ICSRD 2013 PROCEEDINGS
"Sustainable Rural Development - Towards a Better World"

Editorial Boards:
1. Prof. Robert C. Creese, Ph.D. PE. CCE. / West Virginia University, USA
2. Prof. Yan Wang, Ph.D. / Georgia Institute of Technology, USA
3. Prof. Dr. Budi Indra Setiawan / Bogor Agricultural University, INDONESIA
4. Prof. Dr. Taku Nishimura / The University of Tokyo, JAPAN
5. Prof. Dr. Zulkifli Yusop / Universiti Teknologi Malaysia, MALAYSIA
6. Dr. Hideto Ueno / Ehime University, JAPAN
7. Dr. Tetsuya Araki / The University of Tokyo, JAPAN
8. Dr. Yasei Oikawa / Tokyo University of Agriculture and Technology, JAPAN
Editorial Board:

1. Prof. Robert C. Creese, Ph.D. PE. CCE. / West Virginia University, USA
2. Prof. Yan Wang, Ph.D. / Georgia Institute of Technology, USA
3. Prof. Dr. Budi Indra Setiawan / Bogor Agricultural University, INDONESIA
4. Prof. Dr. Taku Nishimura / The University of Tokyo, JAPAN
5. Prof. Dr. Zulkipli Yusop / Universiti Teknologi Malaysia, MALAYSIA
6. Dr. Hideto Ueno / Ehime University, JAPAN
7. Dr. Tetsuya Araki / The University of Tokyo, JAPAN
8. Dr. Yosei Oikawa / Tokyo University of Agriculture and Technology, JAPAN

PROCEEDINGS OF INTERNATIONAL CONFERENCE ON SUSTAINABLE RURAL DEVELOPMENT 2013
“Sustainable Rural Development – Toward a Better World”

Published by:
Department of Agricultural Engineering, Jenderal Soedirman University
Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123
Phone/Fax. +62 281 638791

A. KEYNOTE SPEAKERS

1. **Sustainability Innovation Through First-Principles Modelling and Simulation**
 Lijuan He, Masoumeh Aminzadeh, and Yan Wang
 Page 1

2. **Utilization of Organic Wastes in Local Area to Improve Plant Production and Soil Quality for Building Sustainable Agricultural Systems in Japan**
 Hideto UENO
 Page 11

B. INVITED SPEAKERS

1. **Homegarden Intensification through Cooperation among Different Stakeholders: Case Studies from Indonesia and Vietnam**
 Yosei OIKAWA, Vu-Linh NGUYEN, and Masaaki YAMADA
 Page 15

2. **Field Evaluation of Infiltration Models under Oil Palm Plantation: Stemflow and Throughfall Areas**
 M. Askari, F.A. Ahmad, A.M. Mohd Sayuti, C.B.S. Teh, Suhartono, H. Saito, Z. Yusop, and K. Wijaya
 Page 21

3. **Environmental Sustainability of Biodiesel Production in Indonesia**
 Armansyah H. Tambunan
 Page 31

4. **Managing Concern: Indonesian Sustainability in Rice Production, A Rice Breeding Perspective**
 Suprayogi
 Page 43

C. SUPPORTING PAPERS

1. **1st Topic: Sustainable Agriculture, Agricultural Productivity, and Modern Technologies**

 1. **Enhanced Water Use Efficiency for Irrigated Rice in Indonesia with System of Rice Intensification (SRI)**
 Chusnul Arif, Budi Indra Setiawan, Hanhan Ahmad Sofiyuddin, Lolly Martina Martief, Masaru Mizoguchi, and Ardiansyah
 Page 73

 2. **Direct Seeding Plantation Rice System is One of Alternative in Agriculture Water Conservation Management Engineering at Farm Level**
 Nurpilihan Bafdal
 Page 83

 3. **Modeling Water Movement in Limited Strip-Tillage with Strip Shallow Irrigation for Crop Cultivation Concept**
 Y. I. Intara and A. Sapei
 Page 89

 4. **Circular-Shaped Emitter as Alternative to Increase Irrigation Efficiency**
 Satyanto K. Saptomo, Budi I. Setiawan, KMS Ferry Rahman, Yudi Chadrin, Popi R. D. Mustaningsih, and Chusnul Arif
 Page 97

