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ABSTRACT

In this paper, the problem of connectivity of patchy conservation sites was approached
by the use of graph theory. Determination of the so-called core sites was subsequently
conducted by establishing the cover areas formulated in the framework of integer linear
programming, connecting the unconnected cover areas by application of Dijkstra algorithm
and heuristically pruning the unused covers to secure the minimum connected cover ar-
eas. An illustrative example of this method describes the wildlife conservation in Sumatra.
The connectivity problem of 20 districts in 3 provinces of Jambi, Riau and West Sumatra
inhabited by 10 species of wildlife were considered.

Keywords: Connectivity problem, covering-connecting-pruning, Dijkstra algorithm, wildlife
conservation, Sumatra.
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1 Introduction

Connectivity of networks is one of the most fundamental and useful notions for analyzing var-
ious types of network problems and now is phrased in metapopulation theory. Connectivity
in conservation biology can be defined as the degree to which organisms can move through
the landscape, commonly measured either by dispersal rate or dispersal probability. In other
words, connectivity can be viewed as a problem of connecting territories of great biological
importance, i.e., corridors creation problem. At intermediate time scales connectivity affects
migration and persistence of metapopulations (Ferreras, 2001) and at the largest time scales
it influences the ability of species to expand or alter their range in response to climate change
(Opdam and Wascher, 2004). Habitat connectivity is especially important when habitat is rare,
fragmented, or otherwise widely distributed and can be a critical component of reserve design
(Minor and Urban, 2008).

Researches on the connectivity problem are some. (Gurrutxaga et al., 2011) studied the con-
nectivity of protected area networks based on key elements located in strategic positions within
the landscape. Recent methodological developments, deriving from the probability of connec-
tivity index, was applied to evaluate the role of both individual protected areas and links in the
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intermediate landscape matrix as providers of connectivity between the rest of the sites in the
network. (Minor and Urban, 2008) used graph theory to characterize multiple aspects of land-
scape connectivity in a songbirds habitat network in the North Carolina Piedmont. (Pascual-
Hortal and Saura, 2008) systematically compared a set of ten graph-based connectivity in-
dices, evaluating their reaction to different types of change that can occur in the landscape
and their effectiveness and proposed a new index that achieves all the properties of an ideal
index. Mathematical formulations and solution techniques for a variant of the connected sub-
graph problem in wildlife conservation subject to a budget constraint on the total cost was
investigated by (Dilkina and Gomes, 2010). Several mixed-integer formulations for enforcing
the subgraph connectivity requirement were proposed. A paper by (Nagamochi, 2004) surveys
the recent progress on the graph algorithms for solving network connectivity problems. One
discussed the optimization strategy of network connection is (Lu, 2013). A review on recent
applications of graph model and network theory to habitat patches in landscape mosaics is
provided by (Urban et al., 2009). A book that focuses on practical approaches, concepts, and
tools to model and conserve wildlife in large landscapes is (Millspaugh and Thompson, 2009).

The current paper describes the application of graph theory in connectivity problem of wildlife
conservation. We consider the problem of determining the minimum connected core sites
in Sumatra, where 10 species of wildlife inhabited in 20 districts in Jambi, Riau and West
Sumatra provinces are considered. We shall follow the approach developed by (Cerdeira et
al., 2005), where the minimum connected cover areas were determined by using integer linear
programming, Dijkstra algorithm and heuristic pruning method.

2 Graph Model of Connectivity Problem

2.1 Notation

The following notation can be found in most standard textbooks on graph theory and network
flows, e.g., (Ahuja et al., 1993; Diestel, 2000). Graph G is defined as an ordered pair of sets
(V,E), where V is set of nodes and E is a set of 2-element of V , called edges. A graph has
order n if its number of nodes is n, written by |G| = n. Graphs are finite or infinite according
to their order. A node v is incident with an edge e if v ∈ e. Two nodes u, v of G are adjacent,
or neighbors, if (u, v) is an edge of G. It is denoted by A(v) the set of all adjacent nodes of
v. Directed graph is an ordered pair of sets (V, Ẽ), where V is set of nodes and Ẽ is a set of
ordered pairs of two nodes. A graph G′ = (V ′, E′) is said to be a subgraph of graph G = (V,E)

