THE 3rd INTERNATIONAL CONFERENCE ON SUSTAINABLE ANIMAL AGRICULTURE FOR DEVELOPING COUNTRIES SAADC 2011

Suranaree University of Technology (SUT)
Nakhon Ratchasima, THAILAND

26 - 29 JULY 2011
-PP3213- Lipid and fatty acid composition of King Giant Napier (Chinese Pennisetum): preliminary study ... 337
 Mitchaothai, J., A. Lukkananukool, T. Trairatapiwan, R. Lertpatarakomol & S. Sophon

-PP3215- Effect of enokitake mushroom extracts supplementation in broiler diets on meat quality341
 Chumkam, S., O. Jintasataporn & O. Jintasataporn

-PP3221- Fermentation quality of sweet potato tuber silage mixing with leucaena leaves346
 Imura, Y., S. Mizumachi & Y. Kawamoto

-PP3223- Effect of guinea grass and Thaphra stylo silages on dry matter intake, nutrition digestibility and milk production .. 350
 Bureenok, S., W. Homsi, A. Lukkananukool, C. Yuanhklung, K. Vasupen & Y. Kawamoto

NON-RUMINANT NUTRITION/ RUMINANT NUTRITION / MEAT SCIENCE

-OP4001- Effect of tea leaf (Camellia sinensis L.) on Japanese quail egg production performance and egg quality .. 356
 Jintasataporn, O.

-OP4003- The effect of inclusion of fermented shrimp waste on blood lipid profile of broiler chicken361
 Djunaidi, I.H. & D. Hardini

-OP4006- Effect of lysine and metabolizable energy levels on productive performance of Mule ducks....367
 Ketaren, P.P., A.P. Simurat, L.H. Prasetyo, Y.C. Raharjo & M. Purba

-OP4009- Effect of phytase and organic acids on metabolisable energy and nutrient digestibility in young chickens ... 372
 Sjoffjan, O., E. Widodo & B. Sesarahardian

-OP4018- Utilization of dietary calcium and phosphorus into the egg of jet-black breeder Kedu chicken ... 377
 Wahyuni, H.I., N. Suthama, I. Mangisah, Tristiarti & I. Estiningdriarti

-OP4020- The effect of Red Pepper powder and Marigold flower as a natural pigmentation on egg yolk color in laying hens .. 382
 Moenini, M.M., S. Sadeghi & Sh. Ghazi

-OP4024- Variation in nutrient composition of cassava pulp and its effects on productivity of layer and broiler chickens ... 386

-OP4026- Effect of duration of soaking sweet orange (Citrus sinensis) fruit peel in water on its feed value in broiler diet ... 390
 Oluremi, O.I.A., E.O. Aku & K.T. Orayaga

-OP4029- Enrichment of organic-inorganic Se and vitamin E in quail products and its effect on the performances and source of antioxidant in quails’ eggs ... 397
 Akil, S. & W.G. Piliang

-OP4035- The effect of supplementation of DL-methionine in diet containing aflatoxin on broiler performance ... 402
 Permama, I.G., Nahrowi & A. Lotong

-OP4037- Performances, carcass percentage and abdominal fat of broilers fed ration contained prebiotics from corncobs and challenged with E. Coli ... 407
 Wiryawan, K.G., W. Hermana, Sumiati, Nuraini & A. Meryandini

-vi-
Performances, carcass percentage and abdominal fat of broilers fed ration contained prebiotics from corncobs and challenged with E. Coli

Wiryawan1,*, K.G., W. Hermana1, Sumiati1, Nuraini1 & A. Meryandini2

1Department of Nutrition and Feed Technology, Faculty of Animal Science,
2Department of Biology, Faculty of Science and Mathematic, Bogor Agricultural University, Bogor 16680, Indonesia