 5. **Suitability Analysis of East Borneo Marginal Lands for Food Estate**
 Sidharta Sahirman, Muhammad Rifan, and Ardiansyah
 Page 103

 6. **Study of Rice Growth and Yield as Well as the Available of N, P, K Soil Content Given by Local Micro Organisms in System of Rice Intensification Rice Fields in the Cilacap District**
 Windi Haryanto, Ardiansyah, and Ismangil
 Page 109

 Dwi Kurniawan, Imron Rosyadi, and Azis Wisni Widhi N
 Page 115
A. Margiwiyatno, Siswantoro, and R. Ediati

2nd Topic: Biodiversity, Agriculture, and Food Security

1. Mathematical Model for Estimating Staple Food Stock in Temanggung Regency
 Anton Timur
 133

2. Application of Natural Preservation on Coconut Sap and Quality Profile Evaluation of Solidified Coconut Sugar
 Karseno, Tri Yanto, Pepita Haryanti, and Retno Setyawati
 141

3. Ge Interaction Assesment of Sr Sweet Corn Yield Based on Additive Main Effect and Multiplicative Interaction (AMMI) and Biplot in West Java
 Syafii M, Melati R, Waluyo B, and Ruswandi D
 147

4. Improving Beef Cattle Production System for Sustainable Rural Development in Central Java
 Akhmad Sodiq, Suwarno and Arif Harnowo Sidhi
 155

5. Biotic Investigation on *Acacia Species* in Kordofan Region Sudan Against Climate Change
 Maymoona A. Eisa, Zeinab M. Hammad, and Osman E. A. Abdelkareem
 163

6. Physical and Chemical Characteristics of Modified Corn Starch
 Nur Aini, V. Prihananto, and Gunawan Wijonarko
 169

7. Amino Acids Composition and Minerals Content of Potato Tubers Cultivar Eigenheimer and Granola
 C. Wibowo and N. Bafdal
 177

8. Dimensional Analysis for Measuring Coefficient of Unit Surface Conductance of Steelbass for Non Cooking Oil Frying Application
 Siswantoro, Sidharta Sahirman, and Agus Margiwiyatno
 187

3rd Topic: Renewable Energy for Sustainable Rural Development

1. A Grid Tied Photovoltaic System Using Three-Phase Five-Level Current-Source Inverter with Controlled Reactive Power
 Suroso, Daru Tri Nugroho, Winasis, and Toshihiko Noguchi
 195

2. A Comprehensive Evaluation Effort of Current Situation in Kupang City as Local Government to Achieve Indonesia Government Target in Reducing CO₂E Emission Based on Analysis of Kupang Input-Output Table
 Adrianus AMHEKA, Yoshiro HIGANO, Takeshi MIZUNOYA, and Helmut YABAR
 203

4th Topic: Energy, Environment, and Sustainable Development

1. Sustainable Development through Effective Waste Management in India: Opportunities at Community Level
 Upendra D. Patel, Rajiv K. Sinha, and Margi U. Patel
 219

2. Hydrothermal Synthesis of AG₃PO₄ Photocatalyst for Phenol Decomposition under Visible Light Irradiation
 Uyi Sulaeman, Eva Vatonah, Anung Riapanitra, Ponco Iswanto, Shu Yin, and Tsugio Sato
 225
5th Topic: Environmental and Social Impact Assessment of Rural Development Programs

1. Enhancing Social Capital of Local Chicken Farmers in Cianjur, West Java for Sustainable Rural Development
 Moch. Sugiarto .. 235

2. In Situ Bioremediation of Glyphosate Herbicide Using Trichoderma Viride Strain FRP 3
 Novi Arfarita, Budi Prasetya, Yulia Nuraini, and Tsuyoshi Imai ... 241

3. A Sustainable Smallholder Rubber Model: A Partnership between Private Company and Local Communities
 Muhammad Ridwansyah .. 247

4. Agricultural Manpower Dynamic and Change of Economic Structure in Central Java
 Timotius Setiawan ... 253

5. Human Capital and Survival of Small Scale Food Processing Firms Under Economic Crisis in Central Java Indonesia
 Palmarudi Mappigau and Agussalim M .. 259