if V ′ ⊆ V and E′ ⊆ E. Multigraph is a graph where multiple edges between the two nodes are
allowed, e.g., set of edges E becomes a multiset. Weighted graph is a graph where each edge
is bound with a certain value, called weights. Those weights can be costs, profits, lengths of
the edges etc. A path in a graph is a sequence of distinct vertices (v1, v2, . . . , vn), such that
(vi−1, vi) is an edge, for all i = 2, . . . , n. The length of a path is the number of edges in the
path. A shortest path is a path of minimum length. A graph is connected if there is a path from
each node to any other node in the graph.
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Let suppose V := {1, 2, . . . , n} and C := {C1, C2, . . . , Ck}, where Ci ⊆ V for i ∈ I :=

{1, 2, . . . , k}. Sets Ci, where i ∈ I∗ ⊆ I, are covers of set V if they satisfy

⋃
i∈I∗

Ci = V. (2.1)

If, for instance, V = {a, b, c, d, e, f, g} and C = {C1, . . . , C5}, where C1 = {a, b, g}, C2 =

{a, c, g}, C3 = {b, e, g}, C4 = {d, e, f} and C5 = {a, c, f}, then {C1, C4, C5} is one of covers of
V since C1 ∪ C4 ∪ C5 = V as required by (2.1). Suppose that a weight wi > 0 is attached to
each Ci. The set covering problem is a problem of determining covers with minimum weight,
and can be formulated as a linear programming:

min
k∑

i=1

wixi s.t.
k∑

i=1

aijxi ≥ 1, j = 1, . . . , n, (2.2)

where xi = 1 if Ci is a cover of V for i = 1, . . . , k, otherwise xi = 0 and aij = 1 if i ∈ Ci,
otherwise aij = 0. Here n denotes the number of elements in V . If we set wi = 1(i = 1, . . . , k),
the minimum covering set for V of previous example is {C3, C4, C5} with minimum weight 3.

Connectivity problem of wildlife conservation, which involves a number of conservation sites
and wildlife species, can be loosely defined as a problem of selecting a fewest number of
connected sites that cover all species.

2.2 Graph Model

Consider a wildlife conservation area which consists of n sites. In graph theory notation, these
sites are denoted by nodes and any two connected nodes are denoted by two adjacent nodes,
where road connecting them is an edge. Suppose that there are m species inhabited in the
area. Based on the work of (Cerdeira et al., 2005), connectivity problem in the area is solved
in three steps: covering, connecting and pruning.

2.2.1 Covering

For i = 1, . . . , n, define the following binary decision variables:

xi =

{
1 ; if sites i is selected
0 ; if otherwise.

(2.3)

The covering problem is then aimed to minimize the number of selected sites:

min

n∑
i=1

wixi s.t.
∑
i∈Kj

xi ≥ 1, j = 1, . . . ,m, (2.4)

where constraints in (2.4) ensure that each species populates at least in one selected site.
Here Kj (j = 1, . . . ,m) denotes the set of sites where species j inhabited. If the optimal
covering set is connected then the process is stopped, otherwise we proceed to the second
step for connecting.

International Journal of Ecological Economics & Statistics

24



2.2.2 Connecting

Connecting of unconnected covers is undertaken by transforming the representing uncon-
nected graph into connected one. In this stage, the shortest path of the respecting uncon-
nected graph should be sought by Dijkstra algorithm (Dijkstra, 1959). For a given source node
vs in the graph, the algorithm finds the path with lowest cost, i.e., the shortest path, between
that nodes and every other node vi. The algorithm divides the nodes into permanently labeled
and temporarily labeled nodes. The distance label to any permanent node represents the
shortest distance from the source to that node. For any temporary node, the distance label is
an upper bound on the shortest path distance to that node. The basic idea of the algorithm is
to fan out from node vi and permanently label nodes in the order of their distances from node
vs. Dijkstra’s algorithm will assign some initial (total) distance label d and will try to improve
them step by step (Ahuja et al., 1993):

1. distance label of source node: d(vs) = 0.