Abstract

Prebiotics are nutrients, which are not digested, and selectively improve growth and activity of beneficial microbes in the intestine. Corncobs contain hemicelluloses which are potential as prebiotic sources. The objectives of this research were to study the performance, the percentage of carcass, and abdominal fat of broilers fed a ration contained prebiotic from hydrolyzed corncobs. This research used factorial completely randomized design which consisted of two factors. The first factor consisted of three treatments: basal ration, basal ration +2.5% prebiotics, and basal ration +0.01% bambermycin, meanwhile the second factor consisted of two treatments: without E. coli infection and with E. coli infection, with five replications (10 birds/replicate). The variables observed were performances (consumption, body weight, feed conversion ratio, mortality), the percentage of carcass, and abdominal fat. The results show that the performances, the percentage of carcass, and abdominal fat of broiler fed a ration contained 2.5% prebiotics were not significantly different to that of control and antibiotic treated broilers, although broilers offered prebiotic tended to have lower values of all parameters measured except for abdominal fat and mortality. It is concluded that supplementation of prebiotics from hydrolyzed corncobs may be used in broiler diet at the level 2.5% of ration dry matter.

Keywords: broiler, prebiotic, corncobs, performance, carcass

*Corresponding author: K. G. Wiryawan
E-mail address:k.wiryawan@yahoo.com
Introduction

In the last decade many developed countries have restricted the addition of antibiotics in the feed due to its negative effects such as residue in animal products as well as stimulate resistance to targeted bacteria. Therefore, some alternative additives which are safer than antibiotics need to be implemented in animal industry. One of them is the utilization of prebiotics.

Prebiotics are nutrients which are not hydrolyzed by digestive tract enzymes, but beneficial to animals by stimulating the growth or activities of certain bacteria in the intestine which finally improve the animal health (Pato 2003; Manning & Gibson 2004). Some examples of prebiotics are inulin, galactooligosaccharides, lactulose, lactosucrose, isomaltoseoligosaccharides, trans-galactooligosaccharides, fructooligosaccharides, glucooligosaccharides, soy-oligosaccharides, and xylooligosaccharides (Tamime 2005; Roberfroid 2007).

Corncobs have the potency as source of prebiotics because it contains celluloses (40%) and hemicelluloses around 36% (Aylianawati & Susiani, 2008) that can be hydrolysed to produce glucooligosaccharides and oligoxyllose using cellulolytic and xylanolytic bacteria. Previous experiment by Moura et al. (2007) showed that oligosaccharides from corncobs (xylotriose and xylotetraose) could stimulate the growth of *Bifidobacterium adolescentis* and *Lactobacillus brevis*. In addition, Alonso et al. (2003) reported that xylooligosaccharides can stimulate the growth of *Bifidobacterium* sp. Therefore, the aim of this experiment was to evaluate the use of prebiotics from corncobs on performances, carcass percentage, and abdominal fat of broiler chicken challenged with *E. coli*.

Materials and Methods

Production of prebiotics

Two loop of isolate combination of *Actinomyces* sp. KBM6 and *Streptomyces* sp. 45I-3 were grown in 2000 ml corncobs containing media in a shaker incubator for 5 days at room temperature. The bacterial culture was then inoculated into 8000 ml corncob containing media for 10 days at room temperature with aeration. The cultures were evaporated until its volume became 1 liter. Degree of polymerization (DP) of prebiotics was calculated by dividing total sugar with reduced sugar.

Animal and diet

Three hundred day old chick of Cobb CP-707 strain were reared for 35 days. In the first 14 days the chickens were fed starter diet, and the remaining days were fed with finisher diet. During starter period, chickens were subjected into six different treatments of factorial design 3 x 2 with 5 replications containing 10 chickens for each replication. The first factor was three rations containing different additives i.e., starter ration without additive, starter ration with 2.5% corncob prebiotics, and starter ration with 0.01% bambermeycin antibiotics. The second factor was two treatments of *E. coli* challenge i.e., without infection of *E. coli* and with infection of *E. coli* (10⁶ cfu head⁻¹). Water was provided ad libitum. The starter diet consisted of 19% crude protein and 3050 kcal kg⁻¹ of metabolic energy, whereas finisher diet consisted of 18% crude protein and 3100 kcal kg⁻¹ metabolic energy.