6. Impact of Climate Change on Hydrology of Gunungsewu Karst Area and Local Community Adaptation
 Sudarmadji ... 275

 Arief Sabdo Yuwono .. 287

8. Comparative Study Agriculture Development Programs for Poverty Reduction Evidences from Indonesia and China
 Muhamad Rusiyadi .. 295

9. Sustainable Livelihood Strategies after Merapi Volcanic Eruption (Aspects of Sustainable Rural Development)
 Nugroho Hari Purnomo and Widodo Hariyono ... 305

10. Application of Small Scale Program of Farmer Participation on Land and Water Conservation Measures to Simulate Realistics Waterhed Management
 Sahid Susanto, Chandra Setyawan, and Sukirno .. 311

6th Topic: Community Health

1. Criterias Identification of Eye Diseases in Order to Develop an Expert System for Early Diagnosis of Glaucoma
 Retno Supriyanti, Guruh Syahroni, Sri Wisnu Respati, Yogi Ramadhani, and Tutik Ida Rosanti ... 321

2. The Hepatoprotective Effect of Ethanol Extract of Plantain (Plantago major L.) on Drug Induced Hepatotoxic Rat (Rattus norvegicus) Model
 E Sutrisna, A A Fitriani, I A Salim, A M Maskoen, M Sujatno, and H S. Sastramihardja .. 331

3. Potential Analysis of Cottonwood Parasite (Dendropthoe Pentandra) Stem Extract in Decreasing of Mutant P53 Protein Expression on Cervical Cancer Cell (Hela Cells) in Vitro
 Gamal and Efriko Septananda .. 339

4. Wareness and Willingnes to Health Policy: An Empirical Study with Reference to Malang Indonesia
 Gamal ... 345
5. *Nigella sativa* Gel Improves Granulation and Re-Epithelialization Tissue of Diabetic Rats
Yunita Sari, Dhadhang Wahyu K, Saryono, Arington IG, and Nakatani Toshio 355

Posters

1. Green House Effect Solar Dryers: An Appropriate Technology Pro-The Poor
Yuwana ... 363

2. Initial Screening of Green Super Rice (GSR) Lines and Sub 1 Gene Containing Varieties for Seedling Stage Drought Tolerance
Untung Susanto, Rina Hapsari Wening, Made Jana Mejaya, and Jauhar Ali 373

3. Climate Variability: Need for Collective Action in Conserving Agro-Biodiversity
K.C. Siva balan, B. Swaminathan, and S. Nithila ... 379

4. Application of Irradiation Mutation Technique Into Early Maturing Rice Variety (90-104 Day) for the Development of Improved Agronomic Performance-Ultra Early Maturing (< 90 Days) Rice Variety
Mohamad Yamin Samaullah and Untung Susanto ... 385

5. On Farm Trial of Green Super Rice (GSR) Pre-Released Variety in Raifed Lowland Areas of Indramayu
Mohamad Yamin Samaullah, Untung Susanto, and Made Jana Mejaya 389

6. Life Cycle GHG Emission and Energy Consumption for Production of Biodiesel Using Catalyst from Crude Palm Oil and Curde Jatropha Curcas Oil in Indonesia
Kiman Siregar, Armansyah H. Tambunan, Abdul K. Irwanto, Soni S. Wirawan, and Tetsuya Araki ... 393

7. Prototype Reactor Design for Biodiesel Production Based Coconut Oil
Nurul Rizki Ramadhan, Arief RM Akbar, and Susi ... 407

8. Response Surface Methodology for Regeneration of Lithium Bromida in Absorption Refrigeration System Using Vacuum Membrane Distillations
Bayu Rudiyanto, Tsair-Wang Chung, and Armansyah H. Tambunan 415

9. Biodiesel Production Based Coconut Oil by Esterification and Transesterification Process
Nurul Rizki Ramadhan, Arief RM Akbar, and Susi ... 425

