi 36

References

 [1] M. Ajtai, Generating hard instances of lattice problems, Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, May 22-24, Philadelphia, PA,
USA, 1996, pp. 99-108.

 [2] O. Goldreich, S. Goldwasser and S. Halevi, Collision-free hashing from lattice
problems, Technical Report TR96-056, Electronic Colloquium on Computational
Complexity, 1996.

 [3] V. Lyubashevsky and D. Micciancio, Generalized compact knapsacks are collision
resistant, ICALP’06, Proceedings of the 33rd International Conference on
Automata, Languages and Programming - Part II, 2006, pp. 144-155.

 [4] V. Lyubashevsky, D. Micciancio, C. Peikert and A. Rosen, SWIFFT: A modest
proposal for FFT hashing, Proceedings of Fast Software Encryption, 2008.

 [5] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

 [6] D. Micciancio, Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions, Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002, pp.
356-365.

 [7] D. Micciancio and O. Regev, Worst-case to average-case reduction based on
Gaussian measures, Proc. 45th Annual IEEE Symp. on Foundations of Science
2004, pp. 372-381.

 [8] C. Peikert and A. Rosen, Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattice, 3rd Theory of Cryptography Conference (TCC),
2006.