Parameters and data analysis

The chicken body weight was measured in the first day and every week during the experiment, and feed consumption was measured every week. At the end of experiment, one chicken from each treatment was slaughtered using the method of Kosher to determine the carcass percentage and abdominal fat. Parameters measured were feed consumption, final body weight, feed conversion ratio, carcass percentage, and abdominal fat. Data were
subjected to analysis of variance, and significance differences were further analyzed with Duncan test (Steel & Torrie, 1993).

Results and Discussion

Production of prebiotics

Prebiotics produced had degree of polymerization (DP) of 3. Gibson (1999) reported that DP of prebiotics vary between 2 to 60 for inulin and between 2 to 20 for oligosaccharides. The prebiotics produced in this experiment is a mixture of glucooligosaccharides and xylooligosaccharides. These oligosaccharides were produced by the action of cellulolytic bacteria of *Actinomyces* sp. (KBM6) and xylanolytic bacteria of *Streptomyces* sp. (45I-3). Xylooligosaccharides as prebiotics have been reported by Alonso et al. (2003). It can stimulates the growth of *Bifidobacterium* sp. and depresses the activity of intestinal pathogen as well as improve nutrient absorption. In addition, Moura et al. (2007) reported that oligosaccharides (xylotriose and xyloyatraose) from corncobs could improve the growth of intestinal bacteria such as *Bifidobacterium adolescentis*, and *Lactobacillus brevis*.

Feed Consumption, Final Body Weight, and Feed Conversion Ratio

Feed consumption of broiler during 35 days ranged from 2328 to 2457 g head⁻¹ and there was no effect of additive inclusion (prebiotics and antibiotic), *E. coli* infection, and interaction both of them on feed consumption (Table 1). This might be due to good nutrient content of the ration and good environment during the experiment. The prebiotics and antibiotics will have better influence on consumption when the animals are offered bad quality ration or exposed to bad environment. However, feed consumption of broilers fed with prebiotics from corncobs in this experiment was higher (68 g head⁻¹ day⁻¹) compared to the results reported by Hakim (2005) who used commercial prebiotics (61 g head⁻¹ day⁻¹). This means that prebiotics from corncobs can be used as additive in broiler ration.

Similar to feed consumption, broiler body weight was also not affected by all treatments. This could be related to consumption and good quality ration. Prebiotics and antibiotics are expected to improve nutrients absorption in the intestine (Leeson & Summer, 2001), however as the rations had similar quality, the nutrients digestibility might be the same causing similar nutrient absorption and deposition as body weight. Average body weight gain of broilers fed corncobs prebiotics was similar to those reported by Hakim (2005) using commercial prebiotics (239,36 vs 238,94 g head⁻¹ week⁻¹).
Table 1. Feed consumption, final body weight, and feed conversion ratio of broiler fed prebiotics containing ration and challenged with *E. coli* for 35 days.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor 1 Without E. coli</th>
<th>Factor 1 With E. coli</th>
<th>Factor 2 X ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption (g head⁻¹)</td>
<td>Control 2334 ± 101</td>
<td>2374 ± 194</td>
<td>2354 ± 28</td>
</tr>
<tr>
<td></td>
<td>Prebiotics 2328 ± 134</td>
<td>2400 ± 180</td>
<td>2364 ± 51</td>
</tr>
<tr>
<td></td>
<td>Antibiotic 2457 ± 89</td>
<td>2394 ± 153</td>
<td>2426 ± 44</td>
</tr>
<tr>
<td></td>
<td>X ± SD 2373 ± 107</td>
<td>2389 ± 176</td>
<td>2381 ± 41</td>
</tr>
<tr>
<td>Final body weight (g head⁻¹)</td>
<td>Control 1228 ± 44</td>
<td>1185 ± 67</td>
<td>1206 ± 30</td>
</tr>
<tr>
<td></td>
<td>Prebiotics 1210 ± 41</td>
<td>1183 ± 64</td>
<td>1197 ± 19</td>
</tr>
<tr>
<td></td>
<td>Antibiotic 1234 ± 54</td>
<td>1202 ± 43</td>
<td>1218 ± 23</td>
</tr>
<tr>
<td></td>
<td>X ± SD 1224 ± 46</td>
<td>1190 ± 58</td>
<td>1207 ± 24</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>Control 1.90 ± 0.12</td>
<td>2.00 ± 0.10</td>
<td>1.95 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>Prebiotics 1.92 ± 0.13</td>
<td>2.03 ± 0.05</td>
<td>1.98 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>Antibiotic 1.99 ± 0.06</td>
<td>1.99 ± 0.06</td>
<td>1.99 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>X ± SD 1.94 ± 0.10</td>
<td>2.01 ± 0.07</td>
<td>1.97 ± 0.05</td>
</tr>
</tbody>
</table>