10. Assessment of Socio Economic and Environmental Impact of Community Water Supply Schemes in Kandy District

11. Global Rice Trade and Some Issues of Restriction
Evi Nurifah Julitasari .. 437

12. Bare Soil Surface Temperature Determination from Energy Balance Equation
Ardiansyah, Sho Shiozawa, and Budi Indra Setiawan .. 443

13. Hydram Pump for Water Supply at Banteran Village, Sumbang Sub-District, Purwokerto
Putri Rieski Imanda, Reza Kusuma N, Ardiansyah, and Afik Hardanto 455

14. Isolation and Identification of Indigenous Microbe for Production of Bioethanol from *Nypa Fruticans*
Wiludjeng Trisasiwi, Gunawan Wijonarko, and Melisa Riska Putri 461
IMPACT OF DEVELOPMENT IN BOGOR MUNICIPALITY ON THE LOCAL GREENHOUSE GAS EMISSION

Arief Sabdo Yuwono

Dept. of Civil and Environmental Engineering, Bogor Agricultural University (IPB), Indonesia
e-mail: arief_sabdo_yuwono@yahoo.co.id

ABSTRACT

A decade development in Bogor Municipality of West Java Province and its impact on the local greenhouse gas emission covering carbon dioxide (CO₂), methane (CH₄) as well as nitrous oxide (N₂O) were assessed quantitatively by using their relevant emission factors. A ten years period of development was indicated by growth of population, increasing energy consumption and change of AFOLU (agriculture, forestry and land use) sector as well as by increase of solid waste generation. Assessment on the generated local greenhouse gas emission was based on IPCC (Inter-Governmental Panel on Climate Change) Guideline 2006. There was a strong correlation between population growth and the emitted greenhouse gas emission. A similar correlation was also found between solid waste generation and total greenhouse gas emission. Result of the analysis showed that yearly local greenhouse gas emission increased from 6.0E+07 to 7.3E+07 ton CO₂-e within ten years period (2002-2011). It indicated that development of Bogor Municipality affects directly on the local greenhouse gas emission.

Keywords: Bogor Municipality, development, emission, greenhouse gas, impact

INTRODUCTION

Impact of the increasing atmospheric greenhouse gases [1]-[2] concentration has been studied worldwide intensively since the last decades. A number of researchers have indicated generally that global climate change maybe the most serious environmental challenge ever faced by mankind [3]-[4]. This is as a result of devastating impact both on the climate and the environment [5].

Mitigation and adaptation actions to cope such global phenomenon are therefore important to be concerned by national and local authorities. Consequently, study on trend of greenhouse gas emission could be a basis to plan strategic measures to deal with the global warming locally. Some municipalities have tried to respond the global warming phenomenon locally by simply greening the open area such as urban forest [6].

Other municipalities started to mitigate the global warming without any strategic calculation on the budget and effectiveness of the implemented action [7]. Consequently, some mitigation measures were not effective and the greenhouse gases concentration remains high. On the other side, mitigation measures should be focused on the main contributors of the greenhouse gas emission. Here, impact of development on environment was viewed more specifically on the "negative" aspects, i.e. greenhouse gas emission, rather than on its "positive" effects such as growth of economy, better infrastructures and so forth.

An estimation of local scale greenhouse gas emission [4] carried out in a Portuguese municipality, called Oeiras, showed clearly that electricity sector accounts for about 75% of the municipal emissions. It indicated that local greenhouse gas estimation highly depends on the electricity consumption. The objectives of the research were firstly to estimate the amount of sector and total greenhouse gas emissions generated by Bogor Municipality. Secondly is to assess the impact of development in Bogor Municipality during ten years period (2002-2011) on the local greenhouse gas emission.
METHODOLOGY

Estimation on amount of the sector and total greenhouse gas (GHG) emission was based on IPCC (Inter-Governmental Panel on Climate Change) Guideline 2006. It is classified into three sectors, namely sector of energy, AFOLU (agricultural, forest land and other land use) sector and solid waste sector. Each of sector emission was calculated by using its corresponding emission factor which was adopted from IPCC Guideline 2006 and its database. Greenhouse gas emitted by each sector was firstly expressed in their responding unit, i.e. [ton CO$_2$/year], [ton CH$_4$/year] and [ton N$_2$O/year] and subsequently converted into a single common unit namely [ton CO$_2$-equivalent/year] or simply expressed in [ton CO$_2$-e/year] by using conversion factor, i.e. Global Warming Potential (GWP). The development indicators were population growth, energy consumption (electricity, kerosene, gasoline, "pertamax", LPG and diesel oil) as well as solid waste generation as a consequence of the population growth.