2. for all vj ∈ V − {vs} do d(vj) = ∞.

3. initial set of visited node: S = ∅.

4. initial set of unvisited node: Q = V .

5. while Q �= ∅ do v∗ = minvi∈Q d(vi).

6. S = S ∪ {v∗} and Q = Q− {v∗}.

7. for all vi ∈ A(v∗) do if d(vi) > d(v∗) + ω(v∗, vi) then d(vi) = d(v∗) + ω(v∗, vi).

8. return.

Steps 1 and 2 assign to permanent label 0 for source node vs and each other node vj to
temporary label ∞. Steps 3 and 4 initially create an empty set of visited nodes S and that of
unvisited nodes Q consisting of all the nodes. While Q is not empty, Step 5 selects an element
v∗ of Q with minimum distance. Step 6 updates S and Q with respect to v∗. By Step 7 we
calculate the distance label for each node vi which is adjacent to v∗ by considering its weight
ω(v∗, vi). If a new shortest path is found, we replace d(v∗) with the new one. If the destination
node has been marked visited or if the smallest tentative distance among the nodes in Q is
∞, then stop. The algorithm has finished. Select the unvisited node that is marked with the
smallest tentative distance, and set it as the new v∗ then go back to Step 6.

2.2.3 Pruning

In this step, Q should be pruned to become a minimal connected cover by removing all unused
nodes. The procedure consists of two step (Cerdeira et al., 2005):

1. This step comprises of three processes:

(a) Identify neighborhoods of all nodes in Q.
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Table 1: Conservation sites.
Province Site or district

Jambi (1) Kerinci, (2) Merangin, (3) Sarolangun, (4) Batanghari, (5) Muarojambi,
(6) Tanjungjabung Timur, (7) Tanjungjabung Barat, (8) Bungo, (9) Tebo

Riau (10) Kampar, (11) Kuantan Singingi, (12) Indragiri Hilir, (13) Indragiri Hulu,
(14) Pelalawan

West Sumatra (15) Pesisir Selatan, (16) Solok, (17) Sawahlunto, (18) Agam,
(19) Tanah Datar, (20) Padang Pariaman

(b) Pick a node vi in Q and mark all nodes adjacent to vi.

(c) Temporarily remove vi and inspect remaining nodes in Q. If the set of remaining
nodes is a cover and connected graph, then permanently remove vi and return to
Step 1(b). Otherwise, proceed to Step 2.

2. In this step we inspect nodes of Q that remain unchecked by Step 1 and then proceed
the pruning procedure.

(a) Select an unchecked node in Q and mark all adjacent nodes.

(b) Temporarily remove one marked node vi and inspect remaining nodes in Q. If the
set of remaining nodes is a cover and its graph is connected, then permanently
remove vi and return to Step 2(a). Otherwise, vi cannot be removed and stop the
process. Q is minimum connected cover.

3 Connectivity Problem of Wildlife Conservation in Sumatra

To illustrate our model we consider a connectivity problem of wildlife conservation in Sumatra,
Indonesia. We consider a conservation area spanned by 20 sites or districts in 3 provinces as
homes for 10 wildlife species (thus we have n = 20 and m = 10), where its map and graph
representation are provided by Figure 1. The list of districts is given by Table 1 and that for
species including their habitats are provided by Table 2. In the graph conservation sites are
denoted by numbered nodes following Table 1. Weight between two adjacent nodes represents
the distance between sites in kilometers.

To determine cover sites we solve optimization problem (2.4). Since there are 10 species
considered then we have 10 constrains inside the problem. Constraint related to golden cat
(j = 5), for instance, can be expressed as follows:

∑
i∈K5

xi ≥ 1 ⇔ x1 + x2 + x15 + x16 + x17 ≥ 1.