Feed conversion ratio ranged from 1.90 to 2.03 and was not significantly difference amongst treatments (Table 1). This means that the addition of corncob prebiotics did not have negative effect on nutrient utilization and can be used to replace antibiotics in broiler ration.

Carcass Percentage and Abdominal Fat

The average carcass percentage ranges from 68.02% to 71.03% (Table 2) and was higher compared to those reported by Syukron (2006) and Daud et al. (2007) who obtained carcass percentage between 56.64% - 60.02% and 65.35 of live weight, respectively. All treatments did not affect carcass percentage, this means that prebiotics and antibiotics addition, as well as infection with *E. coli* did not influence carcass percentage of broilers. The percentage of abdominal fat of broilers during 35 days experiment ranged from 1.44% to 1.96% and was not affected by treatments (Table 2) and lower to that reported by Daud et al. (2007) who obtained abdominal fat percentage was 2.22% at 42 days age. It may be that broilers at five week of age are still growing, so that the nutrients are used for growth instead of for fat deposition.
Table 2. Carcass percentage, and abdominal fat of broiler fed prebiotics containing ration and challenged with E. coli for 35 days.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>X ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcass percentage (%)</td>
<td>Without E. coli</td>
<td>With E. Coli</td>
<td>70.26 ± 1.10</td>
</tr>
<tr>
<td>Control</td>
<td>71.03 ± 3.79</td>
<td>69.48 ± 1.86</td>
<td></td>
</tr>
<tr>
<td>Prebiotics</td>
<td>69.35 ± 2.84</td>
<td>68.02 ± 1.43</td>
<td>68.69 ± 0.94</td>
</tr>
<tr>
<td>Antibiotic</td>
<td>70.36 ± 2.34</td>
<td>68.96 ± 2.88</td>
<td>69.66 ± 0.99</td>
</tr>
<tr>
<td>X ± SD</td>
<td>70.25 ± 2.99</td>
<td>68.82 ± 2.06</td>
<td>69.53 ± 1.06</td>
</tr>
<tr>
<td>Abdominal fat (%)</td>
<td>Control</td>
<td>1.56 ± 0.25</td>
<td>1.96 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>Prebiotics</td>
<td>1.44 ± 0.49</td>
<td>1.54 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>Antibiotic</td>
<td>1.70 ± 0.41</td>
<td>1.61 ± 0.33</td>
</tr>
<tr>
<td>X ± SD</td>
<td>1.57 ± 0.38</td>
<td>1.70 ± 0.33</td>
<td>1.64 ± 0.18</td>
</tr>
</tbody>
</table>

Conclusion

Prebiotics from corncobs at the level 2.5% can be added into broiler ration and replace bambermycin without affecting the broiler performances, carcass percentage, and abdominal fat.

Acknowledgment

This research was funded by Directorate General of Higher Education, Ministry of National Education, Indonesia, through Competitive Grant No. 219/SP2H/PP/DP2M/V/2009.