The GWP for CO$_2$ is 1, CH$_4$ is 25 and N$_2$O is 298 according to IPCC Guideline 2006. A flowchart of the research steps is depicted in Fig. 1.

![Flowchart of the research steps](image)

The amount of emitted greenhouse gas was estimated by using basic equations according to their sector and the necessary data as indicated in Table I. Hence, for instance, energy sector covers GHG emission resulted from small, medium as well as large scale industries that consume various fuels such as diesel oil, natural gas (LPG) and others.

The electricity consumed by each industry was also taken into account in the calculation. In AFOLU (agricultural, forest land, and other land use) sector the emitted GHG was mainly generated by paddy field and animal husbandry activity. Therefore, the calculation was based on these components.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Basic equation</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>• GHG emission = (fuel consumption)(net calorific value)(emission factor).</td>
<td>Number of small, medium and large scale industry; Diesel oil, gas and electricity consumption; Emission factor (e).</td>
</tr>
<tr>
<td></td>
<td>• Paddy field GHG emission = (area)(planting day)(emission factor).</td>
<td>Area of paddy field; Days of planting per year; Number of livestock (ruminants and poultry); Emission factor (e).</td>
</tr>
<tr>
<td></td>
<td>• GHG emission = (number of livestock)*(emission factor)</td>
<td></td>
</tr>
<tr>
<td>AFOLU</td>
<td>• GHG emission = (population)*(emission factor).</td>
<td></td>
</tr>
<tr>
<td>Solid waste</td>
<td>• GHG emission = (population)*(emission factor).</td>
<td>Municipal population; Daily solid waste generation; Organic fraction; Emission factor (e).</td>
</tr>
</tbody>
</table>
Paddy field is concerned as a source of GHG (i.e. methane) [8] due to anaerobic condition of the inundated paddy field normally practiced by the farmers in Indonesia. The anaerobic condition is a precursor for the methanogenic bacteria producing methane (CH$_4$). Animal husbandry which is also regarded as a source of GHG in AFOLU sector is based on the fact that feces emitted a lot of methane during the first days of their dispatch.

RESULTS AND DISCUSSION

Analysis of data showed that total greenhouse gas emission has been growing about 17% from 6.0E+7 [ton CO$_2$-e] in 2002 to be 7.3E+7 [ton CO$_2$-e] during ten years period (Fig.2). Population growth, however, has changed much faster, i.e. 68% within the same period as shown in Table 2.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population [million]</th>
<th>Growth [%]</th>
<th>Total emission [ton CO$_2$-e]</th>
<th>Emission per capita [ton CO$_2$-e/capita]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>2.9</td>
<td>68</td>
<td>6.0E+7</td>
<td>20.7</td>
</tr>
<tr>
<td>2011</td>
<td>4.8</td>
<td></td>
<td>7.3E+7</td>
<td>15.2</td>
</tr>
</tbody>
</table>

It indicated that a fast growth of population does not always imply on fast growth emission per capita directly as well. Contrary, emission per capita has decreased significantly from 20.7 to be merely 15.2 [ton CO$_2$-e/capita]. However, total emission growth was in line with the population growth.

Total greenhouse gas emission in Bogor Municipality consisted of mostly nitrous oxide (N$_2$O) and then followed by methane (CH$_4$) and carbon dioxide (CO$_2$) as indicated in Fig. 2. This is in line with the result of the data analysis where source of the emitted greenhouse gas was from AFOLU sector (Fig. 3). There is a strong relationship between AFOLU sector and the relevant emitted greenhouse gas, i.e. nitrous oxide (N$_2$O).