Elements of Kj can be found in the last column of Table 2. With no relative importance among
sites, i.e., wi = 1 for all i = 1, 2, . . . , 20, optimal solutions of the problem are xi = 1 for i ∈ {2, 19}
and xi = 0 otherwise, which mean that site 2 (Merangin) and site 19 (Tanah Datar) constitute
as cover sites for the conservation area. It is easy to verify that all species can be found alive
in these two sites. However these cover sites are unconnected and we should connect them
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Table 2: Wildlife species and their habitats.
No Local Name International Name Latin Name Habitat (K)

1 Rangkong papan hombill Buceros bicornis 1,2,6,8,9,12,13,15–18
2 Harimau sumatra sumatran tiger Panthera tigris 1–8,11,13,15–20
3 Badak sumatra sumatran rhinoceros Dicerorhinus sumatrensis 1,2,5,7,15,16,17
4 Beruang madu sun bear Ursus malayanus 1–4,8,10,11,14–17,20
5 Kucing emas golden cat Profelis aurata 1,2,15,16,17
6 Siamang sumatran gibbon Symphalangus syndactylus 3,4,6,8–13,18,19
7 Kancil mouse deer Tragulus kanchil 5–14,19
8 Tapir asian tapir Tapirus indicus 1,2,5,7,10,11,13–18
9 Elang alap hawk Accipiter trivirgatus 1,2,15,16
10 Gajah sumatra sumatran elephant Elephas maximus 1,2,15,16,17

Figure 1: Conservation area and its corresponding graph.

first by seeking the shortest path in between. By applying Dijkstra algorithm we may find all
the shortest paths from site 2 to other sites as depicted by Figure 2 (left). The shortest path
between Merangin and Tanah Datar is shown by blackened path 2-8-17-19 with distance of 245
km. In the notion of Dijkstra algorithm we have Q = {2, 8, 17, 19}.

The last stage of the works is then to check whether the graph 2-8-17-19 provides a connected
cover with minimum distance or not. Initial step of pruning is to identify the adjacency set of
each node in Q and we have A(2) = {8}, A(8) = {2, 17}, A(17) = {8, 19} and A(19) = {17}.
If we temporarily remove node 2 from the list then we found that the set of remaining nodes
{8, 17, 19} is not a cover since hawk is not alive here. Thus node 2 is unremovable. In the
second step of pruning, pick node 19 and temporarily remove it from the list. Since the set
of remaining nodes {2, 8, 17} forms a cover then node 19 can be permanently pruned. Over
the new set {2, 8, 17}, by removing node 17 we discovered that {2, 8} is a cover and node 17

can also be permanently pruned. The set of remaining nodes {2, 8} therefore constitutes the
connected cover with minimum distance, indicating that Merangin and Bungo, located 61 km
apart, are conservation sites with the highes diversity, i.e., core sites, as all species reside in
these areas.
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Figure 2: The shortest path and the Steiner tree.

4 Concluding Remarks

It has been shown that covering-connecting-pruning works well in determining core sites, i.e.,
connected cover sites with minimum distance, of wildlife conservation area. The effectiveness
of this method is worthwhile when we consider complex cases where more sites and more
species considered. Another interesting look relates to spatial consideration, where we may
impose the possibility selected core sites located in at least two different provinces. Note that
Merangin and Bungo obtained in previous problem are both located in Jambi province. To
do this we may first modify weights wi in (2.4) such that some sites are more important than
others. For example, put w9 = w14 = w15 = 0 and wi = 1 otherwise. It means that Tebo (in
Jambi province), Pelalawan (in Riau Province) and Pesisir Selatan (in West Sumatra province)
have more importance to be considered as covers. Covering by integer linear programming
(2.4) in fact provides these three sites as covers. Since there are more than two nodes to be
connected, we now have the so-called Steiner tree problem, i.e., to find a tree of G = (V,E)

that spans H ⊆ V with minimum total distance on its edges. In this case H = {9, 14, 15}.
Figure 2 (right) depicts the Steiner tree of the problem, which can be obtained using algorithm
developed by (Kou et al., 1981; Nascimento et al., 2012). However, pruning procedure gives
11-17-16 as the connected covers with minimum distance of 98 km along the tree. Now the
core sites locate in two provinces: Kuantan Singingi in Riau; Solok and Sawahlunto in West
Sumatra.
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