References

J
Jahani-Azizabadi, H. 265
Jayawardana, V.P. 208
Jin, Y.C. 261
Jintana, R. 785
Jintasataporn, O. 343, 358, 535
Juntuck, N. 184
K
K. Fukami 145
Kaenchan, N. 602
Kaewkumson, S. 485
Kaewkwan, S. 184, 188
Kaewpoo, B. 283
Kaewwongsa, W. 253, 485, 511
Kajaysri, J. 685
Kana Hau, D. 103
Kanchan, N. 309
Kang Suk Seo 515
Kankamol, C. 826
Kanto, U. 388
Kaokaew, N. 785
Kar, S. 173
Karami, M. 795
Karti, P.D. 235, 798
Kartiarso 459
Kashani, S.G. 123
Katawatin, S. 290
Kawamoto, Y. 299, 348, 352
Keawtawee, T. 145
Kesorn, P. 836
Kesornbua, S. 821
Ketaren, P.P. 369
Khalili, M. 257
Khamseekhiew, B. 112
Khatibi, A. 733
Kheiri, F. 505
Khempaka, S. 331
Khezri, A. 723, 733
Khoshoei, E.A. 479
Ki Chang Nam 515
Kiran, K.P. 173
Kiyanzad, D. 780, 789
Kongrit, V. 112
Kongsut, C. 584
Kumagai, H. 98
Laconi, E.B. 459
Laconi, E.B. 225
Landy, N. 257
Le, N.Q. 698
Le, Q.A. 698
Lee, M.C. 30261
Lengkey, W. 520
Lertpatarakomol, R. 335, 339, 785, 831
Ley, S.Y. 30
Lotong, A. 404
Lukkamanukool, A. 335, 339, 352, 606
Machfud 54
Maksimovic, N. 2
Maleki Farahani, S. 303, 306
Manami Nishio 633
Maneelek, I. 821
Mangisah, I. 379
Marjuki 218
Masilp, C. 309
Masin, C. 602
Masuno, T. 93, 118
McGill, D. 611
McGill, D.M. 116
Mekkawy, W. 739
Meriam Cabling 515
Meryandini, A. 409
Mian, A.A. 628
Mishra, S. 11
Mitchaotai, J. 836
Mizumachi, S. 299, 348
Moazeni-jula, G.R. 229
Moeini, M.M. 384
Mohaghegh, P. 479
Mohammadi, A. 179
Mohammadi, M. 85, 89
Mohammadi-heisar, M. 490
Moharrery, A. 479
Mohd Azam Khan, G.K. 622
Mojtahedi, M. 265
-840-
Mohammadi, A. 179 Okamoto, K. 70
Mohammadi, M. 85, 89 Okano, M. T. 7
Mohammadi-heisar, M. 490 Okoli, I.C. 718
Moharrery, A. 479 Okoli1, I.C. 75
Mohl Azam Khan, G.K. 622 Okonkwo, I.F. 676
Mojtabehidi, M. 265 Okonkwo, J.C. 137, 676
Molee, W. 331 Ololdi, F.F. 314
Monfared, N. 81, 419 Olorunnisomo, O.A. 207
Moradi shahrbabak, M. 780, 789 Olubamiwa, O. 500
Moradi, S. 63, 655 Oluremi, O.I.A. 392
Moraveg, H. 414 Opara, M.N. 728
Moussavi, A.H. 249 Opara, M.N. 75
Mudawamah, V.M. 748 Opatpananakit, Y. 286
Murtaza, N. 611 Orayaga, K.T. 392
Murugayah, M. 775 Otsuka, M. 592
Myung Sub Lee 515 Owosibo, A. O. 500
N
Nadeem, S. 628 P. Songsangjinda 145
Nahrowi 404, 459 Paengkoun, P. 438, 606
Nasr, J. 505 Pakmaluex, P. 615
Navanukraw, C. 245 Panachan, K. 821