A factor that might contribute to the increase of greenhouse gas emission from AFOLU sector is the decrease of the forest land area where during 2002-2011 the forest land has decrease more than nine thousands hectares. It is clearly known that forest land roles as an important agent to offset atmospheric CO$_2$ emission [9]. Moreover, biomass resources such as forests, is known as an attractive strategy to reduce GHG emissions [10].
A strong relationship was also indicated between methane (CH$_4$) emission (Fig. 2) and solid waste sector (Fig. 3). It is recognized that methane can be generated during solid waste decomposition. During the decomposition process organic fraction of solid waste would be converted to be a number of gaseous compounds including methane [11].

Population growth as an indicator of development shows a positive correlation with the total emission as indicated in Fig. 4. The coefficient correlation is 0.985 (Fig. 5) which means that those parameters are strongly correlated.

The more population the higher solid waste generated in the society which in turn will increase the amount of the emitted greenhouse gas. A research conducted by Indonesian State Ministry for Environment in 1996 indicated that average solid waste generation in Indonesia was ±0.8 [kg/capita/day]. It is predicted that the solid waste generation could reach 2.1 [kg/capita/day] by 2020.
Fig. 4. Population growth and the total greenhouse gas emission

Fig. 5. Relationship between population and total GHG emission.

Data analysis on the AFOLU sector in terms of paddy field area, settlement area and forest land area demonstrated that forest land area has decreased about 8.5% within ten years (Fig. 6) whereas settlement area has increased 32% during the same period. Paddy field area, in contrary, has increased almost 3%. The latest roles as double agent in the atmospheric greenhouse gas turnover, i.e. firstly as methane source [12] in the environment and secondly as carbon sink where during photosynthesis paddy absorbs CO₂ as one of main substances beside water to form carbohydrates.

Fig. 6. Area change of forest land, settlement and paddy field.
Relationship between AFOLU sector and total greenhouse gas emission change is depicted in Fig. 7 where it is obvious that the growing total GHG emission was in line with the increase of settlement area, decrease of forest land and a slight increase in paddy field area. Settlement area is a kind of GHG source as it emits CO$_2$ from its various activities. The diminishing forest land area is also concerned as a source of GHG emission due to its decrease in carbon stock or carbon sequestration capacity. There are a number of estimations by independent researchers pertaining on carbon stocks, carbon sequestration capacity or primary production of Indonesian forest land such as follows:

- Net sequestration is -0.95 to 0.84 ton CO$_2$ ha$^{-1}$.year$^{-1}$ [13]
- Above- and below-ground net primary production was 6.7 Mg C ha$^{-1}$.year$^{-1}$ [14]
- Carbon stocks in the A-horizon were 18.70 ton C ha$^{-1}$ [15].

![Fig. 7. Relationship between AFOLU sector and total emission change.](image)

In energy sector a remarkable change on consumption of gasoline, kerosene and diesel oil has occurred in 2009 in Indonesia as a consequence of the governmental decree to convert kerosene fuel mainly consumed by households to natural gas (LPG). Since then the consumption of kerosene has significantly decreased by almost 87 million liter during the last three years. The change of consumption amount of these fossil fuel types is described in Fig. 8.

![Fig. 8. Change of fossil fuel consumption in energy sector.](image)

The significant decrease of kerosene supply in the market was simultaneously followed by increase of LPG, diesel oil and gasoline consumption during period of 2009-2011. The environmental impact, i.e. air quality change, of such condition itself was unclear due to the complexity of the atmosphere.
system. In fact, the total greenhouse gas emission showed a stable growing tendency along the study period.

Relationship between solid waste generation and total greenhouse gas emission is almost linear since one of the estimation bases of the total GHG emission was the quantity of the generated solid waste. Hence, as indicated in Fig. 9, the increasing amount of the generated solid waste in Bogor Municipality was always followed by increase of total GHG emission. Between the amount of generated solid waste and total GHG emission there is a strong correlation as indicated by its correlation coefficient accounts for 0.975 (Fig. 10).

![Fig. 9. Trend of solid waste generation and total GHG emission.](image)

The above description indicated that it is important to take into account the management of municipal solid waste in order to minimize the production of greenhouse gas from the solid waste bulk into ambient air and then to the atmosphere. Once it is released into the ambient air, a global and local mitigation measures should be planned and taken in action.

REFERENCES