Nejati, R. 807, 814 Panandam, J.M. 157, 703, 775
Ngampongsi, W. 565 Parnlak, T. 188
Ngoukaew, N. 485 Pathomsakulwon, W. 821
Nguyen, B.T. 698 Pattarajinda, V. 286, 290
Nguyen, B.V. 698 Pavlovic, I. 474
Nguyen, N.A. 448 Peangkoun, P. 579
Nguyen, T. 429 Penjor, S. 290
Nikbin, S. 775 Permana, I.G. 319, 404
Nishida 208 Petrovic, M.M. 2
Nnabude, P.C. 137 Petrovic, P.M. 2
Nokkaew, W. 184, 188 Peymani, E. 229
Norouzi Ebdalabadi, M. 249 Pham, D.L. 698
Nosrati, M. 192 Phaowphaisal, I. 597
Nulik, J. 103 Phichitrasilp, T. 245
Nuraini 409 Phonmun, T. 606
Nurgiartiningsih 748 Piliang, W.G. 399
Nwagwu, C. 718 Pimpa, O. 112
O
Obiakor,M.O. 137 Pisinov, B. 474
Odedire, J.A. 314 Piumpol, N. 602
Ogbe, F.G. 132 Plainpun, N. 826
Ogbuewu, I.P. 728 Pojprasart, T. 821
Oh, J.J. 261 Polviset, W. 443
Pongnachai, W. 253
Pongpeng, J. 651 Saharee, A.A. 672
Ponpri, C. 584 Salaenoi, J. 127, 826
Popescu, S. 58, 637 Salehi, M. 655
Popov-Raljic, J. 474 Salundik, M.H. 235
Posuwun, P. 485 Santos, O.S. 7
Pourfalah, M. 179 Saoleng, L. 708
Prasetyo, L.H. 369 Sazili, A.Q. 524, 775
Pratitís, W. 469 Seifi, S. 179
Premalatha, R. 173 Sembiring, M. 588
Priyanto, R. 713 Senevirathne, N.D. 208
Pujaningsih, R.I. 319 Sesarahardian, B. 374
Purba, M. 369 Setiadi, Y. 798
Purbowati, E. 556 Shadnoush, F. 610
Purnomo, S.S. 54 Shadnoush, G.H. 610
Purnomoadi, A. 453, 575 Shah, M.K. 98
Putra, R.A.R.S. 46 Shahneh, A.Z. 414
Qin, L. 162 Shamsaei, H.A. 807, 814
Qin, Y. 272 Shamshirgaran, Y. 192
Qiu Jin, Z. 272 Shariffah, N.Y. 664
Raharjo, Y.C. 369 Shi, X. 162
Rahayu, S. 753 Shirai, M. 70
Rahimian, A. 229 Sinurat, A.P. 369
Rahman, M.R. 664 Sirikunsang, A. 485
Raji, A.M. 500 Sjofjan, O. 374
Rangubhet, K.T. 448 Soedarmadi, M.H.H. 798
Rashid, R.A. 524 Soetrisno, D. 222
Rehman, A. 628 Solati, A. 505
Retnani, Y. 240 Sonseeda, P. 651
Rianto, E. 294, 453, 556 Sophon, S. 339, 689, 694, 785
Riyanto, J. 469 Sornklien, C. 196
Rizkiyani, A. 459 Sri Lestari, C.M. 453, 556, 575
Romero, L.F. 388 Sri Rahayu 633
Roni, P. 520 Stefan, R. 58
Rosnina, Y. 622, 672 Stojanovic, Z. 474
Rueangri, W. 127 Suadsong, S. 668
Ruzic Music, D. 2 Subepang, S. 592
Saad, M.F. 168 Sudjarwo, E. 642
Sadeghi, M. 780, 789 Suek, J. 103
Sadeghi, S. 384 Sugimoto, Y. 299
Saeed, A.M. 168 Suhartanto, B. 222
Saenjan, P. 615 Sukaryana, Y. 489
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumiati</td>
<td>409</td>
</tr>
<tr>
<td>Supriyanto, A.</td>
<td>759</td>
</tr>
<tr>
<td>Supriyatna, E.</td>
<td>489</td>
</tr>
<tr>
<td>Suranindyah, Y.</td>
<td>16</td>
</tr>
<tr>
<td>Suriyagamon, S.</td>
<td>309</td>
</tr>
<tr>
<td>Suriyawong, T.</td>
<td>331</td>
</tr>
<tr>
<td>Suthama, N.</td>
<td>379</td>
</tr>
<tr>
<td>Suthikrai, W.</td>
<td>785</td>
</tr>
<tr>
<td>Sutisorn, A.</td>
<td>485</td>
</tr>
<tr>
<td>Sutistiyanto, B.</td>
<td>543</td>
</tr>
<tr>
<td>Sutrisno, C.I.</td>
<td>108, 294, 319, 543</td>
</tr>
<tr>
<td>Suwanpanya, N.</td>
<td>584</td>
</tr>
<tr>
<td>Suwignyo, B.</td>
<td>222</td>
</tr>
<tr>
<td>Suyadi</td>
<td>759</td>
</tr>
<tr>
<td>Taherpour, N.</td>
<td>655</td>
</tr>
<tr>
<td>Tahmoorespour, M.</td>
<td>249</td>
</tr>
<tr>
<td>Tahmorespoor, M.</td>
<td>192</td>
</tr>
<tr>
<td>Tahakashi, J.</td>
<td>208</td>
</tr>
<tr>
<td>Talebi, M.A.</td>
<td>795</td>
</tr>
<tr>
<td>Tatsapong, P.</td>
<td>579</td>
</tr>
<tr>
<td>Te Jung Choi</td>
<td>515</td>
</tr>
<tr>
<td>Techakumphu, M.</td>
<td>668, 785</td>
</tr>
<tr>
<td>Thammacharoen, S.</td>
<td>429</td>
</tr>
<tr>
<td>Thammakarn, C.</td>
<td>685</td>
</tr>
<tr>
<td>Thiputen, S.</td>
<td>597</td>
</tr>
<tr>
<td>Thivalai, C.</td>
<td>694</td>
</tr>
<tr>
<td>Thongdee,W.</td>
<td>511</td>
</tr>
<tr>
<td>Thu, N.V.</td>
<td>424</td>
</tr>
<tr>
<td>Tienprapaat, N.</td>
<td>821</td>
</tr>
<tr>
<td>Tohidi, R.</td>
<td>157, 703</td>
</tr>
<tr>
<td>Tomic, Z.</td>
<td>2</td>
</tr>
<tr>
<td>Tonpitak, W.</td>
<td>196</td>
</tr>
<tr>
<td>Towhidi, A.</td>
<td>414</td>
</tr>
<tr>
<td>Trairatapiwan, T.</td>
<td>335, 339, 785, 831</td>
</tr>
<tr>
<td>Traiyakun, S.</td>
<td>836</td>
</tr>
<tr>
<td>Tran, T.T.T.</td>
<td>698</td>
</tr>
<tr>
<td>Tran, T.T.T.</td>
<td>698</td>
</tr>
<tr>
<td>Tristiarti</td>
<td>379</td>
</tr>
<tr>
<td>Tsuji, T.</td>
<td>118</td>
</tr>
<tr>
<td>Tumwasorn, S.</td>
<td>744</td>
</tr>
<tr>
<td>Tunkijjanukij, S.</td>
<td>826</td>
</tr>
<tr>
<td>Uchegbu, M.C.</td>
<td>75</td>
</tr>
</tbody>
</table>

-843-
Yuangklang 615, 836
Yumi Hoshino 633
Yunianto, V.D. 489

Z
Zahoor, A. 628
Zaker-Bostanabad, S. 229
Zaki, A.A. 739
Zhang, X. 70
Zujovic, M. 2
Zulharman, D. 459